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For a d x d expanding matrix A, we define a pseudo-norm w(z) in terms of A and use this pseudo-norm (instead
of the Buclidean norm) to define the Hausdorff measure and the Hausdorff dimension dim% E for subsets £
in R?. We show that this new approach gives convenient estimations to the classical Hausdorff dimension
dimg E, and in the case that the eigenvalues of A have the same modulus, then dim}¥ E and dimg F coincide.
This setup is particularly useful to study self-affine sets T generated by ¢;(z) = A~ (z +d;), d; € R?, j =
1,...,NN. We use it to investigate the fractality of T for the case that {¢;} 5‘\’:1 satisfying the open set condition
as well as the cases without the open set condition. We extend some well-known results in the self-similar sets

to the self-affine sets.

(© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let M4(R?) denote the set of d x d matrices and let A be a finite family of A; € My (RY), j=1,...,N,of
expanding matrices (i.e., all the eigenvalues of A; have moduli > 1). Let D = {dy, ...,dn} C R%be a digit set.
We define the affine maps ¢;(z) = Aj"]L (z+d;) and call {¢;(x)}}L, a self-affine iterated function system (IFS).
If there is an attractor T' = T(A, D) satisfying T" = U;V=1 ¢,;(T), T is called a self-affine set, and a self-similar
set if all the A;’s are similar matrices (i.e., A; = p;R;, where p; > 0 and R; is an orthonormal matrix). It is
well-known that if the A;’s are expanding similarity matrices, the self-similar set always exists; it is not the case
for the self-affine sets, one needs to use the joint spectral radius (see e.g., [10]). Nevertheless for the special case
that all A; equal to A, the self-affine set T" always exists under the expanding condition and sometimes we use
T(A, D) to denote T to specify the A and D. In general T" or its boundary 87" (if T has non-void interior) are
fractal sets. One of the basic question in fractal geometry is to study the dimension of T". For the self-similar
sets with certain separating conditions (e.g., open set condition [6], weak separation condition ([13], [14]), finite
type condition [20]), there are methods to calculate their dimensions ([6], [9], [20], [24]). However the situation
becomes much more complicated for self-affine sets. The problem stems from the non-uniform contraction of
the A7"’s in different directions, whereas the contraction of a self-similar set T is uniform in each direction.

In [4] Falconer obtained a formula of the Hausdorff dimension and box dimension of the self-affine set T' for
almost all vectors (dy, ..., dy) in RV¢. The formula depends on the product of singular values of the affine maps
and is quite difficult to handle. This approach has been studied in more detail and the bounds of dimensions of
T were estimated ([5], [4], [8], [25], [1]). However there are very few cases of which the Hausdorff dimensions
can be calculated exactly. The only well-known case that this can be done is the example of McMullen [19] and
Bedford [2] in R? that all A; areequalto A= (7 °),0<n<m,DC{0,1,...,n—1}x{0,1,...,m—1} C
Z2. There were extensions of McMullen’s example with the same A and with (i) a graph-directed system or
subshift of finite type plus the open set condition ([11], [12], [21], [22]); (ii) a more general D C Z? [9] (the
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number of D is unrestricted, hence unlike the previous cases, the corresponding IFS might not satisfy the open
set condition (OSC)). However, another natural extension, namely the case that all A; are equal to A = (8 :L),
has not been studied before. This case is a special case in the paper.

In this paper we consider the self-affine sets where all the dilation matrices A; are equal, say, to A. We setup a
new approach of using a pseudo-norm w(z) (instead of the Euclidean norm) to define the Hausdorff measure 1,
the Hausdorff dimension dim% and the box dimension dimp. The pseudo-norm is defined in terms of A so as
to absorb the non-uniform contractility from A (Section 2). This idea was introduced by Lemarié-Rieusset [15]
to study the multi-resolution analysis in R¢ with respect to an expanding matrix A. It was also used by Cohen,
Grochenig and Villemoes [3] to study the regularity of multivariate refinable functions. A simple relationship of
the new and the old definitions of dimension is as follows.

Theorem 1.1 Let A be an expanding matrix with | det(A)| = q. Then for any subset E of R4

Ing

1

_ng dim® E
210 Moy MhH

and

Ing —w

Ing -
—d FE
A0 Ay B

md_im%E <dimgFE < dimpFE <

where Amax, Admin are the maximum and minimum moduli of the eigenvalues of A.

The theorem provides a crude estimation of the Hausdorff dimension of a set E. It also follows immediately
that if the eigenvalues of A have the same modulus A, then dimy £ = (Ing/dIn))dim% E. This class of
matrices includes the similar matrices, the details will be discussed in Section 3 and an illustrating example in

Section 5.
For self-affine sets, unlike the classical case, the relation of the new Hausdorff dimension and the box dimen-

sion is simple.

Theorem 1.2 Let T := T(A, D) be a self-affine set. Then dimy E = dimpFE.

One of the most important conditions in the study of self-similar sets is the open set condition (OSC) of the
IFS. We have an extension of Schief’s well-known result {23] to self-affine sets.

Theorem 1.3 Let A € My(R) with |det A| = q, let D = {d1,...,dn} C R% and let
¢j($)=A_1(CII—|-dj), j=1,...,N.

If{¢; 5‘\—’_-1 satisfies the OSC, then we can choose the open set O in the definition of the OSC such that ONT # {).

Furthermore we have dim’y (T'(4,D)) =dIn N/Inq := sand 0 < H,(T'(A,D)) < oo.

For the case that {¢; };V=1 does not satisfy the open set condition, we restrict our attention to the case that A is
an integral matrix and D C Z¢. In this case we say that T'(A, D) is an integral self-affine set. The corresponding
{¢; };Vzl actually satisfies the weak separation condition in [14]. Following from the approach in [9], we reduce
the recurrence of the IFS {¢;} §V=1 to a graph directed IFS with the OSC, which yields an adjacency matrix B.
We prove (Theorem 5.4)

Theorem 1.4 Let T = T'(A, D) be an integral self-affine set and let B be the adjacency matrix of T', then
dimy T =dlnAg/Ing,

where \g is the spectral radius of the adjacency matrix B.

