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Abstract

The notion of measure representation of protein sequences is introduced based on the detailed
HP model. Multifractal analysis and detrended 6uctuation analysis are then performed on the
measure representations of a large number of long protein sequences. It is concluded that these
protein sequences are not completely random sequences through the measure representations
and the values of the Dq spectra and related Cq curves. The values of the exponent from
the detrended 6uctuation analysis show that the K-strings with the ordering in the measure
representation exhibit strong long-range correlation. For substrings with length K = 5, the Dq

spectra of all proteins studied are multifractal-like and su<ciently smooth for the Cq curves to
be meaningful. The Cq curves of all proteins resemble a classical phase transition at a critical
point. An IFS model is found to simulate the measure representation of protein sequences very
well. From the estimated values of parameters in the IFS model, we think the non-polar residues
and uncharged polar residues play a more important role than other kinds of residues in the
protein folding process.
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1. Introduction

The three-dimensional structure of proteins is a complex physical and mathemati-
cal problem of prime importance in molecular biology, medicine and pharmacology
[1,2]. A protein is composed of one or more chains that are covalently joined. The
chain of amino acids are called polypeptides. Twenty diNerent kinds of amino acids
are found in proteins. It is believed that the dynamical folding process and stable
structure, or native conformation, of a protein are determined by its primary structure,
namely its amino acid sequence [3,4]. The 20 diNerent amino acids in natural polypep-
tides can be in any number and any order. Because the number of amino acids in a
polypeptide molecule usually ranges from 100 to 1000, the number of diNerent protein
molecules that is possible is enormous. Once an amino acid sequence is known, the
number of possible space structures it can fold to is also enormous. How to predict the
high-level structures (secondary and space structures) from the amino acid sequence
is a challenging problem in science, in particular to the large proteins. A number of
coarse-grained models have been proposed to provide insight to these very complicated
issues [4]. A well-known model in this class is the HP model proposed by Dill et al.
[5]. In this model 20 kinds of amino acids are divided into two types, hydrophobic (H)
(or non-polar) and polar (P) (or hydrophilic). In last decade the HP model has been
extensively studied by several groups (e.g. [2,6,7]). After studying the model on lat-
tices, Li et al. [6] found there are a small number of structures with exceptionally high
designability which a large number of protein sequences possess as their ground states.
These highly designable structures are found to have protein-like secondary structures
[2,6,8]. But the HP model may be too simple and lacks enough information on the
heterogeneity and the complexity of the natural set of residues Ref. [9]. According to
Brown [10], in the HP model, one can divide the polar class into three classes: positive
polar, uncharged polar and negative polar. So 20 diNerent kinds of amino acids can
be divided into four classes: non-polar, negative polar, uncharged polar and positive
polar. In this model, one considers more details than in the HP model. We call this
model a detailed HP model. In this paper, we will adopt the detailed HP model.

Fractal geometry provides a mathematical formalism for describing complex spa-
tial and dynamical structures [11,12]. The fractal method has been successfully used
to study many problems in Physics, Mathematics, Engineering and Biology in the
past 2 decades or so. Multifractal analysis is a useful way to characterise the spatial
inhomogeneity of both theoretical and experimental fractal patterns [13]. Multifractal
analysis was initially proposed to treat turbulence data. In recent years, it has been
applied successfully in many diNerent Aelds including time series analysis and Anan-
cial modelling [14]. For the applications of fractal method to DNA sequences, one can
refer to Refs. [14–16] and the references therein. The fractal method has been used to
study the protein backbone [17], the accessible surface of protein [17–20] and protein
potential energy landscapes [21]. The multifractal analysis of solvent accessibilities in
proteins was done by Balafas and Dewey [22]. In Ref. [22], the model used to At the
multifractal spectrum is also discussed. But the parameters derived in their multifractal
analysis cannot be used to predict the structural classiAcation of a protein from its
amino acid sequence.
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The amino acid sequence of a protein is also called a protein sequence in this
paper. Based the idea of DNA walk model and diNerent mapping, a decoded walk
model was proposed to study the correlation property of protein sequences by Pande et
al. [23] using “Bridge analysis” and Strait and Dewey [24] using multifractal analysis.
Deviations of the decoded walk from random behaviour provides evidence
of memory.

