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Abstract

Similar to the chaos game representation (CGR) of DNA sequences proposed by Jeffrey (Nucleic Acid Res. 18 (1990) 2163), a

new CGR of protein sequences based on the detailed HP model is proposed. Multifractal and correlation analyses of the measures

based on the CGR of protein sequences from complete genomes are performed. The Dq spectra of all organisms studied are

multifractal-like and sufficiently smooth for the Cq curves to be meaningful. The Cq curves of bacteria resemble a classical phase

transition at a critical point. The correlation distance of the difference between the measure based on the CGR of protein sequences

and its fractal background is also proposed to construct a more precise phylogenetic tree of bacteria.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling the three-dimensional structure of proteins
is a complex physical, chemical and mathematical
problem of prime importance in molecular biology,
medicine, and pharmacology (Chothia, 1992; Shih et al.,
2000). It is believed that the dynamical folding process
and stable structure, or native conformation, of a
protein are determined by its primary structure, namely
its amino acid sequence (Shih et al., 2002). Twenty
different kinds of amino acids are found in proteins. The
prediction of the high level structures (secondary and
space structures) from the amino acid sequence is a
challenging problem in science. A well-known model of
protein sequences is the HP model (Dill, 1985; Chan and
Dill, 1989). In this model, 20 kinds of amino acids are
divided into two types, hydrophobic (H) (or non-polar)
and polar (P) (or hydrophilic). In recent years the HP
model has been extensively studied (e.g. Shih et al., 2000;
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Li et al., 1996; Wang and Yu, 2000). From studying this
model on lattices, Li et al. (1996) found that there are a
small number of structures with exceptionally high
designability which a large number of protein sequences
possess as their ground states. These highly designable
structures are found to have protein-like secondary
structures (Shih et al., 2000; Li et al., 1996; Micheletti
et al., 1998). But the HP model may be simplistic
and lacks sufficient information on the heterogeneity
and complexity of the natural set of residues (Wang and
Wang, 2000). According to Brown (1998, p. 109), one
can divide the polar class into three subclasses in the HP
model: positive polar, uncharged polar and negative
polar. As a result, 20 different kinds of amino acids can
be divided into four classes: non-polar, negative polar,
uncharged polar and positive polar. This model, which
we call the detailed HP model (Yu et al., 2002), provides
more information than the HP model.
Since the sequencing of the first complete genome of

the free-living bacterium Mycoplasma genitalium (Fraser
et al., 1995), more and more complete genomes have
been deposited in public databases such as Genbank at
ftp://ncbi.nlm.nih.gov/genbank/genomes/. The complete
genomes provide essential information for understand-
ing gene functions and evolution. Retrieval of biological

ftp://ncbi.nlm.nih.gov/genbank/genomes/
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information from complete genomes and finding the
appropriate proteins or coding/non-coding regions of a
complete genome for a specific biological problem are
some of the challenges for researchers in the bioinfor-
matical field. The determination of patterns in DNA and
protein sequences is also useful for many important
biological problems such as identifying new genes
and discussing the phylogenetic relationships among
organisms.
Although statistical analysis performed directly on

DNA sequences has yielded some success, there has
been an indication that this method is not powerful
enough to amplify the difference between a DNA
sequence and a random sequence as well as to
distinguish DNA sequences among themselves (Hao
et al., 2000a). One needs more useful global and visual
methods. Jeffrey (1990) proposed the chaos game
representation (CGR) for DNA sequences, and found
fractal patterns in these representations. The correlation
properties of coding and noncoding DNA sequences
were studied by Peng et al. (1992) in their fractal
landscape or DNA walk model. Hao et al. (2000a)
proposed a visualization method based on counting and
coarse-graining the frequency of appearance of sub-
strings with a given length. They called it the portrait of
an organism. They also found fractal patterns in the
portraits which are induced by avoiding and under-
represented strings. The fractal dimension of the limit
set of portraits was also discussed (Yu et al., 2000; Hao
et al., 2000b). Yu et al. (2001) introduced a representa-
tion of a DNA sequence by a probability measure of K