If the interior of T' is nonempty, then we can express the boundary 87 by another graph directed system. By
using this we construct a corresponding adjacency matrix B’ for 97" and we have an analogous theorem for 0T
(Theorem 5.5).

We remark that it is more difficult to construct the pseudo-norm for two or more expanding matrices, as it may
happen that the product of two expanding matrices may not be expanding, e.g., for A1 = (2% ) and Ay = (23),
the product of them is not an expanding matrix when n > 3. In comparison with Falconer’s approach, we see that

www.mn-journal.com (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




1144 Xing-Gang He and Ka-Sing Lau: Self-affine fractals

the singular value function ¢*(A) in [4], [2] involves the product of the [s] + 1 (or s if it is an integer) smallest
singular values of A, whereas in our approach, the pseudo-norm depends on ¢ = | det A|, which is the absolute
value of the product of the d eigenvalues of A (see (2.1)). The former one gives more accurate estimation, but the
treatment of the present one is more or less like the self-similar case which is easier to use.

The paper is organized as follows. In Section 2, we introduce the pseudo-norm w(z) and lay down some
basic properties. In Section 3, we define the various dimensions with respect to w(z) and prove Theorem 1.1
(Theorems 3.1 and 3.5). The open set condition (OSC) and Theorem 1.3 (Theorems 4.2 and 4.4) are considered in
Section 4. In Section 5, we prove Theorem 1.2 (Theorem 5.1), we also study the integral self-affine sets without
assuming the OSC, and following the approach in [9] we sketch the proof of Theorem 1.4. Some illustrative

examples are also provided.

2 The pseudo-norm

Let M4(R) denote the class of d x d matrices and let A € My(R) be expanding (i.e., all its eigenvalues
have modulus > 1) with |det A| = ¢ € R. Since we can renorm R? with an equivalent norm ||| - ||| so that
l||lz]|| < [||Az||| for all z # 0 [16], we can assume without loss of generality that A has the property ||z|| < ||Az||
where the norm || -|| is the Euclidean norm and the equality holds only for z = 0. Following the approach of [15],
we introduce a “pseudo-norm” associated with A as follows: For 0 < § < 1/2, we choose a positive C* function
$s(z) with support in By such that ¢s(—z) = @s(z) and [ ¢s(x) de = 1. (Here Bs = B(0,d) and B(z,7) is
the closed ball of center at = with radius r.) Consider the region V' = AB; \ By, then by our convention that
||| < ||Az|| for  # 0, V is an annular region. It is clear that R% \ {0} is the disjoint union of {A’“V}:o:_oo.
We let h(z) = xv * ps(z) be the convolution of the indicator function xv and ¢s(z). Following [15], we define

w(z)= » ¢ (A z), zeR™ @2.1)

n=—oo

In the following we provide some basic properties of w(z), some of them can be found in [15], [3].
Proposition 2.1 The w(z) defined in (2.1) is a C* function on R and satisfies
(i) w(z) =w(—z), w(z) =0ifandonlyifx =0;
(i) w(Az) = ¢*/%w(z) > w(z) for all z € RY;
(ili) there exists an integer p > 0 such that for each x € R, the sum in (2.1)) representing w(z) has at most
p terms # 0 and

a <w(z) <pgPd, z eV, 2.2)

where o = infey h(z) > 0.

Proof. Properties (i) and (ii) are straight forward from the definition. To prove (iii) we observe that h is
supported by the region V + Bg, hence supp h N Bi_25 = 0. We can find a positive integer & such that for all
n > k.

A™*(V + Bs) C Bi_ss.
We claim that V intersects only the sets in {supp (h o A™)}£__,. In fact,

VN (supphoA®) =V N (A "supph) = A" (A"V Nsupph).
If n > k, we use the middle expression to conclude that

VN (A ™"supph) CVNB]_55 =0
if n < —k, let m = —n, we use the third expression, hence

ATV Nsupph C A™™V N (V + Bs) C Bi_35sN(V + Bs) =0.
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The claim follows from this. It follows that for z € V,w(z) is a sum of at most p = 2k + 1 non-zero terms, that
is, w(z) = ¢ __, ¢~ ™%h(A"z). Since h(z) < 1forz € R%and h(z) > o forz € V, it follows from w > h
on V that w(z) has bounds as in (2.2). By (ii) the sum of the p terms can be extended to all z € R? . |

We remark that (i) and (ii) in the above proposition defines w(z) € C* (because h{x) € C* and the
expression of w(z) in (2.1) is a finite sum in any compact set) uniquely up to constant bounds, i.e., if w;(z) €
C°, i = 1,2, satisfy (i) and (ii), then there exists C > 0 such that Clwa(z) < wi(z) < Cwa(z) for all
z € R Indeed from (i) and the continuity of w; (z), there exist C; such that

sup wy(z) < C inf wa(z).
z€V zeV

Note that R4\ {0} = |J.__ A™V, a disjoint union, hence for any 0 # = € R*, we can write z = A"z for

n=-—00
some zg € V and a unique n. It follows that

w1 (CE) = (AnCL‘o) = qn/dwl (.’L‘o) < Clqn/d’U)Q((IIo) = C’lwg(m).

We can interchange the role of wy (z) and wq(x) and the equivalence follows.
Lemma 2.2 There exists 3 > 0 such that for any ©1,x2 € R® with w(z1) < w(za), then w(z; + z2) <

ﬁw(a:g).

Proof. For the given z;, i = 1,2, there exist integers Iy and I3 such that z; = Aliy; for some y; € V.
According to Proposition 2.1 (ii), we have w(z;) = ¢“/%w(y;) and by (iii), we have

agh/? <w(z) < wlzs) < pg?/iq/e.
Consequently,
l— Iy < dln(pg?’?/a)/Ing := .
Write yo + ALty = AFzy where 7o € V and denote § = maxqey ||z, we have
|A%zo | < llyall + AN gl < (14 (A7)0
Let kg be the largest integer & which satisfies
4ka| < (1+ 4]M)8
for some « € V. Hence
w(zy + 22) = w(A2Eay) = ¢2TR)/dy(g0) < g2 ko) /dyy(z0).