Inspired by the idea of measure representation of DNA sequence [14], in this
paper we propose a visual representation—measure representation of protein sequences
based on the detailed HP model. The Detrended Fluctuation Analysis (DFA) [15,25]
is used to study the correlation property when the measure representation of protein
is viewed as a time series. The multifractal analysis of the measure representation of
protein will follow. To our knowledge [26], it is much harder to simulate a measure
than to At its multifractal spectrum (because diNerent measures may have the same
multifractal spectrum). The iterated function systems (IFS) model proposed by Barns-
ley and Demko [27] is a powerful tool in fractal theory (many fractals such as the
Cantor set can be generated by the IFS model). Here we And the IFS model can be
used to simulate the measure representation of protein sequences.

2. Detailed HP model and measure representation of protein sequences

Twenty diNerent kinds of amino acids are found in proteins. In the detailed HP
model they can be divided into four classes: non-polar, negative polar, uncharged
polar and positive polar. The eight residues designating the non-polar class are: ALA,
ILE, LEU, MET, PHE, PRO, TRP, VAL; the two residues designating the negative
polar class are: ASP, GLU; the seven residues designating the uncharged polar class
are: ASN, CYS, GLN, GLY, SER, THR, TYR; and the remaining three residues: ARG,
HIS, LYS designate the positive polar class.

For a given protein sequence with length L, s = s1 : : : sL where si is one of the 20
kinds of amino acids for i = 1; : : : ; L;, we deAne

ai =




0 if si is non-polar ;

1 if si is negative polar ;

2 if si is uncharged polar ;

3 if si is positive polar :

(1)

So we can obtain a sequence X (s) = a1 : : : aL, where ai is a letter of the alphabet
{0; 1; 2; 3}.

We call any string made of K letters from the set {0; 1; 2; 3} a K-string. For a given
K , there are in total 4K diNerent K-strings. In order to count the number of each kind
of K-strings in a sequence X (s) from protein sequence s, 4K counters are needed.
We divide the interval [0; 1[ into 4K disjoint subintervals, and use each subinterval to
represent a counter. Letting r= r1 : : : rK ; ri ∈{0; 1; 2; 3}; i= 1; : : : ; K; be a substring with
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length K , we deAne

xleft(r) =
K∑
i=1

ri
4i

(2)

and

xright(r) = xleft(r) +
1
4K

: (3)

We then use the subinterval [xleft(r); xright(r)[ to represent substring r. Let NK (r) be the
number of times that substring r with length K appears in the sequence X (s) (when
we count these numbers, we open a reading frame with width K and slide the frame
one amino acid each time). We deAne

FK (r) = NK (r)=(L− K + 1) (4)

to be the frequency of substring r. It follows that
∑

{r} FK (r)=1. Now we can deAne
a measure �K on [0; 1[ by d�K (x) = Y (x)dx, where

YK (x) = 4KFK (r) when x∈ [xleft(r); xright(r)[ : (5)

It is easy to see
∫ 1

0 d�K (x) = 1 and �K ([xleft(r); xright(r)[) = FK (r). We call �K the
measure representation of the protein sequence corresponding to the given K .

For simplicity of notation, the index K is dropped in FK (r), etc. from now on, where
its meaning is clear.

3. Detrended �uctuation analysis

The exponent in the detrended 6uctuation analysis can be used to characterise the
correlation of a time series [15,25]. We can order all the F(r) according to the
increasing order of xleft(r). We then obtain a sequence of real numbers consisting of 4K

elements which we denote as F(t); t = 1; : : : ; 4K . We can view the sequence {F(t)}4K
t=1

as a time series. First the time series is integrated as y(k)=
∑k

t=1 [F(t)−Fave], where
Fave is the average over the whole time period. Next, the integrated time series is
divided into boxes of equal length, n. In each box of length n, a least-squares line
is At to the data, representing the trend in that box. The y-coordinate of the straight
line segments is denoted by yn(k). We then detrend the integrated time series, y(k),
by subtracting the local trend, yn(k), in each box. The root-mean-square 6uctuation of
this integrated and detrended time series is calculated as

