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Recognition of an organism from fragments of its complete genome
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This paper considers the problem of matching a fragment to an organism using its complete genome. Our
method is based on the probability measure representation of a genome. We first demonstrate that these
probability measures can be modeled as recurrent iterated function systems~RIFS! consisting of four contrac-
tive similarities. Our hypothesis is that the multifractal characteristics of the probability measure of a complete
genome, as captured by the RIFS, is preserved in its reasonably long fragments. We compute the RIFS of
fragments of various lengths and random starting points, and compare with that of the original sequence for
recognition using the Euclidean distance. A demonstration on five randomly selected organisms supports the
above hypothesis.
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I. INTRODUCTION

The DNA sequences of complete genomes provide es
tial information for understanding gene functions and evo
tion. A large number of these DNA sequences is curren
available in public databases, such as Genbank at f
ncbi.nlm.nih.gov/genbank/genomes/ or KEGG at http
www.genome.ad.jp/kegg/java/org_list.html. A great ch
lenge of DNA analysis is to determine the intrinsic patte
contained in these sequences, which are formed by four b
nucleotides, namely, adenine (a), cytosine (c), guanine (g),
and thymine (t).

Some significant results have been obtained for the lo
range correlation in DNA sequences@1–16#. Li and Kaneko
@1# found that the spectral density of a DNA sequence c
taining mostly introns shows 1/f b behavior, which indicates
the presence of long-range correlation when 0,b,1. The
correlation properties of coding and noncoding DNA s
quences were first studied by Penget al. @2# in their fractal
landscape or DNA walk model. The DNA walk@2# was de-
fined as that the walker steps ‘‘up’’ if a pyrimidine (c or t)
occurs at positioni along the DNA chain, while the walke
steps ‘‘down’’ if a purine (a or g) occurs at positioni. Peng
et al. @2# discovered that there exists long-range correlat
in noncoding DNA sequences while the coding sequen
correspond to a regular random walk. By undertaking a m
detailed analysis, Chatzidimitriou-Dreismann and Larha
mar@5# concluded that both coding and noncoding sequen
exhibit long-range correlation. A subsequent work by Prab
and Claverie@6# also substantially corroborates these resu
If one considers more details by distinguishingc from t in
pyrimidine anda from g in purine ~such as two- or three
dimensional DNA walk models@15# and maps given by Yu
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and Chen@16#!, then the presence of base correlation h
been found even in the coding sequences. On the other h
Buldyrev et al. @12# showed that long-range correlation a
pears mainly in noncoding DNA using all the DNA se
quences available. Based on equal-symbol correlation, V
@8# showed a power law behavior for the sequences stud
regardless of the proportion of intron contents. These stu
add to the controversy about the possible presence of co
lation in the entire DNA or only in the noncoding DNA
From a different angle, fractal analysis has proven usefu
revealing complex patterns in natural objects. Berthel
et al. @17# considered the global fractal dimensions of hum
DNA sequences treated as pseudorandom walks.

In the above studies, the authors only considered sho
long DNA segments. Since the first complete genome of
free-living bacteriumMycoplasma genitaliumwas sequenced
in 1995@18#, an ever-growing number of complete genom
has been deposited in the public databases. The availab
of complete genomes induces the possibility to estab
some global properties of these sequences. Vieira@19# car-
ried out a low-frequency analysis of the complete DNA of
microbial genomes and showed that their fractal behav
does not always prevail, through the entire chain and
autocorrelation functions have a rich variety of behavio
including the presence of antipersistence. Yu and Wang@20#
proposed a time series model of coding sequences in c
plete genomes. For more details on the number, size,
ordering of genes along the chromosome, one can refe
Part 5 of Lewin@21#. One may ignore the composition of th
four kinds of bases in coding and noncoding segments
only consider the global structure of the complete genom
or long DNA sequences. Provata and Almirantis@22# pro-
posed a fractal Cantor pattern of DNA. They mapped cod
segments to filled regions and noncoding segments to em
regions of a random Cantor set and then calculated the fra
dimension of this set. They found that the coding/noncod
partition in DNA sequences of lower organisms is homog
neouslike, while in the higher eukaryotes the partition
fractal. This result does not seems to be refined enoug

ail
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V. V. ANH, K. S. LAU, AND Z. G. YU PHYSICAL REVIEW E 66, 031910 ~2002!
distinguish bacteria because the computed fractal dimens
of bacteria@22# are the same. The classification and evo
tion relationship of bacteria is one of the most importa
problems in DNA research. Yu and Anh@23# proposed a time
series model based on the global structure of the comp
genome and considered three kinds of length sequences
ter calculating the correlation dimensions and Hurst ex
nents, it was found that one can get more information fr
this model than that of the fractal Cantor pattern. Some
sults on the classification and evolution relationship of b
teria were found@23#. The correlation property of thes
length sequences has been discussed@24#. The multifractal
analysis for these length sequences was done in Ref.@25#.

