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On the LP-Lipschitz Exponents of the Scaling Functions
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ABSTRACT. Based on a necessary and sufficient condition for the existence
of LP-scaling function as solution of a dilation equation [LW], we derive a
formula for the LP-Lipschitz exponent. For p an even integer (orforallp>1
in some special cases), the formula can be simplified to a computationally
efficient matrix form.

1. Introduction

A nonzero function f(z) is called a scaling function if it satisfies the two-scale
dilation equation

N
(11) f@) =" enf(2a - m).
n=0

Such functions play significant roles in wavelet theory, constructive approximation
theory and fractal geometry. Their existence and regularity, treated as compactly
supported L? or continuous solutions of (1.1), have been studied in great detail
(e.g. [CD,CH,D,DL1,DL2,H,V] and the references there). In this paper we will
continue such investigation for the compactly supported LP-solutions 1 < p < oo
(notation: LP-solutions).

For the L*-case the analysis depends heavily on the Fourier transformation of
(1.1): £(€) = mo(¢/2)f(£/2) where mg(€) = 1/23 cqei™. For the LP-case we rely
on the following linear algebraic set-up used by Daubechies and Lagarias [DL2],
Collela and Heil [CH], and independently by Micchelli and Prautzsch [MP]: For
any g supported by [0, N], we convert g into the vector-valued function

(1.2) 8(@) = [9(@), 9(@ +1),....9(e+ (N - 1)]", z€[0,1]

and use the right hand side of the dilation equation to construct two N x N matrices
Tp and T3 (see Section 2). Let v be a N-vector, let fo(z) = v be the initial function,
and let {fi(z)}, be obtained by iterating fy(z) with the matrices T and T}
inductively (the Cascade algorithm). The limit, if it exists, will be the solution of
the dilation equation. A natural question is: is there any difference in choosing the
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initial vector? Although there are many choices of v for the iterated sequence to
converge, we find that the most special one is the right-eigenvector corresponding
to the eigenvalue 2 (notation: 2-eigenvector) of the matrix To+71. We can use this
eigenvector to obtain a necessary and sufficient condition for the existence of LE-
solution (JLW] and Theorem 2.2 in the following) and also the smoothness of the
solution. In [J], Jia studied the same existence question by using a “hat” function
as initial function and obtained a slightly different criterion.

To study the regularity of the LE-scaling function f, we use the LP-Lipschitz
exzponent defined by

oy — i g ARl
Lip,(f) = o =

where Ay, f(z) = f(z + h) — f(z), equivalently,

Lip,(f) = inf{s: 0 < limsup h_3||Ahf||p}.

h—0t

When p = 2, a equals the Sobolev exponent of f. Recently there is a great in-
terest on the LP-Lipschitz exponent (LP-dimension if measures are concerned) in
connection to the multifractal theory (e.g. [FP,HJ,DL3,J1,2,LN]). The function
7(p) = pLip,(f) (called the moment scaling exponent of f) has a very elegant
heuristic relationship with v(a) = dimg {z: im0+ (In|Apf(z)|/Inh) = a }, the
Hausdorff dimension of the set of all z with local Lipschitz exponent o, namely
the multifractal formalism: the Legendre transformation (equivalently, the concave
conjugate) of 7(p) is y(a). This elegant relationship was proposed by physicists
[FP,HJ] and attracts a lot of attention from mathematicians. Daubechies and
Lagarias [DL3] showed that the formalism does not hold for the scaling function
D,. Nevertheless it was observed that the failure is due to the nondifferentiability
of 7(p) at p = 2 (see Figure 2¢) and it raises more interesting questions on the
LP-Lipschitz exponent.

For the scaling functions, the L?-Lipschitz exponent has been studied in detail
in [CD,H] and [V] and sharpened in [LMW]. In this note we will consider the
LP-case. We note that in the proof of existence, the iteration of fy, starting with
the 2-eigenvector v, converges to the solution f at a geometric rate. Amagzingly, this
rate actually gives us the LP-Lipschitz exponent of f (Theorem 3.1). The rate is
given by a series of matrix products and is therefore not computationally efficient.
For some special cases (including those considered in [DL3]), we can reduce it to
simple formulas. For the more general case we can still calculate the LP-Lipschitz
exponent when p is a positive integer. Note that in our consideration we only treat
the Lipschitz exponent of order not greater that 1. For higher order of smoothness
we need to consider the higher order difference Af f.