F(n) =

√√√√ 1
N

N∑
k=1

[y(k) − yn(k)]2 : (6)

Typically, F(n) will increase with box size n. A linear relationship on a double log
graph indicates the presence of scaling

F(n) ˙ n� : (7)
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Under such conditions, the 6uctuations can be characterised by the scaling exponent �,
the slope of the line relating lnF(n) to ln n. For uncorrelated data, the integrated value
y(k) corresponds to a random walk and therefore, � = 0:5. A value of 0:5¡�¡ 1:0
indicates the presence of long memory so that a large value is more likely to be
followed by a large value and vice versa. In contrast, 0¡�¡ 0:5 indicates a diNerent
type of power-law correlations such that large and small values of time series are more
likely to alternate.

4. Multifractal analysis

The most common algorithms of multifractal analysis are the so-called <xed-size
box-counting algorithms [28]. In the one-dimensional case, for a given measure �
with support E ⊂ R, we consider the partition sum

Z�(q) =
∑
�(B)�=0

[�(B)]q ; (8)

q∈R, where the sum runs over all diNerent nonempty boxes B of a given side � in a
grid covering of the support E, that is,

B= [k�; (k + 1)�[ : (9)

The exponent !(q) is deAned by

!(q) = lim
�→0

ln Z�(q)
ln �

(10)

and the generalized fractal dimensions of the measure are deAned as

Dq = !(q)=(q− 1) for q �= 1 (11)

and

Dq = lim
�→0

Z1; �

ln �
for q= 1 ; (12)

where Z1; � =
∑

�(B)�=0 �(B) ln �(B). The generalized fractal dimensions are numerically
estimated through a linear regression of

1
q− 1

ln Z�(q)

against ln � for q �= 1, and similarly through a linear regression of Z1; � against ln �
for q= 1. D1 is called information dimension and D2 is called correlation dimension.
The Dq of the positive values of q give relevance to the regions where the measure is
large, i.e., to the K-strings with high probability. The Dq of the negative values of q
deal with the structure and the properties of the most rareAed regions of the measure.

Some sets of physical interest have a non-analytic dependence of Dq on q. More-
over, this phenomenon has a direct analogy to the phenomenon of phase transitions in
condensed-matter physics [29]. The existence and type of phase transitions might turn
out to be a worthwhile characterisation of universality classes for the structures [30].
The concept of phase transition in multifractal spectra was introduced in the study of
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logistic maps, Julia sets and other simple systems. Evidence of phase transition was
found in the multifractal spectrum of diNusion-limited aggregation [31]. By follow-
ing the thermodynamic formulation of multifractal measures, Canessa [32] derived an
expression for the ‘analogous’ speciAc heat as

Cq ≡ −9
2!(q)
9q2 ≈ 2!(q) − !(q+ 1) − !(q− 1) : (13)

He showed that the form of Cq resembles a classical phase transition at a critical point
for Anancial time series. In a later section, we will discuss the property of Cq for our
measure representations of protein sequences.

5. IFS model and moment method

5.1. IFS model

In order to simulate the measure representation of the complete genome, Anh et
al. [33] proposed the iterated function systems (IFS) model and the recurrent IFS
model. IFS is the name given by Barnsley and Demko [27] originally to a system of
contractive maps w = {w1; w2; : : : ; wN}. Let E0 be a compact set in a compact metric
space, E#1#2 :::#n = w#1 ◦ w#2 ◦ · · · ◦ w#n(E0) and

En =
⋃

#1 ;:::;#n∈{1;2;:::;N}
E#1#2 :::#n :

Then E =
⋂∞
n=1 En is called the attractor of the IFS. The attractor is usually a fractal

and the IFS is a relatively general model to generate many well-known fractal sets such
as the Cantor set and the Koch curve. Given a set of probabilities pi ¿ 0;

∑N
i=1 pi=1,

pick an x0 ∈E and deAne the iteration sequence

xn+1 = w#n(xn); n= 0; 1; 2; 3; : : : ;

where the indices #n are chosen randomly and independently from the set {1; 2; : : : ; N}
with probabilities P(#n = i) = pi. Then every orbit {xn} is dense in the attractor E
[27]. For n large enough, we can view the orbit {x0; x1; : : : ; xn} as an approximation
of E. This process is called chaos game.

