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Recognition of an organism from fragments of its complete genome
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This paper considers the problem of matching a fragment to an organism using its complete genome. Our
method is based on the probability measure representation of a genome. We first demonstrate that these
probability measures can be modeled as recurrent iterated function sy&#H#S5 consisting of four contrac-
tive similarities. Our hypothesis is that the multifractal characteristics of the probability measure of a complete
genome, as captured by the RIFS, is preserved in its reasonably long fragments. We compute the RIFS of
fragments of various lengths and random starting points, and compare with that of the original sequence for
recognition using the Euclidean distance. A demonstration on five randomly selected organisms supports the
above hypothesis.
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I. INTRODUCTION and Chen[16]), then the presence of base correlation has
been found even in the coding sequences. On the other hand,
The DNA sequences of complete genomes provide esseuldyrev et al. [12] showed that long-range correlation ap-
tial information for understanding gene functions and evolupears mainly in noncoding DNA using all the DNA se-
tion. A large number of these DNA sequences is currentlyquences available. Based on equal-symbol correlation, Voss
available in public databases, such as Genbank at ftp:[8] showed a power law behavior for the sequences studied,
ncbi.nlm.nih.gov/genbank/genomes/ or KEGG at http://regardless of the proportion of intron contents. These studies
www.genome.ad.jp/kegg/java/org_list.html. A great chal-add to the controversy about the possible presence of corre-
lenge of DNA analysis is to determine the intrinsic patternsiation in the entire DNA or only in the noncoding DNA.
contained in these sequences, which are formed by four basfrom a different angle, fractal analysis has proven useful in

nucleotides, namely, adenina)( cytosine €), guanine §),  revealing complex patterns in natural objects. Berthelsen

and thymine (). et al.[17] considered the global fractal dimensions of human
Some significant results have been obtained for the longbNA sequences treated as pseudorandom walks.

range correlation in DNA sequencgb-16]. Li and Kaneko In the above studies, the authors only considered short or

[1] found that the spectral density of a DNA sequence contong DNA segments. Since the first complete genome of the
taining mostly introns shows fif behavior, which indicates free-living bacteriunMycoplasma genitaliurwas sequenced
the presence of long-range correlation whea ®<1. The in 1995[18], an ever-growing number of complete genomes
correlation properties of coding and noncoding DNA se-has been deposited in the public databases. The availability
quences were first studied by Peegal. [2] in their fractal ~ of complete genomes induces the possibility to establish
landscape or DNA walk model. The DNA walR]| was de-  some global properties of these sequences. Vidiga car-
fined as that the walker steps “up” if a pyrimidine ©r t) ried out a low-frequency analysis of the complete DNA of 13
occurs at position along the DNA chain, while the walker microbial genomes and showed that their fractal behavior
steps “down” if a purine & or g) occurs at position. Peng  does not always prevail, through the entire chain and the
et al. [2] discovered that there exists long-range correlatiorautocorrelation functions have a rich variety of behaviors
in noncoding DNA sequences while the coding sequencescluding the presence of antipersistence. Yu and W20
correspond to a regular random walk. By undertaking a mor@roposed a time series model of coding sequences in com-
detailed analysis, Chatzidimitriou-Dreismann and Larhamplete genomes. For more details on the number, size, and
mar[5] concluded that both coding and noncoding sequencesrdering of genes along the chromosome, one can refer to
exhibit long-range correlation. A subsequent work by PrabhuPart 5 of Lewin[21]. One may ignore the composition of the
and Claverig 6] also substantially corroborates these resultsfour kinds of bases in coding and noncoding segments and
If one considers more details by distinguishiadrom t in only consider the global structure of the complete genomes
pyrimidine anda from g in purine (such as two- or three- or long DNA sequences. Provata and Almirari2] pro-
dimensional DNA walk model§15] and maps given by Yu posed a fractal Cantor pattern of DNA. They mapped coding
segments to filled regions and noncoding segments to empty
regions of a random Cantor set and then calculated the fractal

*Email address: v.anh@qut.edu.au dimension of this set. They found that the coding/noncoding

"Email address: kslau@math.cuhk.edu.hk partition in DNA sequences of lower organisms is homoge-