In the following we give the results and sketch some of the proofs. The detail
will appear in [LM].

2. Existence of L?-Scaling Functions

Tt is known that if (1.1) has an integrable solution, then 3 c, = 2™, m >0

an integer (m is the order of zero of f(€) at 0, and m = 1 if [ f # 0) [DL1]. We
will hence use the natural assumption 3 ¢, = 2 on the coefficients unless otherwise
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speciﬁed. Let T() == [CQi—j—l]lgi,jSN and Tl = [CZi—j]lgi,jSNa i.e.,

Co 0 0 v 0 c1 Cp 0 cee 0
cy €1 Cp - 0 cC3 € Cp - 0
To=|¢c €3 ¢ - 0 , Th=|¢C ca c3 - 0
0 0 0 -« eN-1 0O ¢ 0 -+ ey

For any g € LP(R) with support in [0, N], let g(z) be the vector-valued function
representing ¢ as in (1.2) and let

B Tog(2) ifz €[0,1/2),
Tg(z) = { Tg(2x —1) ifze[1/2,1).

It is easy to show that f is a solution of (1.1) if and only if f = Tf. With no
confusion, we use | - | to denote the LP-norm of g and also the vector-valued
function g. For any k > 1, we let J = (j1,...,%), s = 0 or 1, denote the multi-
index (J = § if k = 0), and let |J| denote the length of J. The matrix T'; represents
the product T}, - - - Tj; Iy = I(4,,... ;) = [a, ) denotes the dyadic interval where
Tt and b=a + 1

J1
P ok ok’

2

and gr means the average |I|™! [, g(z) dz of g on an interval I. We first give a
necessary condition for (1.1) to have an LZ-solution [LW].

a =

Jo
F ot

PROPOSITION 2.1. Assume ZZLO cn=2. For1l < p < oo, let f be an LE-
solution of (1.1) and let v = [fio,1,- - -» fin—1,5]" be the vector defined by the aver-
age of [ on the N subintervals. Then

(i) v is a 2-eigenvector of (To +T1).

(i) Let fo(z) = v, z € [0,1), and let £,40 = Tf,, n =0, 1,..., then f,(z) =
Sisj=n(Trv)xi, (z), z €[0,1), and £, — £ in L7 ([0,1],RY).

To look for a criterion for the existence of LP-solution, the above proposition
suggests that we should concentrate on the 2-eigenvector of Ty + 7. Let v be such
a vector, then (Tp — I)v = —(Ty — I)v. Let v = (Tp — I)v and let H(V) be the
subspace in RY spanned by {T,¥:J a multi-index}. Now, let {f}};2, be defined
as in the proposition, then f, = f5 + ZZ;& (fpr1 — £) and

1
||fk+1 - fk”p = W Z ”TJ(TO - I)V”p + ”TJ(Tl - I)VHP
|J|=k

1 .
= 5 Z %P

|J|=k

(2.1)

If 27F 2o \l=k |T;v||P — 0, it can be shown that it actually converges at a
geometric rate, hence {f,} converges and the limit is the LP-solution. Indeed we
have the following stronger result [LW]:

THEOREM 2.2. Suppose Zf:’zo en =2 and 1 < p < co. Then the following
statements are equivalent:
(i) Equation (1.1) has a nonzero LE-solution.
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(ii) There exists a 2-eigenvector v of (Tg + T1) satisfying

hm — Z |T5¥||P = 0.
|J]=n

(ili) There exist a 2-eigenvector v of (To + T1) and an integer £ > 1 such that

1
= > IT|P <1 for allue HEF), |u] <1.
|J|=¢

We remark that in [J], Jia used the initial function fy defined by

1+z ifze[-1,0),
folx)=< 1—z ifze(0,1),
0 otherwise

and showed that the necessary and sufficient condition for the LP-convergence of
the iteration is the existence of £ such that

N
1
5 > ITulP <1forallue H := {u ERN:D u; = o}, luf| < 1.
|J|=¢ i=1

Note that (iii) is a weaker condition and H = H (V) in many cases.