Let � be the invariant measure on the attractor of the IFS, 'B the characteristic
function for the Borel subset B ⊂ E, then from the ergodic theorem for IFS Ref. [27],

�(B) = lim
n→∞

[
1

n+ 1

n∑
k=0

'B(xk)

]
:

In other words, �(B) is the relative visitation frequency of B during the chaos game.
A histogram approximation of the invariant measure may then be obtained by counting
the number of visits made to each pixel on the computer screen.
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5.2. Moment method to estimate the parameters in IFS model

The coe<cients in the contractive maps and the probabilities in the IFS model are
the parameters to be estimated for a real measure which we want to simulate. Vrscay
[34] introduced a moment method to perform this task. If � is the invariant measure
and E the attractor of IFS in R, the moments of � are

gi =
∫
E
xid�; g0 =

∫
E

d� = 1 : (14)

If wi(x)= cix+di; i=1; : : : ; N , then the following well-known recursion relations hold
[34]: [

1 −
N∑
i=1

picni

]
gn =

n∑
j=1

(
n

j

)
gn−j

(
N∑
i=1

pic
n−j
i dji

)
: (15)

Thus, setting g0 = 1, the moments gn; n¿ 1, may be computed recursively from a
knowledge of g0; : : : ; gn−1. If we denote by Gk the moments obtained directly from the
real measure using (14), and gk the formal expression of moments obtained from (15),
then through solving the optimisation problem

min
ci ; di ;pi

n∑
k=1

(gk − Gk)2 for some chosen n ; (16)

we can obtain the estimated values of the parameters in the IFS model.
From the measure representation of a protein sequence, we see that it is natural to

choose N = 4 and

w1(x) = x=4; w2(x) = x=4 + 1=4; w3(x) = x=4 + 1=2; w4(x) = x=4 + 3=4

in the IFS model. For a given measure representation of a protein sequence, we
obtain the estimated values of the probabilities p1; p2; p3; p4 by solving the optimisation
problem (16). Based on the estimated values of the probabilities, we can use the chaos
game to generate a histogram approximation of the invariant measure of IFS which we
can compare with the real measure representation of the protein sequence. In order to
clarify how close the simulation measure is to the original measure representation, we
convert the measure to its walk representation. If tj; j=1; 2; : : : ; 4K , is the histogram of
a measure and tave is its average, then we deAne Tj =

∑j
k=1 (tk − tave); j= 1; 2; : : : ; 4K .

So we can plot the two walks of the real measure representation and the measure
generated by chaos game of IFS model on the same Agure.

6. Data and numerical results

The methods introduced in the previous sections can only be used for long protein
sequences (corresponding to large proteins). The amino acid sequences of 32 large
proteins are selected from RCSB Protein Data Bank (PDB) (http://www.rcsb.org/pdb/
index.html). These 32 proteins belong to Ave structure classes [35] according to their

http://www.rcsb.org/pdb/index.html
http://www.rcsb.org/pdb/index.html
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Table 1
The properties and the exponent � in detrended 6uctuation analysis of all 32 proteins selected

Class PDB ID Protein Length Exponent �

1AVC Annexin VI 673 0.7668386
1B89 Clethrin heavy chain 449 0.8144683
1BJ5 Human serum albumin 585 0.7427572

- 1HO8 Vacuolar ATP synthase subunit H 480 0.7721964
1IAL Importin alpha 453 0.7197123
1QSA Soluble lytic transglycosylase SH70 618 0.7482758
2BCT .-catenin 516 0.7193562
5EAS 5-Epi-Aristolochene synthase 548 0.8192653