strings derived from the sequence.
Multifractal analysis is a useful way to characterize

the spatial heterogeneity of both theoretical and experi-
mental fractal patterns (Hentschel and Procaccia, 1983).
A multifractal analysis based on the chaos game repre-
sentation of DNA sequences was given in Gutierrez et al.
(1998, 2001). Based on the measure representation of
DNA sequences and the techniques of multifractal
analysis, Anh et al. (2002) discussed the problem of
recognition of an organism from fragments of its
complete genome.
The CGR of DNA sequences has been extended to

the representation of protein sequences (amino acid
sequences) and protein structures (Fiser et al., 1994;
Basu et al., 1997). In this paper, we propose a CGR
of protein sequences based on the detailed HP model
and then perform multifractal analysis on this new
representation.
Works have been done to study the phylogenetic

relationships based on correlation analysis of K strings
of complete genomes (e.g. Yu and Jiang, 2001) and
protein sequences from complete genomes (e.g. Qi et al.,
2002; Li et al., 2001). Qi et al. (2002) pointed out that a
phylogenetic tree based on protein sequences from
complete genomes is more precise than a tree based on
complete genomes, and subtracting random background
from the probabilities of K strings of protein sequences
can improve the phylogenetic tree from the biological
point of view. For a given organism, we obtain a
measure for each protein sequence using our CGR based
on the detailed HP model. Using the observed frequency
of each amino acid (i.e. each of the 20 letters in the
alphabet), we also generate, through the chaos game
algorithm (Barnsley, 1988), a simulation of the original
protein sequence, with the same length. Then, through
the CGR of the simulated protein sequence, we obtain
another measure. In this paper, we propose to use the
correlation distance based on the difference of these two
measures to discuss the phylogenetic relationships of
bacteria.
2. Chaos game representation of protein sequences based

on the detailed HP model

The protein sequence is formed by 20 different kinds
of amino acids, namely Alanine ðAÞ; Arginine ðRÞ;
Asparagine ðNÞ; Aspartic acid ðDÞ; Cysteine ðCÞ;
Glutamic acid ðEÞ; Glutamine ðQÞ; Glycine ðGÞ; Histi-
dine ðHÞ; Isoleucine ðIÞ; Leucine ðLÞ; Lysine ðKÞ;
Methionine ðMÞ; Phenylalanine ðF Þ; Proline ðPÞ; Serine
ðSÞ; Threonine ðTÞ; Tryptophan ðW Þ; Tyrosine ðY Þ and
Valine ðV Þ (Brown, 1998, p. 109). In the detailed HP
model, they can be divided into four classes: non-polar,
negative polar, uncharged polar and positive polar. The
eight residues A; I ; L; M ; F ; P; W and V designate the
non-polar class; the two residues D and E designate the
negative polar class; the seven residues N; C; Q; G; S; T

and Y designate the uncharged polar class; and the
remaining three residues R; H and K designate the
positive polar class.
For a given protein sequence s ¼ s1?sl with length l;

where si is one of the 20 kinds of amino acids for i ¼
1;y; l; we define

ai ¼

0 if si is non-polar;

1 if si is negative polar;

2 if si is uncharged polar;

3 if si is positive polar:

8>>><
>>>:

ð1Þ

We then obtain a sequence X ðsÞ ¼ a1?al ; where ai is a
letter of the alphabet f0; 1; 2; 3g: We next define the
CGR for a sequence X ðsÞ; similar to that of DNA
sequences (Jeffrey, 1990), in a square ½0; 1� � ½0; 1�; where
the four vertices correspond to the four letters 0; 1; 2 and
3: the first point of the plot is placed half way between
the center of the square and the vertex corresponding to
the first letter of the sequence X ðsÞ; the i-th point of the
plot is then placed half way between the ði 	 1Þ-th point
and the vertex corresponding to the i-th letter. We then
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Fig. 2. The measure m based on 64� 64 meshes of Buchnera sp. APS.
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call the obtained plot the CGR of the protein sequence s