Although statistical analysis performed directly on DN
sequences has yielded some success, there has been
indication that this method is not powerful enough to ampl
the difference between a DNA sequence and a random
quence, as well as to distinguish DNA sequences, themse
in more detail@26#. One needs more powerful global an
visual methods. For this purpose, Haoet al. @26# proposed a
visualization method based on counting and coarse grai
the frequency of appearance of substrings with a gi
length. They called it theportrait of an organism. They
found that there exist some fractal patterns in the portra
which are induced by avoiding and underrepresented stri
The fractal dimension of the limit set of portraits was al
discussed@27,28#. There are other graphical methods of s
quence patterns, such as the chaos game represen
@29,30#.

Yu et al. @31# introduced a representation of a DNA s
quence by a probability measure ofk strings derived from
the sequence. This probability measure is, in fact, the hi
gram of the events formed by all thek strings in a dictionary
ordering. It was found@31# that these probability measure
display a distinct multifractal behavior characterized by th
generalized Re´nyi dimensions~instead of a single fractal di
mension as in the case of a self-similar process!. Further-
more, the correspondingCq curves~defined in Ref.@32#! of
these generalized dimensions of all bacteria resemble cl
cal phase transition at a critical point, while the ‘‘analogou
phase transitions~defined in Ref.@32#! of chromosomes of
nonbacteria exhibit the shape of double-peaked specific
function. These patterns led to a meaningful grouping of
chaebacteria, eubacteria, and eukaryotes. Anhet al. @33# took
a further step in providing a theory to characterize the m
tifractality of the probability measures of the complete g
nomes. In particular, the resulting parametric models fit
tremely well theDq curves of the generalized dimensio
and the correspondingKq curves of the above probabilit
measures of the complete genomes.

A conclusion of the work reported by Yuet al. @31# and
Anh et al. @33# is that the histogram of thek strings of the
complete genome provides a good representation of the
nome and that these probability measures are multifrac
This multifractality is, in most of the cases studied, char
teristic of the DNA sequences, and hence can be used
their classification.

In this paper, we consider the problem of recognition
an organism based on fragments of their complete genom
03191
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The identification of the organisms in a culture common
relies on their molecular identity markers such as the ge
that code for ribosomal RNA. However, it is usual that mo
fragments lack the marker, ‘‘making the task of matchi
fragment to organism akin to reconstructing a document
has been shredded’’~M. Leslie, ‘‘Tales of the sea,’’New Sci-
entist, 27 January 2001!. A well-known method to tackle the
task is the random shotgun sequencing method that scan
sequences of all fragments looking for overlaps to be abl
piece the fragments together. It is obvious that this techni
is extremely time consuming and many crucial fragme
may be missing.

This paper will provide a different method to approa
this problem. Our starting point is the probability measure
thek strings and its multifractality. We model this multifrac
tality using a recurrent iterated function system@34,35# con-
sisting of four contractive similarities~to be described in
Sec. IV!. This branching number of 4 is a natural cons
quence of the four basic elements (a,c,g,t) of the DNA
sequences. Each of these recurrent iterated function sys
~RIFS! is specified by a matrix of incidence probabilitiesP
5(pi j ), i , j 51, . . . ,4, with pi11pi21pi31pi451 for i
51, . . . ,4. It is ourhypothesis that, for reasonably lon
fragments, the multifractal characteristic of the measure o
complete genome as captured by the matrixP is preserved in
the fragments. We thus represent each fragment by a ve

@( 1
4 (p111p211p311p41),

1
4 (p121p221p321p42),

1
4 (p13

1p231p331p43)] in R1
3 . We will see that for fragments o

lengths longer than 1/20 of the original sequence and w
random starting points, these vectors are very close, u
the Euclidean distance, to the vector of the complete
quence.