1B9S Neuramindase 390 0.7716008
1DAB P.69 pertactin 539 0.7557988

. 1EUT Sialidase 605 0.7632415
1FNF Fibronectin 368 0.7087377
1JX5 Integrin --Iib 452 0.7224556
1MAL Maltoporin 421 0.7831249

1B90 .-Amylase 516 0.7781916
1BBU Lysyl-tRNA synthetase 504 0.7936335

- + . 1BYT Lioxygenase-3 857 0.7693996
1CLC Endoglaeanase celd 639 0.7655830
1E7U Phosphatidylinositol 3-kinase 961 0.7795467

Catalytic subunit

1A8I Glycogen phosphorylase B 841 0.8215442
-=. 1ACJ Acetylcholinesterase complexed with tacrine 537 0.7390218

1AOV Apo-ovotransferin 686 0.7503767
1BFD Benzoylformate decarboxylase 528 0.7581296
1CRL Lipase (triacylglycerol hydrolase) 534 0.7358587

1DPI DNA Ploymerase I dCMP complex-chian 605 0.7550018
1EFG Elongation factor G complexed with 691 0.7986233

guanosine 5’-diphosphate chain A
1EPS 5-enol-pyruvyl-3-phosphate synthase chain 427 0.7521843

Others 1F1O Adenylosuccinate lyase 431 0.7942725
1KVP Capsid protein chimera 497 0.7643545
1PMD Peptidoglycan synthesis 675 0.7451864
1TPT Thymidine phosphorylase chain 440 0.7486859
4ACE Acetylcholinesterase 537 0.7388495

secondary structures: -, ., - + . ( -,. alternate), -=. (-; . segregate) and others (no
- and no .) proteins. The properties of these proteins are given in Table 1. First
we convert the amino acid sequences of these proteins to their measure representations
with K=5 according to the method introduced in Section 2. If K is too small, there are
not enough combinations of letters from set {0; 1; 2; 3}, therefore there is no statistical
sense. And if K is too big, the frequencies of most substrings are zero. So we cannot
obtain any biological information from the measure representation. Considering the
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Fig. 1. The multifractal spectra Dq of measure representations of 32 proteins selected.
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Fig. 2. Cq curves of measure representations of 32 proteins selected.

length of the selected proteins which ranges from 350 to 1000, we think it is suitable to
choose K=5. Then the detrended 6uctuation analysis of these proteins was performed.
The values of the exponent � in the detrended 6uctuation analysis are also given in
Table 1.

The multifractal spectra Dq and the related spectra Cq of the measure representations
of all 32 proteins are calculated and showed in Figs. 1 and 2, respectively.



180 Z.-G. Yu et al. / Physica A 337 (2004) 171–184

Table 2
The estimated parameters in the IFS model of all 32 proteins selected

Class PDB ID p1 p2 p3 p4

1AVC 0.433053 0.057476 0.360621 0.148850
1B89 0.434701 0.090537 0.355757 0.119005
1BJ5 0.395675 0.171289 0.263892 0.169145

- 1HO8 0.425220 0.116664 0.324997 0.133119
1IAL 0.454049 0.145905 0.279686 0.120360
1QSA 0.429905 0.095604 0.366038 0.108453
2BCT 0.479382 0.051937 0.343780 0.124902
5EAS 0.438919 0.079522 0.386794 0.094765

1B9S 0.374272 0.055143 0.447158 0.123429
1DAB 0.443784 0.082010 0.399380 0.074825

. 1EUT 0.404940 0.086955 0.409295 0.098810
1FNF 0.392416 0.124496 0.393389 0.089700
1JX5 0.418789 0.121671 0.364252 0.095288
1MAL 0.369149 0.074231 0.483407 0.073214

1B90 0.412281 0.069013 0.413590 0.105117
1BBU 0.408854 0.203032 0.238907 0.149207

- + . 1BYT 0.419483 0.124814 0.313159 0.142543
1CLC 0.411955 0.089417 0.393040 0.105588
1E7U 0.407123 0.186941 0.242776 0.163161