By Proposition 2.1 (iif), w(zo) < pg?/¢ and ¢'*/¢ < o~ w(z2). Substituting these two inequalities to the above
expression, we obtain

w(zy +x2) < (pg?'%/a) g™ w(zs).

The conclusion follows by taking /3 to be the constant in the above expression (note that ko is independent of 21
and z2). O

Let By(z,7) = {y : w(z —y) < r} be the closed w-ball with center at z and radius r and let diam,, E' =
sup{w(z — y) : =,y € E}. The following is an immediate consequence of Lemma 2.2.

Corollary 2.3 Let 8 be as in Lemma 2.2, then

(i) forany z,y € RY, w(z +y) < fmax{w(z), w(y)};

(i) for any z € R%, diamB,,(z,7) < fBr.
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The pseudo-norm w(zx) is comparable with the Buclidean norm ||z || through Amax and Amin, the maximal and
minimal moduli of the eigenvalues of A.

Proposition 2.4 Let A be an expanding matrix with | det A| = q. Then for any 0 < € < Amin — 1, there exist
C > 0 (depending on €) such that

CH || ¢/ mCmexte) < y(z) < C ||/ Pmn= g > 1,
and
C—lumlllnq/dln()\mm—e) < ’LU(III) < OI|.’B|]lnq/d1n(’\max+6), “"E” <1.

Proof. According to the properties of the spectral radius of the matrix A, it is not difficult to show that there
exists Cy such that

Ci Omin — Ozl < || A%2|| < CLAmax + )|l

holds for all k > 0 and z € R<. Note that R% \ {0} = U,z A*V. For z € R? with ||z|| > 1, then & = A*z;
forsome z; € Vandk > 0 (as V = AB; \ By). By (2.1) and (2.2) we have

ag®? < w(z) < pg?/?q"/".
If we write Apax + € = qh‘(’\ma"“)/ Ing then the above implies that

()‘max + G)k < (a_lw(w))‘“n(’\max-l-e)/]nq‘

Hence

Izl = |AR 2| = |4 A7 0 || < Cr(Amax + )FFH[AT || < Co(z) 1m0/ Ing
with Oy defined in the obvious way. By using the same argument, we have

%] > Caw(z)dPPmin=e)/Ing

for some C3 > 0. This yields the estimation for ||z|| > 1. The proof of the case for ||z|| < 1 is similar by using
z= A%z, forsomek >0andzy € V. O

3 The dimensions

In the following we use w(z) to replace the Euclidean norm to define a measure analogous to the Hausdorff
measure: For any subset E C R%, we define

He (E) = inf {Z(diamei)" . B C| B, diam, B; < 5} 3.1)

w,8
i=1

Since ﬁﬁ, s(B) is increasing when ¢ tends to 0, we can define

H2(B) = lim 715, 5(E).
By using Proposition 2.4 and the routine procedure, it is direct to show that H is an outer measure and is a

regular measure on the family of Borel subsets in R4, We call HS the a-Hausdorff measure with respect to w.
By Proposition 2.1 (ii), we have

HE(AE) = ¢*/*Hg ().

As usual we define dim% E = inf{o : HYE = 0} = sup{a : HgyE = co} and refer to this as the Hausdorff
~ dimension of E with respect to w.
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Theorem 3.1 Let A € My(R) be an expanding matrix with | det A| = q. Then for any subset E of R4,

Ing
dln )\min

Inq

dimy E,

where dimpg E is the standard Hausdor(f dimension.

Proof. Let0 < ¢ < Amin — 1 and let ae = In(Apin — €)/1Ing. Forany E C R such that diam E (with
respect to the Euclidean norm) is small enough, Proposition 2.4 implies that there exists C' > 0 (depends only on
€) such that

de,
diamE < C < sup w(z — y)) = C(diam,, E)3.
T, yEE

Let § be small enough and s = dim}; E. By the definition of Hausdorff measure, we have

H, 5(E) = inf {Z(diamw E)*: E C|JEi, diam,, E; < 5}

=1

(o]
> C inf {Z(diamEi)s/dae :E C| B, diam E; < 51}

i=1
= C1HY ¥ (EB).

where §; = C§9% and C; = C—5/e<_ Consequently HZ,(E) > CyH*/%(E). This yields
dimg E < s/dae = (Inq/(dIn(Amin — €))) dim} E.
By taking € — 0, the second inequality of the theorem follows. The proof of the first inequality is similar. O

Corollary 3.2 Let A be an expanding matrix with Amin = Amax. Then for any subset E of R4, dimy E =
dimy E.

We remark that Theorem 3.1 gives a convenient way to estimate the bounds of the standard Hausdorff dimen-
sion in terms of dim},. The latter can be calculated for many important classes of self-affine sets and will be
discussed in the following sections. The simplest family of matrices with Amin = Amax are the 2 X 2 matrices
such that the characteristic polynomials have complex roots or double roots. The class of matrices with this
property which are not similitudes, are the strict upper (or lower) triangular matrices with the same entries in
their diagonal line. For higher dimensions, recall that a square matrix A can be reduced to a Jordan normal form
through a unitary P: A = P~1DP; also A is a similar matrix if and only if D is diagonal. In general, D is not
a diagonal matrix, we see that there is a much larger class of matrices whose eigenvalues have equal moduli and
Corollary 3.2 indeed provides a useful alternative to study the Hausdorff dimension of self-affine sets with such
matrices.