3. Regularity of LP-Scaling Functions

In this section we assume that f is an LP-solution of (1.1). It follows from
Theorem 2.2 that limp—c0 27" 32,51, [Ts¥||P = 0. In fact the convergence is at
a geometric rate [LW|. Under some slightly stronger conditions, this rate actually
gives us the LP-Lipschitz exponent of f.

THEOREM 3.1. Assume > . cCon = Y. Cont1 = 1 and 1 is a simple eigenvalue of
To and T1. Then for 1 < p < oo,

In(27" 37, 12 1759 ]1P)
pln(2—m) '

We will give a sketch of the proof. First we need some basic facts concerning
the eigenvectors of Ty and T3. Some of them can be found in [H]. Let H = {u €

RN Zz 1“1_0}

LEMMA 3.2. Suppose > con = Y. cCopr1 = 1. Let v be a 2-eigenvector of
(To+Th), V= (Tp — I)v and H(V) be the subspace spanned by the T;v’s. Then
(i) H(¥) is a subspace of H.
(if) 1 is an eigenvalue of Ty and Ty; let vo and vy be the corresponding eigen-
vectors, then Tovy = T1vp.
(iif) v can be decomposed as v = cvg + hyg = cvy + h; where ¢ > 0 and hg,
hy) € H; furthermore if 1 is a simple eigenvalue of Ty and Ti, then hg,
h, € H(V)

(3.1) Lip,(f) = lim inf
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It is easy to see that the assumption ), con = D Cant1 = 1 implies v € H
and H is invariant under Ty and 7. Hence (i) follows immediately. Note that
1 is an eigenvalue of the common submatrix M = [c2;—;]i<ij<n—1 of Tp and T7.
If a = [ai,...,an—1]" is an l-eigenvector of M, then vq := [0,a1,...,ay—1]" and
vy = [a1,...,an—1,0]" are 1-eigenvectors of Ty and T} respectively, and a direct
calculation yields (ii). For (iil) we need only choose ¢ = Zf’zl vi) SNt a; where v;
are the coordinates of v. To prove the last statement, we note that the assumption
implies that Ty — I restricted on H is bijective; it is hence also bijective on the
(Ty — I)-invariant subspace H(¥). From the decomposition we have (Tp — I)hg = ¥
and hence hg must be in H(¥). The case for h; is the same.

To prove the theorem, we let v be the 2-eigenvector of Ty + 17 satisfying con-
dition (ii) of Theorem 2.2, f,(z) = 37, ;= (Tuv)x1,{(2), and f, the corresponding
function on R supported by [0, N]. For fixed 0 < h < 1/2, let n be such that
2-(1) < h < 27", We claim that ||Ap,f,]| has order 27" > 171=n |ITs¥||P. Indeed,

let E, = U;.V:_Ol [4, 74+41—2"") and E, = [-27", N]\ E,. Since f, is supported by
[0, N], we have

N
18nfall = [ Anfola)] i

:/ |Ahfn($)|pd.’l7+\/; IAhfn(:L‘)’pd$
E, En

1-27" N
= /0 |£a(z + ) — £u(2)||” do + hZ\f[k,k+z—n) A
k=0

=15 + I

where fi, ) is the average of f on the interval [a,b). By Lemma 3.2(ii), (iii) and
using £,(z) = 3=, 7=, (Tsv)x1,(z), we have

1 n—1 n—1
1150'27[2 o ITTTERP + > f|TJT0T1’°h1||p}

k=0 |J|=n—k—1 k=0 |J|=n—k—-1

and
1 r P
I2 < Cl/é‘g(HT 0---0 hO + HT 1..-1 hl )a
t terms

where ¢’ and C” are constants independent of . Hence we have

1
8ufal? < Cuoge (T Mtsbale + 3 I7sm)

|J|=n |J]=n

for some constant C;. The claim follows from observing that the terms on the right
hand side have the desired order. Now note that [|Apf|| < 2||f — ful + [|Arfnll and
that || f — f,||” has order 27" 37, ;1 [T, ¥|? as n — oo (by (2.1) and Theorem 2.2).
This together with the claim implies “>” of (3.1).
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The reverse inequality follows from the following inequality which can be proved
by the similar argument as above: there exists Cy such that for n,¢ > 1,