1A8I 0.435450 0.100694 0.329504 0.134352
1ACJ 0.437285 0.087811 0.359227 0.115677

-=. 1AOV 0.378102 0.092808 0.390054 0.139036
1BFD 0.503850 0.103505 0.303115 0.089530
1CRL 0.445648 0.061138 0.432773 0.060441

1DPI 0.434653 0.174507 0.229232 0.161609
1EFG 0.463732 0.090136 0.318268 0.127863
1EPS 0.455629 0.080760 0.366760 0.096850

Others 1F1O 0.438389 0.119861 0.290525 0.151225
1KVP 0.409277 0.105865 0.364443 0.120415
1PMD 0.384736 0.133984 0.386281 0.094999
1TPT 0.462826 0.143851 0.272910 0.120413
4ACE 0.437279 0.087855 0.359186 0.115681

Finally, we simulated the measure representations of all 32 proteins using the IFS
model and moment method introduced in Section 5. The estimated parameters in the
IFS model are given in Table 2. For examples, we show the histograms of mea-
sure representation and simulated measures of protein Human Serum Albumin (PDB
ID: 1BJ5) in Fig. 3 and their walk representations in Fig. 4; those measures of
protein P.69 Pertactin (PDB ID: 1DAB) in Fig. 5 and their walk representations
in Fig. 6.
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Fig. 3. The measure representation (left) and the IFS simulation (right) of protein human serum albumin
(PDB ID: 1BJ5).
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Fig. 4. The walk representations of measures in Fig. 3.

7. Discussion and conclusions

The idea of our measure representation of protein is similar to the measure represen-
tation of complete genome [14]. It provides a powerful visualisation method for protein
sequences in more details than the HP model. If a protein sequence is completely ran-
dom, then our measure representation yields a uniform measure (Dq = 1; Cq = 0).

From the measure representation and the values of Dq and Cq, it is seen that there
exists a clear diNerence between the protein sequences considered here and completely
random sequence. Hence we can conclude that these protein sequences are not random
sequences. This result coincides with the result of Pande et al. [23].
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Fig. 5. The measure representation (left) and the IFS simulation (right) of protein P.69 Pertactin (PDB ID:
1DAB).
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Fig. 6. The walk representations of measures in Fig. 5.

From Fig. 1, it is seen that the Dq spectra of all protein sequences are multifractal-like
and su<ciently smooth so that the Cq curves can be meaningfully estimated. From
Fig. 2, one can see that the Cq curves of all protein sequences resemble a classical
phase transition at a critical point.

Through the detrended 6uctuation analysis and from Table 1, the values of exponent
� range from 0.70 to 0.83. These values are far from 0.5. Hence when we view
our measure representations of protein sequences as time series, they are far from
being random time series, and in fact exhibit strong correlation. Here the long-range
correlation is for the K-strings with ordering in the measure representation, and it is
diNerent from the residue correlations introduced by other people.
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Figs. 4 and 6 indicate that the diNerence between the walk representations of measure
representation and IFS simulated measure is very small. We And that IFS is a good
model to simulate the measure representation of protein sequences. From above, once
the probabilities are determined, the IFS model is obtained. Hence the probabilities
obtained from the IFS model can be used to characterise the measure representation of
the protein sequences. From Table 2, we And the probability p3 (which corresponds
to the uncharged polar property) can be used to distinguish the structural class of
proteins from - class and . class (values of p3 of proteins in class - are less than
those of proteins in class .), and the probability p1 (which corresponds to the non-polar
property) can be used to distinguish the structural class of proteins from class - + .
and class -=. (values of p1 of proteins in class -=. are less than those of proteins in
class -+.). Hence we believe that the non-polar residues and uncharged residues play
a more important role than other kind of residues in the protein folding process. This
information is useful for protein structure prediction.

We also tried replacing the detailed HP model by the classiAcation of residues used
in Ref. [9] in our frame. But it cannot improve the results obtained from the detailed
HP model.

The detailed HP model can also be used in the chaos game representation of linked
protein sequences from the complete genome [36].
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