We will demonstrate the technique on five organism
namely,A. fulgidus, B. burgdorferi, C. trachomatis, E. col,
andM. genitalium. As remarked by Yuet al. @31#, substrings
of length k56 are sufficient to represent DNA sequence
For each organism, we compute the histograms for th
strings of its complete genome and four cases of fragme
of lengths 1/4, 1/8, 1/15, and 1/20 of the complete seque
The starting position of each fragment is chosen random
The RIFS of the complete genome and each of the fragm
are computed next. The numerical results are reported in
V. Some conclusions will be drawn in Sec. VI.

II. MEASURE REPRESENTATION OF COMPLETE
GENOMES

We first outline the method of Yuet al. @31# in deriving
the measure representation of a DNA sequence. We call
string made up ofk letters from the set$g,c,a,t% a k string.
For a givenk there are a total of 4k different k strings. In
order to count the number of each kind ofk strings in a given
DNA sequence, 4k counters are needed. We divide the inte
val @0,1) into 4k disjoint subintervals, and use each subint
val to represent a counter. Lets5s1 , . . . ,sk , si
P$a,c,g,t%,i 51, . . . ,k, be a substring with lengthk, we
define
0-2
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FIG. 1. Histograms of substrings with different lengths.
le

-

t in
xl~s!5(
i 51

k
xi

4i
, ~1!

where

xi55
0 if si5a

1 if si5c

2 if si5g

3 if si5t

~2!

and

xr~s!5xl~s!1
1

4k
. ~3!

We then use the subinterval@xl(s),xr(s)) to represent the
substrings. Let N(s) be the times of substrings appearing in
the complete genome. If the number of bases in the comp
genome isL, we define

F~s!5N~s!/~L2k11! ~4!
03191
te

to be the frequency of substrings. It follows that ($s%F(s)
51. We can now viewF(s) as a function ofx and define a
measuremk on @0,1) by

mk~x!5Yk~x!dx,

where

Yk~x!54kFk~s!, xP@xl~s!,xr~s!!. ~5!

We then havemk(@0,1))51 andmk(@xl(s),xr(s)))5Fk(s).
We callmk(x) themeasure representationof an organism. As
an example, the measure representation ofM. genitaliumfor
k53, . . . ,6 isgiven in Fig. 1. A fractal-like behavior is ap
parent in the measures.

Remark:The ordering ofa,c,g,t in Eq. ~2! follows the
natural dictionary ordering ofk strings in the one-
dimensional space. A different ordering ofa,c,g,t would
change the nature of the correlations of the measure. Bu
our case, a different ordering ofa,c,g,t in Eq. ~2! gives the
same multifractal spectrum (Dq curve, which will be defined
in the following section! when the absolute value ofq is
relatively small~see Fig. 2 in Ref.@31#!. Hence the multi-
0-3
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fractal characteristics is independent of the ordering. In
comparison of different organisms using the measure re
sentation, once the ordering ofa,c,g,t in Eq. ~2! is given, it
is fixed for all organisms@31#.

III. MULTIFRACTAL ANALYSIS

The most common algorithms of multifractal analysis a
the so-calledfixed-size box-counting algorithms@36#. In the
one-dimensional case, for a given measurem with support
E,R, we consider thepartition sum

Ze~q!5 (
m(B)Þ0

@m~B!#q, ~6!

qPR, where the sum runs over all different nonempty box
B of a given sidee in a grid covering of the supportE, that
is,

B5@ke,~k11!e#. ~7!

The exponentt(q) is defined by

t~q!5 lim
e→0

ln Ze~q!

ln e
, ~8!

and the generalized fractal dimensions of the measure
defined as

Dq5t~q!/~q21! for qÞ1, ~9!

and

Dq5 lim
e→0

Z1,e

ln e
for q51, ~10!

where Z1,e5(m(B)Þ0m(B)ln m(B). The generalized fracta
dimensions are estimated through a linear regression of

1

q21
ln Ze~q!

against lne for qÞ1, and similarly through a linear regres
sion of Z1,e against lne for q51. D1 is called information
dimensionandD2 is calledcorrelation dimension. TheDq of
the positive values ofq give relevance to the regions whe
the measure is large, i.e., to thek strings with high probabil-
ity. TheDq of the negative values ofq deal with the structure
and the properties of the most rarefied regions of the m
sure.