Co <2n—1—1 Z ”TJ‘7“p> < Ag—n frpel®

|J|=n—1

4. Reduction of the Criterion

In the following we consider solutions f of some special four-coefficient dilation
equations with co+cy = ¢1 +¢3 = 1. We first calculate the Lip,(f) for some special
cases.

EXAMPLE 1. ¢3 = 0. This is actually a 3-coefficient case with co +c2 = 1
and ¢; = 1. By a direct calculation, v = [co(co — 1), —co(co — 1)]t is a common
eigenvector of Ty and Ty with eigenvalues cp and 1 — ¢y respectively. From this we
show that 27" 37, 1, [Tu¥[” = 27" (Jeof? + |1 — co[?)"|[¥||P. It follows that
_ 1n(27 (Jeol” + 11 — cof?))

N —pln2 '

Lip,(f)

EXAMPLE 2. cg +c3 = 1. In this case ¥ = [—ccs, ces — coc?, cocd]? is again
a common eigenvector of Ty and 7 with eigenvalues ¢y and 1 — ¢p respectively. It
follows that Lip,(f) is the same as in Example 1 by using an identical calculation.

(See Appendix, Figure 1 for some graphs.)

EXAMPLE 3. cg+c¢3 = 1/2. (This includes the Daubechies scaling function Dy
where co = (1+v/3)/4,c3 = (1 — v/3)/4). Note that u = [0,1,-1]*, h = [1,-2,1}*
are eigenvectors of Ty corresponding to the eigenvalues 1/2 and cg; also Tiu =
1/2u + coh and Thh = (1/2 — ¢p)h. By using {u, h} as a basis of the subspace
H(¥) = H, we can rewrite Ty and T3 on H as

1
3 0 z 0 )
0 Co ’ Co % - Cp

Let By = ¢g and By = % — ¢p. Then the corresponding matrix for T is

27" 0

Aroopa)’
where Ay = ,80(j12_(n_1) +j22_(n_2)ﬂj1 +- '+jnﬂj1 e ./8]'1171)’ HJ = IBjIIBjZ e ﬂjn’
ji=0or 1. A direct estimation yields

In(27* (Jeol” +1/2 — col?)) }
—pln2

Lip,(f) = min{l,

This formula was also proved by Daubechies and Lagarias [DL3] with another
method and the additional assumption that 1/2 < ¢p < 3/4. (See Appendix,
Figure 2 for some graphs.)

In all the three examples the computation depends on the existence of a com-
mon eigenvector of Ty and T3 (which may be associated with different eigenvalues).
This technique cannot be used for the general case. However we show in the fol-
lowing that if p is a positive even integer, then Lip,(f) is related to the spectral
radius of a matrix W, whose entries are induced from the coeflicients of the dilation
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equation. For simplicity, we only give the construction of W, for the 4-coefficient
dilation equation. It is not hard to extend this to the case with more coefficients.

We will first develop a simple expression for the sum 27737 ;_ [Ty v|[? for
p a positive even integer. Let e; = [0,1,—1]* and ex = [1,—1,0]" be a basis of
H={ueC3> u; =0}. Then

_ 1—00—03 C3 _{c3 0 -~ _ a
T0—< 0 Co)’ Tl_(co 1_00_63) andv—<b).

We define the vector a,, with the i-th entry by

(an);s = Z (eoTyu)P~“(e1Tyu)t, i=0,...,p.
|J|=n

If p is an even integer, then

S oATllr = > (leoTrul? + e Tyul?)