We can use a similar idea to define the box dimension with respect to w. Let E be any bounded subset of R4
We say that a cover {U;}$2, of E is a r-cover with respect to w (or simply a r-cover of E) if diam,, (U;) = 7
for each 4. Let N (E) be the smallest number of sets that are in the r-covers of E. The upper and lower box
dimensions of E with respect to w are defined by

In N*(E)

—Inr

In N¥(E)

dimgE = limsup Iy
—In

and dim3BF = liminf
r—0 T

respectively. If the two expressions are equal, we denote the common value by dimz £ and call it the box

dimension of F with respect to w.
The box dimension can also be defined by packing of w-balls. Let M”(E) be the maximum number of

disjoint w-balls with centers at ' and radii r.
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Proposition 3.3 For any bounded set E in RY, we have

InMY(F
dimp E = lim inf —H——L

’ r—0 —Inr

— In MY(E
dimp E = lim sup In M°(E)
ro0 —Inr

Proof. Letm = MY (FE) and let { By, (z;, )}, be disjoint w-balls with center at £, then for any r-cover
{U;} of E, each U; contains at most one point among the set {21, ..., & }. Hence, M (E) < N(E). On the
other hand, the maximality of M (E) implies that: for any z € E, there exists ¢ such that By, (z, 7)N By (zi,7) #
0. Let 2 € By(z,7) N By(z;,r) and y € By, (z,r), then by Corollary 2.3

w(y —z;) < Bmax{w(y — 2), w(z — i)}
< Bmax{Bmax{w(y — z),w(z — 2)},7}
< g
Hence, { By (w;, %) }zmzl is a cover of E. Again by Corollary 2.3, we can choose U; 2 By /(z;, 8%r) with
diam,,U; = B°r, then {U;}I%, is a 3r-cover of E. This implies that Ng (E) < M;"(E). The conclusion
follows by the definition. O

Proposition 3.4 For any bounded subset F in R%, we have dimy E < dimgB F.

Proof. Let s = dim%E (< oo0), then for any € > 0, there exists a decreasing sequence {r, }o>; which
converges to zero and for n large,
InNY (E)

< s+e.
—Inr,

Let m, = N} (E), thenmy, < rp (=+<) and there is a r,-cover {U; }7*% of E. This implies that

Mn
Hhe, (B) < ) (diamy (Ug) ™+ = mari™ < 1.
=1
Hence Hit¢(E) < 1and dimy E < s. O

Theorem 3.5 Let A € My(R) be an expanding matrix with | det A| = q. Then for any bounded set E of R4,

Ingq
dIn )\min

Ing

Sk . dimrE
a1 Aon e,

dimgF < dimpFE < dimpF <

where dimp F and dimgE are the standard lower and upper box dimension.

Proof. It follows from the definition of upper box dimension with respect to w that for n = N*(E), there
exist a r-cover {U;}"_, of E. Let ) = dIn(Amin — €)/Ing. For r small enough, we can use Proposition 2.4 to

obtain

n
diamU; < Cy < sup w(z — y)> < Cir".
x, yeU;

Hence Ng,r»(E) < N¥(E). This implies that y dimp E < dimp E. By letting ¢ — 0, we have
dimpE <

The lower bound estimation is similar and is omitted. (]
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4 The self-affine sets and the open set condition

Let A € My(R) be an expanding matrix, and let D = {dy,dz,...,dy} C R? be a digit set. Without loss of
generalization we can assume that d; = 0. We define the iterated function system (IFS) by ¢;(z) = A~} (z+d;),
§=1,..., N, then there is a unique T := T'(4, D) satisfying

N
T={J ().
=1

We call this 7' the self-affine set generated by the IFS {¢; §V=1. It is easy to see that each z € T has a radix
expression z = Y -  A™"d; ,d;, € D. Let ¥ = {1,2,...,N}, ¥" = {(j1...Jn) : 1 < j; < N} and
T =L, X" ForJ = (j1...jn) € X%, we use |J| = n to denote the length of the multi-index J. Let

oo
Di=D, Dp=D+ADy1, n>2, and Do = | Dn.
ne=l
The map ¢ is defined as ¢;(z) = ¢;, o --- 0 ¢;, (z). By a simply calculation, we have ¢;(z) = A" (z + d)
with

dy = djn + Adjn—l + o4 An_ld]'l € D,.

For any subset X C R?, we write X; = ¢;(X) (= A™™(X + dy)). We say that the IFS {¢;(x)}}_, (or the
pair (A, D)) satisfies the open set condition (OSC) if there exists an open O such that

Je:(0) SO and ¢:(0)Ng;(0) =0 if i # 5.

Since dy = 0, it is easy to see that 0 € O, the closure of O.

Proposition 4.1 Suppose (A, D) satisfies the OSC. Then

() #Dy = N* forallk > 1 and Doy, = {dy : J € X*} is uniformly discrete, i.e., there exists n > 0 such
that ||z —y|| 2 nforallz # y € Doo;

(ii) Foranyn >0, C(n) = supys, Sup,era #{J € &% : B(z,n) N (T 4+ d;) # 0} < co.

Proof. Letd; # d; € Dy. We can assume without loss of generality that |I| = |J| = & (because we can
always adjust the length J in d; by letting J' = (0...0J) and d; = d ). By the OSC, we have

pr(0)YNps(0) =0 for I#J, I,JeXk
This is equivalent to (O + (dr —d;))NO = §. By the simple fact that y = inf cga{||z| : (O+2z)NO =0} > 0,

we see that |[dr — dy| > n and (i) follows. Part (ii) is a direct consequence of (i). O

The following extends the well-known result of self-similar sets:

Theorem 4.2 Let A be an expanding matrix with | det A| = gandlet D = {0 = dy,...,dn} C R% Suppose
(A, D) satisfies the OSC. Then dim% (T(A,D)) =dInN/Inq := s and 0 < H5(T(A, D)) < .

Note that N = ¢*/¢. In the proof we will make use of the probability measure that satisfies the following
invariant identity [6]:

N
p=N"1Y"pogt. (4.1)

i=1
We need a lemma,
Lemma 4.3 With the above assumptions and notations, we have
(i) there exists C1 > 0 such that for any J € XF, u(Ty) < CyN7F;
(ii) there exists Cy > 0 such that for any set E with diam,,(E) < § < 1, u(E) < Ché°.
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Proof. Notethat J € ¥¥, T; = ¢5(T) = A~*(T + dy). Iterating (4.1) k times yields
p=N">"pog;t.
=

Hence

Z 975] 1¢J

|J|=k
SN F#{Ie sk ¢ 9s(T)NT + 0}
=N #{I e S% (T +ds)N (T +dy) # 0}.