IV. IFS AND RIFS MODELS AND THE MOMENT
METHOD FOR PARAMETER ESTIMATION

In this paper, we propose to model the measure define
Sec. II for a complete genome by a recurrent IFS. As
work with measures on compact intervals, the theory of S
II is narrowed down to the one-dimensional case~i.e., d
51). Consider a system of contractive mapsS
5$S1 ,S2 , . . . ,SN%. Let E0 be a compact interval ofR,
03191
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Es1s2•••sn
5Ss1

+Ss2
+•••+Ssn

(E0) and

En5øs1 , . . . ,snP$1,2, . . . ,N%Es1s2•••sn
.

ThenE5ùn51
` En is theattractor of the IFS. Given a set of

probabilitiespi.0, ( i 51
N pi51, we pick anx0PE and de-

fine iteratively the sequence

xn115Ssn
~xn!, n50,1,2, . . . , ~11!

where the indicessn are chosen randomly and independen
from the set$1,2, . . . ,N% with probabilitiesP(sn5 i )5pi .
Then every orbit$xn% is dense in the attractorE @37,38#. For
n large enough, we can view the orbit$x0 ,x1 , . . . ,xn% as an
approximation ofE. This iterative process is called achaos
game.

Given a system of contractive mapsS5$S1 ,S2 , . . . ,SN%
on a compact metric spaceE* , we associate with these map
a matrix of probabilitiesP5(pi j ) such that ( j pi j 51, i
51,2, . . . ,N. Consider a random sequence generated b
chaos game,

xn115Ssn
~xn!, n50,1,2, . . . , ~12!

wherex0 is any starting point andsn is chosen with a prob-
ability that depends on the previous indexsn21:

P~sn115 i !5psn ,i . ~13!

The choice of the indicessn as prescribed by Eq.~13! pre-
sents a fundamental difference between this iterative pro
and that defined by Eq.~11! of the usual chaos game. The
(E* ,S,P) is called arecurrent IFS. The flexibility of RIFS
permits the construction of more general sets and meas
which do not have to exhibit the strict self-similarity of IFS
This would offer a more suitable framework to mod
fractal-like objects and measures in nature.

Let m be the invariant measure on the attractorE of an
IFS or RIFS andxB the characteristic function for the Bore
subsetB,E, then from the ergodic theorem for IFS or RIF
@37#,

m~B!5 lim
n→`

F 1

n11 (
k50

n

xb~xk!G . ~14!

In other words,m(B) is the relative visitation frequency ofB
during the chaos game. A histogram approximation of
invariant measure may then be obtained by counting
number of visits made to each pixel on the computer scre

The coefficients in the contractive maps and the probab
ties in the IFS or RIFS model are the parameters to be e
mated for a given measure which we want to simulate.
scay@38# introduced a moment method to perform this tas
If m is the invariant measure andE the attractor of the IFS or
RIFS in R, the moments ofm are

gi5E
E
xidm, g05E

E
dm51. ~15!
0-4



RECOGNITION OF AN ORGANISM FROM FRAGMENTS . . . PHYSICAL REVIEW E 66, 031910 ~2002!
FIG. 2. Left panel shows simulation of the measure representation~6 strings! of the whole genome ofM. genitaliumusing the recurrent
IFS model. Right panel shows walk comparison for measure representation~6 strings! of M. genitaliumand its RIFS simulation.

FIG. 3. Histograms of 6 substrings of fragments fromM. genitaliumwith different rates.
031910-5



V. V. ANH, K. S. LAU, AND Z. G. YU PHYSICAL REVIEW E 66, 031910 ~2002!
FIG. 4. Left panel shows simulation of the measure representation~6 strings! of 1/20 fragment ofM. genitaliumusing the recurrent IFS
model. Right panel shows walk comparison for measure representation~6 strings! of 1/20 fragment ofM. genitaliumand its RIFS simulation.
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If Si(x)5cix1di , i 51, . . . ,N, then the following well-
known recursion relations hold for the IFS model:

S 12(
i 51

N

pici
nD gn5(

j 51

n S n

j D gn2 j S (
i 51

N

pici
n2 jdi

j D . ~16!