(4.1) [J]=n |J|=n
= (an)o + (an)p = Kan)OI + l(an)pl-

Note that ag = [P, P 10,...,aBP7L, BP] for some o, B. If we let d = 1 — ¢y — c3,
we have, in view of the expression of Ty and 77 on H and by using simple iteration
we have

ProprosiTION 4.1. For any integer p > 1, we have
a1 = Wpa, = W;“ao
where Wy is a (p+ 1) % (p + 1) matriz defined by
(?:f)cécg"idp_j for0<i<j<p

Wo)ij =\ ™' + &7 fori=]
(;.)cf)_jcg_idj for0<j<i<p

where d =1 — cp — ¢c3. In particular if p is an even integer, then

> ITralP =1[1,0,0,...,0,1]Wap.
|J|=n

The matrix W), can be written as W, = W,SL) + WZSU), where W;L) and Wng)
are the lower and upper triangular part of W), in a very symmetric manner. For
example,

ez 0 0 ©d* (esd  ()ed
Wi = | Qeocs Desd 0 |, W =] 0 @eod (eocs |

0

©F  (eod () 0 0 (g
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)k 0 0 0 0

Mot (Jedd 0 0 o
Wi’ = @3 (Deockd (g 0 0|,

(©)cdes ()ehosd  (Joocsd®  (g)ead® 0

©ct  Ddd @b (eod® (e

©dt Desd® (B  ()edd  (es

0 (Deod® (eocsd®  (eockd  (G)eocs

W4(U) = 0 0 (g) c2d? (f) cdesd (g) cic2
0 0 0 ((1)) c3d (}) cics
0 0 0 0 (0)cd

For the 4-coefficient dilation equation, it is easy to check that dim H(¥) = 0 if
and only if (co, c3) € {(0,0),(1,0),(0,1),(1,1)}, and the solutions are characteristic
functions ([LW], Lemma 3.3]). Hence Lip,(f) = 1/p. Also dim H(¥) = 1 if and
only if ¢g + ¢z = 1, and in Example 2 we have given a formula of Lip,(f) for this
case. It remains to consider the case dim H(¥) = 2, which will complete all the
cases for all 4-coefficient scaling functions.

THEOREM 4.2. Consider the 4-coefficient dilation equation with the assumption
that dim H(¥) = 2. For p a positive even integer, the equation has a (unique) LE-
solution f if and only if p(Wp)/2 < 1, and in this case

In(p(Wp)/2)

Lip,(f) = o2

The proof follows easily from Proposition 4.1, together with Theorems 2.2 and
3.1. We remark that when p = 2, the matrix W, is the same as the transition
matrix obtained in [DL3,H,LMW] and [V] and the L2-Lipschitz exponent and
the Sobolev exponent coincide. If ¢g > 0, c3 > 0, and 1 — ¢p — ¢3 > 0, then Tp and
T are non-negative matrices. Hence (4.1) still holds if p is a positive odd integer.
Consequently, we have

COROLLARY 4.3. Consider the 4-coefficient dilation equation with co > 0, ¢z >
0, and 1 — co — cg > 0. Suppose dim H(¥) = 2, then the conclusion of Theorem 4.2

holds for p a positive integer.

For the four coefficient case with ¢g + ¢y = 1, ¢1 +c3 = 1, we use (co,c3) as
the two free parameters. Figure 3 shows the domain of (co, c3) for the existence of
LP-solutions for even integers using the above criterion p(W;)/2 < 1. The curves
are p(W,)/2 = 1 corresponds to p = 2,4, 6, 10,20, and 40. Note that when p — co
the limit is the triangular region which is the approximate region plotted in [H] for
the existence of continuous 4-coefficient scaling functions using the joint spectral
radius.
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APPENDIX. We illustrated some of our results by the graphs. Figure 1 gives
the graphs of the scaling functions together with the curve of LP-Lipschitz exponent
in Example 2, and Figure 2 is for Example 3.

Figure 4 is the graph of Lip,(f) plotted against the (co, c3)-plane, using The-
orem 4.2. It shows the overall picture of Lip,(f) for the 4-coefficient case. It looks
similar to the graph of Lip,(f) plotted in [LMW].

[CD]
[CH]
(D]
[DL1]
[DL2]

[DL3]
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