based on the detailed HP model.
Each coding sequence in the complete genome of an

organism can be translated into a protein sequence using
the genetic code (Brown, 1998, p. 122). We next link all
translated protein sequences from a complete genome to
a long protein sequence according to the order of the
coding sequence in the complete genome. As a result, we
obtain a linked protein sequence for each organism. In
this paper, we only consider this kind of linked protein
sequences for the organisms and view them as symbolic
sequences. Then the CGR defined above of the linked
protein sequence of an organism is called the CGR of
the organism. For example, the CGR of Buchnera sp.
APS is given in Fig. 1. A fractal pattern is apparent in
this CGR. Considering the points in a CGR of an
organism, we can define a measure m by mðBÞ ¼ xðBÞ=Nl ;
where xðBÞ is the number of points lying in the subset B

of the CGR and Nl is the length of the sequence. We can
divide the square ½0; 1� � ½0; 1� into meshes of size 64�
64; 128� 128; 512� 512 or 1024� 1024: This results in
a measure for each mesh. The measure m based on a
64� 64 mesh of Buchnera sp. APS is given in Fig. 2 as
an example. We then can obtain a 64� 64; 128� 128;
512� 512 or 1024� 1024 matrixA; where each element
is the measure value on the corresponding mesh. We call
A the measure matrix of the organism.
If s0 is one of the 20 letters, we denote by Pðs0Þ the

frequency of the letter s0 in the linked protein sequence.
A new symbolic sequence s ¼ s1; s2?sN is next gener-
ated, where si ¼ s0A fA;C;D;E;F ;G;H; I ;K ;L;M ;N;
P;Q;R;S;T ;V ;W ;Yg with probability Pðs0Þ; i ¼
1;y;N (N being the length of the linked protein
sequence from the complete genome of an organism).
The CGR and the corresponding measure matrix Af

(with the same size as A) can then be obtained for this
Fig. 1. Chaos game representation of Buchnera sp. APS (the linked

protein sequence has 185827 amino acids).
generated sequence. Af is called the fractal background

of A: We then define a new matrix Ad as

Ad ¼ A	Af : ð2Þ

The matrix Ad will be used for correlation analysis later
in this paper.
As noted by Qi et al. (2002), we need to subtract the

random background from the sequence X ðsÞ in order to
get a good evolutionary tree. Qi et al. (2002) used a
Markov model to do this. Here, we use the frequencies
of the 20 kinds of amino acids appearing in the linked
protein sequence. By the nature of its generation, this
probability measure behaves as a multiplicative cascade
and displays long memory. Hence, subtracting out the
fractal background as described above has the effect of
reducing long memory in the measure representation.
3. Multifractal analysis and correlation analysis

The multifractal spectrum of a measure M can be
defined using the box-counting method (Halsy et al.,
1986) as

Dbc
q ¼ lim

e-0

lnð
P

iðMi=M0Þ
qÞ

lnðeÞ
1

q 	 1
; ð3Þ

where e is the ratio of the grid size to the linear size of
the fractal, Mi the number of points fall in the i-th grid
cell, M0 the total number of points in the fractal.
The above definition is easier to understand, but not

so good for the computation of the multifractal
spectrum on real data. T!el et al. (1989) introduced a
sandbox method which is defined by

Dsb
q ðR=LÞ ¼

ln/½MðRÞ=M0�q	1S
lnðR=LÞ

1

q 	 1
: ð4Þ

It is derived from the box-counting method, but has
better convergence. The basic idea is that one can
randomly choose a point on the fractal, make a sandbox
(a region with radius R) around it, then count the
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number of points of the fractal that fall in this
sandbox of radius R; represented as MðRÞ in the above
definition. L is the linear size of the fractal, and q; M0

have the same meaning as in the definition of Dbc
q : The

brackets /�S mean to take a statistical average over
(many) randomly chosen centers of the sandboxes.
Because of its dependence on statistical averaging,
though the multifractal dimension is defined as Dq ¼
limR-0 Dsb