Let 5 = diam(7T"). Then T'+d; € B(dy,n). By Proposition 4.1 (ii) we have u(T7) < C1N~* with C; = C(n).
To prove (i) we assume that diam,, (E) < d. Let k be the positive integer such that ¢—%/¢ < § < g~—(k=1)/d,
For |J| = k, we observe that E N T # 0 is equivalent to E N A~*(T + dj) # @, which in tern is equivalent to
A*EN (T + dy) # 0. By Proposition 2.1 (ii),

diam,, (AkE) = sup {w(x —y): T,y € AkE} < qk/d5 < q'?

This together with Proposition 2.4 allows us to estimate the diameter of £ with respect to the Euclidean norm:
take any fixed small € > 0, if diam (A*E) > 1, then

diam (AkE) < C diam,, (AkE)dln()‘m“x+€)/lnq < qun(/\max+e)/lnq;
in general we have
diam (AkE) < max {1, C’qln(’\m*‘*+5)/1“q} = 2.
Let C(n) be the corresponding constant in Proposition 4.1 (ii) with respect to the ball B(z,n) 2 A*E. Then
#{J ek EnT; £ 0} =4#{JeZF: AAEN(T+dy) £ 0} <Cn)
Let Cy = C1C(n), it follows that
(B) < S uT) : Ty B £0, 7] = k} < Cn) (CLN ) = Gog 4% < o0, -

Proof of Theorem 4.2. We first show that HZ,(T') < oo. Let O be the open set as in the definition
of OSC, forany J € ¥, ¢;(0) = A~*(O + d) implies that diam,,¢,,(0) = ¢~*/4diam,,(O) =: b, then
{¢,(0) : J € £*} is a §-cover of T'. Consequently

15 (1) < S (diamy, ¢,(0))" = Y (¢7¥/* diam, 0)°
1J|=k [J|=k
= Nk Z (diamw5)s = (diamw_(j)s.

[J|=k

Letting k ~ oo, we have H%,(T) < (diam,, O)° < oo.
To prove H2 (1"} > 0, we make use of the self-affine measure p in Lemma 4.3. For any cover {E;}$2, of T
with diam,, E; < §, we denote diam,, F; = §;, then by Lemma 4.3,

< Z,U, < 022(5 = 02 Z(diamw Ei)s.

7

From the definition, we have ﬁfu, s(T) > C5'u(T) > 0. The conclusion follows by letting § — 0. O
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For the open set O in the OSC, it is technically important to choose the open set such that O N T # ( (the O
such that O N T = @ is not so useful in the iteration of the maps, e.g., let T' be the standard Cantor set generated
by ¢1(z) = /3, ¢2(z) = (x + 2)/3 and let O = (0,1) \ T"). Schief [23] proved that for the self-similar maps,
such O exists (but it is not easy to find except for the obvious cases). In the following we extend his theorem
to the self-affine case in term of the pseudo-norm setup. For convenience we say that (A4, D) satisfies the strong
open set condition (SOSC) if this additional condition O NT" # () is satisfied.

Theorem 4.4 The following statements are equivalent:
(i) (A4, D) satisfies the OSC ;
(ii) (A, D) satisfies the SOSC ;
(ili) Do is uniformly discrete and #Dy, = N* forallk > 1.
Proof. Itis trivial that (ii) implies (i). That (i) implies (iii) is proved in Proposition 4.1. We need only prove
that (iii) implies (ii).
Let E® = {2 : w(z — y) < § forsome y € E} denote the d-neighborhood of a set E' with respect to w. For
J € %%, we denote TS = (T‘S)J, ie.,

TS = {$s(z) : w(z —y) < forsome y € T}.
Let
Ts(J)={IeX*: TINTS£0} and 75 = sup #I's(J).
Jext
Note that Ty N T¢ # @ is equivalent to (T + dr) N (7% + dj) # 0. Since #Dj, = N* implies that d; # d if
I # J e SFforall k > 1 and Do, is uniformly discrete, by Proposition 4.1 (ii) (with B(x,n) where z € T®+d,

n= diamT‘s), we have s < co. We can choose Jp € ¥* to attain the supremum, i.e., #I'5(Jo) = s. Note that
T's(1Jy) 2 IT5(Jy), by the maximality of #L's5(Jp), we have

Ts(IJo) = ITs(Jp) for each I e X*. (4.2)

Let 8 be as in Lemma 2.2 and let §' = §/f3, define

0= 1.

Jex*

We claim that this O is the open set for the SOSC. It is clear that O is a bounded open set, O N T # {) and

$:(0)= |J T%,, €0, i=12,...,N.
JeX*

We have to show that {¢;(0)}}L; are disjoint. If ¢;(O) N ¢;(0) #  for some i # j, then there exist two

multi-indices .J; and J; such that
5 s
Tinge N Tigpge # 0.

Wilthout loss of gencra}ity we assume that [J;| < |Ja]. ]jet y € Ti‘f,/l Jo N Tf}g J, be arbitrary. Observing that
T g0 = AR Jol (T 4 4y, 5), there exist y;, y; € T such that

Y= A i1l (yi + diJ1Jo) - A—ljJ2Jo|(yj 4 dezJo)'
We can choose y such that there exist z;, z; € T satisfying

w(z; —y;) < wlz —y;) < 7§ (4.3)
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It follows that w(A ™ (z; — y;)) < w(z; — y;) forall i > 0 (Proposition 2.1 (ii)). By Lemma 2.2,
w(@in go(2) = G320 (25)) = w(in 1o (2:) =y + 4 — $j200(2))
— w(A‘“|iJ1J0|(Zi _ yi) + A—lszJol(yj _ ZJ))

< g lnl/dgg 4.4)
— g lirl/ag,
On the other hand, since 1 # 7, (4.2) implies that jJ & T'5(iJ1Jy) for all |J| = |J1Jo|, that is,
TjyNTY ;=0 for all |J|=|J1Jol.
Hence Tj N T};, ;, = 0. Observing that ¢, ,(2;) € T, we have
w(Binso(z) = binio(2)) 2 min widisi(2) —y) 2 g Il g,
Y%Lz go
which contradicts (4.4). Hence T satisfies the SOSC. O

The following is a convenient sufficient condition for the OSC, a corollary of Theorem 4.4 (iit).