Thus, settingg051, the momentsgn , n>1, may be com-
puted recursively from a knowledge ofg0 , . . . ,gn21 @38#.

For the RIFS model, we have

gn5(
j 51

N

gn
( j ) , ~17!

where gn
( j ) , j 51, . . . ,N, are given by the solution of the

following system of linear equations:

(
j 51

N

~pji ci
n2d i j !gn

( j )52 (
k50

n21 S n

k D S (
j 51

N

ci
kdi

n2kpji gk
( j )D ,

i 51, . . . ,N,n>1. ~18!

For n50, we setg0
( i )5mi , wheremi are given by the solu-

tion of the linear equations

(
j 51

N

pji mj5mi , i 51,2, . . . ,N, g05(
i 51

N

mi51.

~19!

If we denote byGk the moments obtained directly from
given measure using Eq.~15!, andgk the formal expression
of moments obtained from Eq.~16! for the IFS model or
from Eqs.~17!–~19! for the RIFS model, then through solv
ing the optimal problem

min
ci ,di ,pi or pi j

(
k51

n

~gk2Gk!
2 for some chosenn, ~20!
03191
we can obtain the estimates of the parameters in the IFS
RIFS model.

From the measure representation of a complete genom
is natural to chooseN54 and

S1~x!5x/4, S2~x!5x/411/4,

TABLE I. Values of vector representation (P1 ,P2 ,P3) of frag-
ments from the five organisms.

Organism Sequence P1 P2 P3

1/4 Fragment 0.255114 0.248454 0.23420
1/8 Fragment 0.257610 0.248891 0.23298

A. fulgidus 1/15 Fragment 0.260611 0.245235 0.2298
1/20 Fragment 0.253536 0.247569 0.2335
Whole genome 0.257277 0.248579 0.2333
1/4 Fragment 0.305165 0.160478 0.16548
1/8 Fragment 0.303635 0.160063 0.16695

B. burgdorferi 1/15 Fragment 0.351298 0.188586 0.1354
1/20 Fragment 0.310800 0.163463 0.1622
Whole genome 0.335605 0.173103 0.1431
1/4 Fragment 0.293139 0.226877 0.19790
1/8 Fragment 0.275901 0.220717 0.20618

C. trachomatis 1/15 Fragment 0.299231 0.226269 0.1942
1/20 Fragment 0.293706 0.219299 0.1924
Whole genome 0.284452 0.223418 0.2019
1/4 Fragment 0.253291 0.253147 0.23755
1/8 Fragment 0.250753 0.250494 0.24030

E. coli 1/15 Fragment 0.256441 0.248731 0.2329
1/20 Fragment 0.252115 0.252027 0.2372
Whole genome 0.248986 0.255393 0.2428
1/4 Fragment 0.339263 0.165702 0.14064
1/8 Fragment 0.335415 0.187653 0.15885

M . genitalium 1/15 Fragment 0.337408 0.173610 0.1448
1/20 Fragment 0.336145 0.182237 0.1495
Whole genome 0.335212 0.175269 0.1475
0-6
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S3~x!5x/411/2, S4~x!5x/413/4

in the IFS or RIFS model. Based on the estimated value
the probabilities, we can use the chaos game to genera
histogram approximation of the invariant measure of the
or RIFS, which then can be compared with the given m
sure of the complete genome.

V. APPLICATION TO THE RECOGNITION PROBLEM

The measure representations for a large number of c
plete genomes, as described in Sec. II, were obtained in
et al. @31#. It was found that substrings withk56 seem to
provide a limiting measure that can be used for the clas
cation and recognition of DNA sequences. Hence we will u
6 strings in this paper. We then estimated their IFS and R
models using the moment method described in Sec. IV.
chaos game algorithm was next performed to generate
orbit as in Eqs.~11! or ~12! with Eq. ~13!. From these orbits
simulated approximations of the invariant measures of IFS
RIFS were obtained via the ergodic theorem~14!. In order to
clarify how close the simulated measure is to the origi
measure, we convert a measure to its walk representa
We denote by$t j , j 51,2, . . . ,4k% the density of a measur
and tave its average, then define the walkTj5(k51

j (tk

2tave), j 51,2, . . . ,4k. The two walks of the given measur
and the measure generated by the chaos game of an IF
RIFS are then plotted in the same figure for comparison.
found that RIFS is a better model to simulate complete
nomes. We determine the ‘‘goodness’’ of the measure sim
lated from the RIFS model relative to the original meas
based on the followingrelative standard error, e,

e5
e1

e2
,

where

FIG. 5. Vector representation (P1 ,P2 ,P3) of all fragments from
five organisms.
03191
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e15A 1