q ðR=LÞ; it is better to perform a linear fit on
the logarithms of sampled data lnð/½MðRÞ�q	1�SÞ vs.
ðq 	 1Þ lnðR=LÞ and take its slope as the multifractal
dimension in a practical use of the sandbox method. The
idea can be illustrated by rewriting Eq. (4) as

lnð/½MðRÞ�q	1SÞ ¼Dsb
q ðR=LÞ � ðq 	 1Þ lnðR=LÞ

þ ðq 	 1Þ lnðM0Þ: ð5Þ

First, we choose R in an appropriate range ½Rmin;Rmax�:
For each chosen R; we compute the statistical average of
½MðRÞ�q	1 over many radius-R sandboxes randomly
distributed on the fractal, /½MðRÞ�q	1S; then plot the
data on the lnð/½MðRÞ�q	1SÞ vs. ðq 	 1Þ lnðR=LÞ plane.
We next perform a linear fit on them and calculate the
slope as an approximation of the multifractal dimension
Dq: D1 is called the information dimension and D2 the
correlation dimension of the measure. The Dq values for
positive values of q are associated with the regions
where the points are dense. The Dq values for negative
values of q are associated with the structure and
properties of the most rarefied regions. In addition
to the multifractal dimension Dq; there is another
exponent tðqÞ: One can calculate tðqÞ from Dq by
tðqÞ ¼ ðq 	 1ÞDq:
Some sets of physical interest have a non-analytic

dependence of Dq on q:Moreover, this phenomenon has
a direct analogy to the phenomenon of phase
transitions in condensed-matter physics (Katzen and
Procaccia, 1987). The existence and type of phase
transitions might turn out to be a worthwhile character-
ization of universality classes for structures (Bohr and
Jensen, 1987). The concept of phase transition in
multifractal spectra was introduced in the study of
logistic maps, Julia sets and other simple systems.
Evidence of phase transition was found in the
multifractal spectrum of diffusion-limited aggregation
(Lee and Stanley, 1998). By following the thermody-
namic formulation of multifractal measures, Canessa
(2000) derived an expression for the ‘‘analogous’’
specific heat as

Cq 
 	
@2tðqÞ
@q2

E2tðqÞ 	 tðq þ 1Þ 	 tðq 	 1Þ: ð6Þ

He showed that the form of Cq resembles a classical
phase transition at a critical point for financial time
series. In the next section, we discuss the property of Cq

for the measure m defined in Section 2.
For matrices Ad ¼ ðaijÞn�n and Bd ¼ ðbijÞn�n (defined
in Section 2) of two different organisms, let

/AdS ¼
1

n2

Xn

i¼1

Xn

j¼1

aij ; /BdS ¼
1

n2

Xn

i¼1

Xn

j¼1

bij ;

dðAdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2

Xn

i¼1

Xn

j¼1
ðaij 	/AdSÞ2

r
;

dðBdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2

Xn

i¼1

Xn

j¼1
ðbij 	/BdSÞ2

r
:

Then we can view aij and bij as the sample values of
random variables X1 and X2; respectively. Hence the
covariance of X1 and X2 is

CovðAd ;BdÞ ¼
1

n2

Xn

i¼1

Xn

j¼1

ðaij 	/AdSÞðbij 	/BdSÞ:

As a result, we obtain the correlation coefficient between
X1 and X2 as

rðAd ;Bd Þ ¼
CovðAd ;BdÞ

dðAdÞdðBdÞ
: ð7Þ

We have 	1prðAd ;BdÞp1: If it is equal to zero, X1

and X2 are uncorrelated. We next define the correlation

distance between these two organisms by

DistðAd ;Bd Þ ¼
1	 rðAd ;BdÞ

2
: ð8Þ

4. Data and results

Currently, there are more than 50 complete genomes
of Archaea and Eubacteria available in public databases
(for example in Genbank at the web site ftp://
ncbi.nlm.nih.gov/genbank/genomes/). These include
eight Archae Euryarchaeota: Archaeoglobus fulgidus