Corollary 4.5 Let A be an integral matrix and let D C Z¢ be a set of coset representatives of Z.¢ JAZE (i.e.,
di + AZ # d; + AZ for distinct d;, d; € D). Then (A, D) satisfies the OSC.

5 The integral self-affine sets with overlaps

In this section we do not assume (A4, D) to satisfy the OSC, in other words, we allows the corresponding IFS
{¢; }f’zl to have overlap. We first show that for self-affine sets, the box dimension and the Hausdorff dimension

with respect to w are the same.
Theorem 5.1 Let T =: T(A, D) be a self-affine set. Then dim{T = dim§T.

Proof. Let s = dim% 7. In view of Proposition 3.4, we only need to show that dimzT" < s. We make use
of the w-ball packing expression of the box dimension in Proposition 3.3. Let ¢ = diam,,T". For any t > s, we
consider 0 < r < a such that

MP(T) > (ar™Y)’ (5.1)
e, In M¥(T)/(—Ina~'r) >t (> s). Letm = M (T), by definition there exist disjoint w-balls { By, (z;, )},
of radii r with centers z; € T. Let k > 1 be the integer such that

ag*% < < ag—*-D/4,

Since T" = UJeEk ¢s(T)and z; € T for 1 < i < m, there exist y; € T and J; € ¥* such that z; = ¢, (y;).
Observe that forany z € T,

w(ds(z) — 3;) = w(A (@ —y)) < ¢~ %/ 4diam,, T < 7.
This implies that ¢, (T) C T N By,(x;,7) so that {¢y, (1)}, are disjoint closed sets. Now consider the TFS
{¢J, }i2,, let E be the attractor. It is clear that E C T and {¢, (E) }/~, are disjoint closed subsets. This implies
that {¢, }7, satisfies the OSC. By Theorem 4.2
dlanm _ (k—=1lnm _ (E—1)
Ing® = —klna=lr ko
By the hypothesis dim’y; T = s, (5.2) cannot hold for k sufficiently large, i.e., for 7 sufficiently small. This
implies that for r sufficiently small, (5.1) cannot hold. Hence we have M (T) < (ar‘l)t for r sufficiently
small so that

dim¥ T > dim¥% E = (5.2)

ln M(T
r—0 —Inr

Since t > s is arbitrary, we conclude that dimgT < s. d
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Let M4(Z) denote the set of d x d matrices with integral entries. We call T'(A, D) an integral self-affine set
if A € My(Z) and the digit set D C Z%. For the special case that the digit set satisfies #D = |det A| = q and
T =: T(A, D) has positive Lebesgue measure, T tiles R, that is, there exists a countable set 7 (tiling set) such

that

U(T—i—t) =R% and (T+t)N(T+s)=0, foral t#seT.

teT
T is called a self-affine tile and D a tile digit set. In this case (A, D) satisfies the OSC. This special class of
self-affine sets has been studied in great detail in the literatures (cf., e.g., [16], [2]). Our consideration is the
general case that #D may not equal to | det A, but we need the self-affine tiles to define an auxiliary system in
our consideration.

Lemma 5.2 Let A € My(Z) be an expanding matrix, then for any bounded set E, there exists a tile digit set

C C Z% such that E C T(A,C).

Proof. Let & = {e1,...,e,} be a complete set of coset representatives of the additive group Z?/AZ¢, it is
well-known that T'(4, £) is a tile (see e.g., [16]). There exists a ball B(zp,r) contained in 7'(4, &), therefore by
checking the radix expansion of z € T'(A, &), it is easy to show that for any [ € N, B(lzg,lr) C T'(4,1E). Note
also that T'(A, 1€ — k) = T(A, 1) — (A — I)~ 1k, where I is the identity matrix. Let C = I€ — k, we can choose
I large enough and k € Z¢ such that E C T'(A,C). [

For a bounded set F, we can use the tile T'(A,C) 2 E to construct a mesh of partitions of £. We use this
to reformulate the counting in the definition of the box dimension in Section 3. Let v;(z) = A~ (z + ¢;),
Jj=1,2,...,qandlet X} denote the corresponding index sets for ¢y = 15, o---04);., J = (j1,...,7n) € X,
Let

Po(E) =#{J € S} : Eny,(T(A,C)) #0}.
Proposition 5.3 For any bounded set E and tile T(A,C) with E C T'(A, C), we have

—w d InP,(E
dimgFE = i lim sup w, dimp FE = — lim inf n_n(_—)_
In T3 00 n h’lq n—00 n

Proof. LetI' = T'(A,C). SinceI" = | J;c5n (T and E C T,
q

{¢s(I'): J € &7 and ENv;(T) # 0}

is a rp-cover of E with r,, = ¢~"/¢diam,, T'. Hence N (E) < P,(E). On the other hand, let m = N? (E)
and let {U;}1%, be a r,-cover of E. For any J € X7 with E N (T) # 0, U; N4 (I') # B for some ¢, which is
equivalent to A®U; N (T + ¢y} # §. Since diam,, A"U; = q"/%r,, = diam,,I" (Proposition 2.1), by Proposition
4.1 (ii) with 7 = diam T,

#{Jexy :Uiny; () #0} <Cln).
Hence P, (E) < C(n)N}? (E), this implies that P, (E') and N, (E) are equivalent and the lemma follows. [

Next we give a result for the dimension of the integral self-affine set T =: T'(A, D) (Theorem 5.4), which also
yields an algorithm for the calculation. Since the approach is the same as in [9], we only outline the main idea
here. For the self-affine set T =: T'(A, D), we construct an auxiliary self-affine tile I' =: T'(A, C) (as in Lemma