46 (
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46

~ t j2 t̂ j !
2,

and

e25A 1

46 (
j 51

46

~ t j2tave!
2,

(t j ) j 51
46

and (t̂ j ) j 51
46

being the densities of the original mea
sure and the RIFS simulated measure, respectively.
goodness of fit is indicated by the resulte,1. For example,
the RIFS simulation of 6-strings measure representation
M. genitalium is shown in the left panel of Fig. 2, and th
walk of its original 6-strings measure representation and
simulated from the corresponding RIFS are shown in
right panel of Fig. 2. For the whole genome,e1
50.000 206 75,e250.000 320 7, ande50.6447,1. It is
seen that the RIFS simulation fits the original measure v
well.

We next pick out five organisms~without any particulara
priori reason! from about 50 organisms whose complete g
nomes are currently available. These areA. fulgidus, B. burg-
dorferi, C. trachomatis, E. coli, and M. genitalium. Frag-
ments of different length rates ranging from 1/20 to 1/4 a
with random starting points along the sequences were t
selected. Here the length rate of a fragment means the le
of this fragment divided by the length of the genome of t
same organism. For example, the measure representatio
different fragments ofM. genitaliumare shown in Fig. 3. The
RIFS model for each of these fragments was next estima
We also show the RIFS simulation of the 6-strings meas
representation of the 1/20 fragment ofM. genitaliumin the
left panel of Fig. 4. The walk of its original 6-strings me
sure representation and that of RIFS simulation are show
the right panel of Fig. 4. For this fragment,e1
50.000 231 69, e250.000 354 75, and e50.6531,1.
Again, the RIFS simulation fits the original measure of th
fragment very well.

It should be noted that columni in the matrixP describes
the activity of similaritySi in each RIFS. To be able to rep
resent each fragment on a three-dimensional plot, we de

P15~p111p211p311p41!/4,

P25~p121p221p321p42!/4,

P35~p131p231p331p43!/4. ~21!

Each fragment is then represented by the vec
(P1 ,P2 ,P3). The values of these vectors are provided
Table I, and the vectors are plotted in Fig. 5. It is seen t
the vectors of the fragments from the same organism clu
together, and this clustering holds for all selected leng
This accuracy is uniform for all five organisms random
selected.

In matching a fragment to organism, theDq curve, which
depicts the generalized dimension of the invariant meas
as described in Sec. III, can also be used. We computed t
0-7
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FIG. 6. The dimension spectra of fragmen
from M. genitalium.
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curves for the above five organisms at a variety of len
sizes, to 1/100th of the original sequence. The results w
reported forM. genitalium in Fig. 6. It is seen that this
method also performs very well. However, it suffers a dra
back that many different organisms seem to have the sam
closely relatedDq curve. In this sense, the method based
the RIFS has higher resolution in distinguishing the g
nomes. If necessary, the entire matrixP may be used, instea
of Eq. ~21!, in this comparison. This would enhance t
matching, but will not be as economical as Eq.~21!. Yu et al.
@39# used the entire matrixP to define the distance betwee
two organisms in higher-dimensional space and then the
lutionary tree of more than 50 organisms was construc
The RIFS model can also be used to simulate the mea
representation of proteins based on the HP model@40#.

VI. CONCLUSION

This paper provides a method for matching fragment
organism taking advantage of the multifractal characteri
o,

re

03191
h
re

-
or

n
-

o-
d.
re

o
ic

of the measure representation of their genomes. It was d
onstrated empirically that the underlying mechanism of t
multifractality can be captured by a recurrent IFS, who
theory is well founded in the fractal geometry literature. F
algorithms for the computation of these RIFS and rela
quantities as well as tools for comparison are available. T
method seems to work reasonably well with low computi
cost. This fast and economical method can be performed
preliminary stage to cluster fragments before a more ex
sive method, such as the random shotgun sequencing me
as mentioned in the Introduction, is decided to be brough
for higher accuracy.
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