DSM4304 (Aful), Pyrococcus abyssi (Paby), Pyrococcus

horikoshii OT3 (Phor), Methanococcus jannaschii

DSM2661 (Mjan), Halobacterium sp. NRC-1 (Hbsp),
Thermoplasma acidophilum (Taci), Thermoplasma volca-

nium GSS1 (Tvol), and Methanobacterium thermoauto-

trophicum deltaH (Mthe); two Archae Crenarchaeota:
Aeropyrum pernix (Aero) and Sulfolobus solfataricus

(Ssol); three Gram-positive Eubacteria (high G+C):
Mycobacterium tuberculosis H37Rv (MtubH), Myco-

bacterium tuberculosis CDC1551 (MtubC) and Myco-

bacterium leprae TN (Mlep); 12 Gram-positive

Eubacteria (low G+C): Mycoplasma pneumoniae M129
(Mpne), Mycoplasma genitalium G37 (Mgen), Myco-

plasma pulmonis (Mpul), Ureaplasma urealyticum (ser-
ovar 3)(Uure), Bacillus subtilis 168 (Bsub), Bacillus

halodurans C-125 (Bhal), Lactococcus lactis IL 1403
(Llac), Streptococcus pyogenes M1 (Spyo), Streptococcus

pneumoniae (Spne), Staphylococcus aureus N315

ftp://ncbi.nlm.nih.gov/genbank/genomes/
ftp://ncbi.nlm.nih.gov/genbank/genomes/
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(SaurN), Staphylococcus aureus Mu50 (SaurM), and
Clostridium acetobutylicum ATCC824 (CaceA). The
others are Gram-negative Eubacteria, which consist of
two hyperthermophilic bacteria: Aquifex aeolicus (Aqua)
VF5 and Thermotoga maritima MSB8 (Tmar); four
Chlamydia: Chlamydia trachomatis (serovar D) (Ctra),
Chlamydia pneumoniae CWL029 (Cpne), Chlamydia

pneumoniae AR39 (CpneA) and Chlamydia pneumoniae

J138 (CpneJ); two Cyanobacterium: Synechocystis sp.
PCC6803 (Syne) and Nostoc sp. PCC6803 (Nost); two
Spirochaete: Borrelia burgdorferi B31 (Bbur) and Tre-

ponema pallidum Nichols (Tpal); and 16 Proteobacteria.
The 16 Proteobacteria are divided into four subdivi-
sions, which are alpha subdivision: Mesorhizobium loti

MAFF303099 (Mlot), Sinorhizobium meliloti (smel),
Caulobacter crescentus (Ccre) and Rickettsia prowazekii

Madrid (Rpro); beta subdivision: Neisseria meningitidis

MC58 (NmenM) and Neisseria meningitidis Z2491
(NmenZ); gamma subdivision: Escherichia coli K-12
MG1655 (EcolK), Escherichia coli O157:H7 EDL933
(EcolO), Haemophilus influenzae Rd (Hinf), Xylella

fastidiosa 9a5c (Xfas), Pseudomonas aeruginosa PA01
(Paer), Pasteurella multocida PM70 (Pmul) and Buch-

nera sp. APS (Buch); and epsilon subdivision: Helico-

bacter pylori J99 (HpylJ), Helicobacter pylori 26695
(Hpyl) and Campylobacter jejuni (Cjej).
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Fig. 3. Dimension spectra of measure m from the C
We downloaded the long protein sequences from the
complete genomes of the above bacteria and calculated
the dimension spectra and ‘‘analogous’’ specific heat of
the measure m from their CGRs. As an illustration, we
plot the Dq curves of the measure m in Fig. 3 and the Cq

curves of the measure m in Fig. 4. Because all the Dq are
equal to 2 if the CGR of a protein sequence is
completely random, it is apparent from the plots that
the Dq and Cq curves are nonlinear and significantly
different from those of completely random sequences.
Hence the CGRs of linked protein sequences
from complete genomes are not completely random
sequences.
From the plot of Dq; the dimension spectra of the

measure m exhibit a multifractal-like form.
If only a few organisms are considered at a time, we