5.2) satisfying

TcI® and T'+D C AT
Write ¢;(z) = A" (2 +¢;), 7 = 1,2,...,¢. Weuse {9;(T') : J € £F} _ to form a nested family of
partitions and to select a graph-directed set using these I";: for J € E’;, let

A(J) = {dr —cs: T €%, $s(T)N¢1(T) # 0} (5.3)
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(Here Ef\, is the %% used before, the NN is to emphasis the ¢; with index coming from D = {dl, cio dN}.) Note
that 17 (T") N ¢7(T) # B if and only if I' N (T + (dr — ¢y)) # 0. Hence A(J) is used to record those partitions
1, (T) that intersects ¢; (). If we let S = {J € X : A(J) # 0}, then

T = ﬁ < U %(r)) . (5.4)
k=1 \JES,

The crux of this construction is that {A(J) : J € E;} is actually a finite set. This allows us to construct a
graph-directed system fo reproduce 7" in view of (5.4). The vertices set is the set of all distinct A(J) together
with the “root” A(0) = {0} (define A(0J) = A(J)) of the iteration, labelled as

V ={A0),A(J1),.- ., A(Jn)} = {vo,v1,-- -, Um}.
The iteration of 17 in the notion of the graph-directed system on V is

A(J) — ALDAJ2) . A(Jg), i=0,1,...,m. (5.5)
We can write down the corresponding directed edges E = {Eij }ijzo onV are

E;;={c, €C: A(Jis) = A(J;), 1 < s <q}.
If we let

¢5(x) = A Yz +e), ecE;#0, 4,j=0,1,...,m,

then according to [9, Proposition 3.3], there are nonempty compact subsets { Fy = T, Fi, . .., Fy, } satisfying the
following graph-directed relation for T°

F=J U ¢5F) =A™ (E+E;), §=0,1,..,m (5.6)
k=0 eCE; ; =0

From the graph-directed relationship (5.6) we can define an (m + 1) x (m + 1) matrix B with the (4, j)-th entry
given by

bij = #Ei5, 4,7=0,1,...,m

[6, p. 48], B is called the adjacency matrix of T'. The adjacency matrix is used to count the number of paths
of the graph-directed set in the iteration. Let e be the (m + 1)-vector with all entries equal to 1 and let e; be an
(m + 1)-vector with the i-th entry 1 and zero otherwise. It is not difficult to prove that #S,, = ep B™e where S,,

is used in (5.4) [9, Proposition 4.1].
Theorem 5.4 Let T' = T(A, D) be an integral self-affine set and let B be the adjacency matrix of T', then

dln/\B

dimy T =dimp T = g

where A\g is the spectral radius of the matrix B,

Proof. According to the Perron—~Frobenius theorem, there exists a nonnegative vector 4 0 such that Apu =
Bu, then Aju = B™u forall n > 1. We claim that ug > 0. In fact, since u; > 0 for some j and there is a
path from Fy to Fj, i.e., there exist an integer & such that bgj, the (0, §) entry of B, is positive, this implies that
ug > 0. Hence

tBn 1/m
Ap = (60 “) < lim (!B e)"/™ = lim ||B"||Y/" = A,
n—00
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that is,
Ap = lim (#8,)/™.
On the other hand by the relation in (5.4), we have
{J € Yg: Tnyy(T) # 0} ={J:JeS.}.

Hence, by Proposition 5.3, dimy 7' = (d/In q) limy, 00 In(#S,,) /n = d1n Ap/In g, and the conclusion follows
by Theorem 5.1. O

From (5.4) and 95 (T) = Uj_; ¥:(T) for J € £, it is easy to see that 1;(I") C T if and only if A(JI) # 0
for all I € ¥%. Those vertices A(J) are termed interior vertices, they generate the interior of T" and can be
obtained in finite steps by using an algorithm developed by the above approach (see the following examples for
an illustration). To obtain the boundary of T', we simply delete all the interior vertices, and there is a graph-
directed subsystem for the boundary &7 of T’; similar to the above, there is an adjacency matrix B’ of 97 [9] to
calculate the dimension of the boundary.

Theorem 5.5 Let T’ = T'(A, D) be an integer self-affine set. If the Lebesgue measure of T is positive, let B’
be the adjacency matrix of 0T, then

dln A

dimy T = dim’g 8T = Ing

where Ap: is the spectral radius of the matrix B’.

We omit the proof as it is similar to the proof of Theorem 5.4 (see [9] for detail). Instead, we use the following
two examples to demonstrate this approach.

Example 5.6 Let A =3 and D = {0, 1, 3,4}, then T° # @ and dimy 8T(A, D) = 0.

We remark that it is not difficult to show that T" = [0, 2] and the statement is trivial. However it will serve as a
good example to illustrate the algorithm in connection with the theorems.

Proof. Let {¢;}j_, be defined by ¢;(z) = 37! (z + d;), d; = 0,1,3,4, then it is an overlapping IFS.
Let C = {-1,2,5}, and let 9;(z) = 37 '(z + ¢;) with ¢; = —1,2,5, it is easy to check that T'(3,C) =
T(3,3{0,1,2} — 1) = [~1/2,3/2] =: I. We use {1;}3_, as the auxiliary system in the setup preceding
Theorem 5.4. Let A(0) = {0} =: vy, according to (5.3) we have

A ={1,2} =1v, AQ2)={-1,-2,1,2}=:v3, A(3)={-1,-2}=:v3

and by (5.5),

A(11) =0, A(12) = v,  A(13)
A1) =wv,  A(22) =y,  A(23)
A(31) =vy,  A(32)=ws, A(33)

V2,
V2,
0.

Il

We see that the second generation already repeats all the vertices, hence V = {wvp, v1, v2, v3 }. The graph-directed
relationship of T'(A, D) (as in (5.5)) is

Vo — V1V2V3, vy — N1z,
Vg — U222, V3 — VV3.