can use the Dq curve to distinguish them. This strategy is
clearly not efficient when a large number of organisms
are to be distinguished. For this purpose, we found it
more informative to use C1 and C2 in conjunction with
the two-dimensional vectors ðC1;C2Þ: The distribution
of the vectors ðC1;C2Þ also shows some patterns useful
for classification. We show the result for the measure m
in Fig. 5.
But the above result using ðC1;C2Þ is still not precise

enough to yield a satisfactory phylogenetic relationship
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for the organisms selected. For this purpose, we used the
distance matrices from the correlation analysis to
construct the phylogenetic tree with the help of the
neighbor-joining program in the PHYLIP package of
Felsenstein (The Phylip software, http://evolution.
genetics.washington.edu/phylip.html). We found that
the phylogenetic tree based on the correlation distance
becomes more precise with the increasing size of the

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
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matrix Ad (we tried the sizes 64� 64; 128� 128; 512�
512 and 1024� 1024). The phylogenetic tree using
matrix Ad with size 1024� 1024 is given in Fig. 6.
5. Discussion and conclusions

The frequent errors exist in identified proteins in
genomes. Because of the size of the genomes, these
errors may not have large effect overall on the results of
our study.
The chaos game representation based on the detailed

HP model of protein sequences provides a simple yet
powerful visualization method to distinguish protein
sequences themselves in more details. From the Dq and
Cq curves, it is concluded that the point sequences in the
CGR of all organisms considered here are not com-
pletely random. It should be noted that we cannot
conclude that the protein sequences are not completely
random since we used the detailed HP model. We also
found that the Cq curves of all studied bacteria resemble
a classical phase transition at a critical point as shown in
Fig. 4.
Although the existence of the archaebacterial king-

dom has been accepted by many biologists, the
classification of bacteria is still a matter of controversy
(Iwabe et al., 1989). The evolutionary relationship of the
three primary kingdoms, namely archeabacteria, eubac-
teria and eukaryote, is another crucial problem that
remains unresolved (Iwabe et al., 1989).
Fig. 5 shows some patterns which are helpful for the

classification problem. In fact, the points corresponding
to organisms from the same category are not far from
each other. But the multifractal analysis is still not
sufficient to give a satisfactory phylogenetic relationship
for the organisms selected. The correlation distance
using the matrix Ad with the fractal background
removed from the original CGR gives a more satisfac-
tory phylogenetic tree. Fig. 6 shows all Archaebacteria
except Halobacterium sp. NRC-1 (Hbsp) staying in a
separate branch with the Eubacteria. The bacteria in the
Chlamydia, Cyanobacteria and Gram-positive (high
G+C) groups gather together, respectively. So at the
general global level of complete genomes, our result
supports the genetic annealing model for the universal
ancestor (Woese, 1998). Furthermore, the two
hyperthermophilic bacteria Aquifex aeolicus (Aqua)
VF5 and Thermotoga maritima MSB8 (Tmar) stay in
the Archaebacteria branch, we noticed that these two
bacteria, like most Archaebacteria, are hyperthermo-
philic. It has previously been shown that Aquifex has
close relationship with Archaebacteria from a gene
comparison of an enzyme needed for the synthesis of the
amino acid trytophan (Pennisi, 1998).
Qi et al. (2002) pointed out that the subtraction of

random background is an essential step in their method.
Our results show that subtraction of the fractal back-
ground is also an essential step in our correlation
method. The correlation analysis is more precise than
the multifractal analysis for the phylogenetic problem.
Similar to the method in (Qi et al., 2002), lateral gene
transfer (Lawrence and Ochman, 1998) might not affect
our results since the correlation method also does not
depend on the choice of one or another gene.
The phase transition-like phenomenon in the Cq

curves can indicate the complexity of organisms. In
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our previous research work (Yu et al., 2001, 2003), we
found that the Cq curves of bacteria resemble a classical
phase transition. But the Cq curves of eukaryotes
studied exhibit the shape of double-peaked phase
transition. From the phase transition theory, we can
say eukaryotes are more complex than bacteria. It
coincide the conclusion in the biological theory.
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