It is clear that there is only one interior vertex va, hence T° # ). We omit vy and obtain the graph-directed
relationship of 9T (A, D): OV = {wg,v1,vs} and

Vo — U1V3, V1 — V1, VU3 — Us.
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The adjacency matrix of 97" is

0 11
010
0 01

and its eigenvalues are {0, 1, 1}. Hence, by Theorem 5.5, dimy 87T = 0.
Example 5.7 Let A = (21) and let D; = {(0,0)%,(0,1)*}, D2 = {(0,0),(0,1),(3,0)*} and D3 =
{(0, 0)t, (0,1)%, (3,0)%, (3, l)t}. Then

dimy T(A,D;) =dimy T(A,D;)) =In(i +1)/1In2, i=1,2,3.
Moreover T'(A, D3) is a tile and the dimension of its boundary is
dimpy 9T(A, Ds) = dim¥ 8T (A4, D3) = 1.

We remark that T'( A, Ds) actually plays a special role in the tiling theory. It was first introduced by Kenyon
[11] to show that every self-replicate tiling for T'(A, Ds) is non-periodic. Based on this example, Lagarias and
Wang [18] characterized the class of tiles T" generated by the standard digit sets D (e. g., D is a complete set of
coset representative of Z¢/AZ?) that has Lebesgue measure > 1.

Proof. Since the two eigenvalue of A equals 2, the two Hausdorff dimensions are equal (Corollary 3.2); by
Corollary 4.5 , (A, D;) satisfies the OSC, and by Theorem 4.2, the dimensions of T'( A, D;) follows.

That T'(A, Ds) is a tile is known in [16]. To calculate the boundary of T'( A, D), we follow the approach out-
lined above (see [9] for detail) and make use of Mathematica to find the directed-graph system and the adjacency
matrix B’.

To simplify calculation we first let D’ = {(0,0)¢,(0,1)%,(1,0)%, (1,1)¢}, it is clear from (5.7) that the
two tiles T'(A, D3) and T(A, D’) have isomorphic boundaries on each side. Therefore dimy dT(A,D3) =
dimy 8T (A, D’). We can replace D3 by D'. Also we let D = D’ + AD' and consider the same tiles T'(A?, D)
(= T(A, D)) (using A? can reduce the number of iterations by a factor of 2).

Next we let ' = {(0,0)%,(0,1)%,(2,0),(2,1)*} and let I" =: T (A%, C' + AC’ — (1,0)*). Then

T =T(42 C' + AC') — (A2 — 1) 7 (1,0)* = T(4,C") — (1/3,0)" 2 T(A,D').

(We remark that T'(A, D) ¢ I'°, which does not satisfy the condition in the above algorithm, however the
missing part is only the horizontal top and bottom (see the geometry of this tile in the sequel) which does not
affect our calculation.) With the help of Mathematica, we find the vertices set V of 24 elements in two iterations,
and we can find the edges from the relation (5.5)

A(J) — AT - 1A -2)... A(J - 18).

We check that there are 10 interior vertices, by eliminating those we use the remaining vertices to form the
graph-directed subsystem and the adjacency matrix B’ for the boundary of T'( A4, D):

102 01100012121
06 1 0000O01O0O0O0OO0CO0OOQ O
00010O0O0O0OO0O0OOGOGCOG G
06 001 00C20O0O0O0CO0O0O0
01 00100O0O0O0C2T1O00
0 001 00200O0O0O0O0TO0OQO
000O0O0OOM40O0OO0CO0O0OO0OOQO
0 000O0OO0COZ4O0O0O0O0CTO0OTOQ
0 000 0O0O400O0O0O0OTO0OTO0O
00 200100O01O0O011
0 20000O01O0O0Z220°0
01000O0CO0Z2O0O02200¢0
60 20001001 O0O0O02 2
0020010010002 2
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Its eigenvalues are {0,0,0,0,0,1,1,1,1,1,4,4,4,4}. By Theorem 5.5 the Hausdorff dimension of the boundary

of the self-affine set T'(A4, D) is 1.
The geometry of T'(A, D3) can also be obtained by the radix expansions. We note that (z,y)! € T'(A4, Ds) if

and only if

00

(z,9)" = Z ATF(3dg,1, di2)t,
k=1

where all di 1,di,2 € {0, 1} can be chosen arbitrarily. By observing that A~k =9k ((2) kz; ), we have

y=) 27Fdy,, z=3 <Z 2_kdk,1> —9(y), .7
k=1 k=1

where g(y) = > 7o, k2~ ++1d, 5. From (5.7) we see that 0 < y < 1 and also for each fixed value of y the
allowed values of = form intervals of length 3. Therefore, the tile 7" has horizontal top and bottom at y = 0 and
y = 1 respectively. The other two sides are {(—g(y),y)* : 0 <y <1} and {(3 — g(y),y)* : 0 < y < 1} (see
Figure 1).

-1 1 2 3
Fig.1 The graph of T'(A, Ds)

The boundary of T'(A, D3) in the above example can also be calculated directly by using (5.7). The main
estimation is on the graph

E={(z,g9(2)):z€0,1]}.

For each n and for J = (j1,...,Jn), weletay = Y p_, 27%d;,, by = Y p_, k27%"1d;,. We divide [0, 1] into
dyadic intervals [CLJ, ay+1/ 2"“). The image of these intervals under g is contained in

(o)
IRIEEY kz—’H) :
k=n+1
Note that )2, k27 F+D = (n 4 1)2=(=1 Tt follows that the family of rectangles
[as, ar +1/2"") x [bg, by +2(1+n)27"], |J|=mn,

is a cover of E with diameter 27(1 + 4(n - 1))1/2. By the definition of Hausdorff measure, for any 5 > 0 and
& > 0, there exists n large enough such that 27"(1 + 4(1 + n))"/? < 6. Hence

Hy™(E) = inf {Z diam(Uy)'*" : E C | JUr and diam(Uy) < 5}
k=1

< Z 27+ (1 4 4(1 4 n))AFM/2
dr€{0,1}, 1<k<n

= 27"(1 + 4(1 4 n))(1HM/2

which tends to zero when § — 0 (hence n — oc0). This lead to H*7(E) = 0 and therefore dimz E < 1. On
the other hand dimg £ > 1 is clear as E is a graph on [0, 1].
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