*Author to whom correspondence should be addressed. Emaileouslike, while in the higher eukaryotes the partition is
address: yuzg@hotmail.com or z.yu@qut.edu.au fractal. This result does not seems to be refined enough to
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distinguish bacteria because the computed fractal dimensiorihe identification of the organisms in a culture commonly
of bacteria[22] are the same. The classification and evolu-relies on their molecular identity markers such as the genes
tion relationship of bacteria is one of the most importantthat code for ribosomal RNA. However, it is usual that most
problems in DNA research. Yu and AfR3] proposed a time fragments lack the marker, “making the task of matching
series model based on the global structure of the completieagment to organism akin to reconstructing a document that
genome and considered three kinds of length sequences. Afias been shreddedM. Leslie, “Tales of the sea,New Sci-
ter calculating the correlation dimensions and Hurst expoentist 27 January 2001 A well-known method to tackle the
nents, it was found that one can get more information fromtask is the random shotgun sequencing method that scans the
this model than that of the fractal Cantor pattern. Some resequences of all fragments looking for overlaps to be able to
sults on the classification and evolution relationship of bacpiece the fragments together. It is obvious that this technique
teria were found[23]. The correlation property of these is extremely time consuming and many crucial fragments
length sequences has been discug@4d The multifractal  may be missing.
analysis for these length sequences was done in[R&}. This paper will provide a different method to approach
Although statistical analysis performed directly on DNA this problem. Our starting point is the probability measure of
sequences has yielded some success, there has been SQR strings and its multifractality. We model this multifrac-
|nd|ca}t|on that this method is not powerful enough to ampln‘yt(,;l"ty using a recurrent iterated function systgsd,35 con-
the difference be‘Wee’? a DN.A sequence and a random S‘§Tsting of four contractive similaritiesto be described in
quence, as W?” as to distinguish DNA sequences, themselv%sec_ IV). This branching number of 4 is a natural conse-
in more detail[26]. One needs more powerful global and quence of the four basic elementa,¢,g.t) of the DNA

visual methods. For this purpose, Habal.[26] proposed a : .
visualization method based on counting and coarse grainin equences. Each of these recurrent iterated function systems
IFS) is specified by a matrix of incidence probabilitiBs

the frequency of appearance of substrings with a give o ) i
length. They called it theportrait of an organism. They —(Pij), L,i=1,....4, with pi;+pip+pistpi=1 for i
found that there exist some fractal patterns in the portraits; 1 - - - »4. It is ourhypothesis that, for reasonably long
which are induced by avoiding and underrepresented Stringgagments, the multifractal characteristic of the measure of a
The fractal dimension of the limit set of portraits was alsoCOmplete genome as captured by the ma#ig preserved in
discussed27,28. There are other graphical methods of se-the fragments. We thus represent each fragment by a vector
quence patterns, such as the chaos game representatidq (p1;+ Poit+ Pait Par), (Pt Poot Paot Pa),  3(Pi3
[29,30. + Pagt Pazt Paz)] in RS . We will see that for fragments of

Yu et al. [31] introduced a representation of a DNA se- |engths longer than 1/20 of the original sequence and with
quence by a probability measure lofstrings derived from  random starting points, these vectors are very close, using
the sequence. This probability measure is, in fact, the histothe Euclidean distance, to the vector of the complete se-
gram of the events formed by all thestrings in a dictionary  quence.
ordering. It was found31] that these probability measures ~ we will demonstrate the technique on five organisms,
display a distinct multifractal behavior characterized by theiramely,A. fulgidus, B. burgdorferi, C. trachomatis, E. coli
generalized Reyi dimensionginstead of a single fractal di- andM. genitalium As remarked by Yiet al. [31], substrings
mension as in the case of a self-similar progessirther-  of lengthk=6 are sufficient to represent DNA sequences.
more, the corresponding, curves(defined in Ref[32]) of  For each organism, we compute the histograms for the 6
these generalized dimensions of all bacteria resemble C|aS$tringS of its Comp|ete genome and four cases of fragments
cal phase transition at a critical point, while the “analogous” of lengths 1/4, 1/8, 1/15, and 1/20 of the complete sequence.
phase transitionsdefined in Ref[32]) of chromosomes of The starting position of each fragment is chosen randomly.
nonbacteria exhibit the shape of double-peaked specific heghe RIFS of the complete genome and each of the fragments

function. These patterns led to a meaningful grouping of arare computed next. The numerical results are reported in Sec.
chaebacteria, eubacteria, and eukaryotes.&trdl.[33] took /. Some conclusions will be drawn in Sec. VI.

a further step in providing a theory to characterize the mul-
tifractality of the probability measures of the complete ge-

nomes. In particular, the resulting parametric models fit ex- || MEASURE REPRESENTATION OF COMPLETE
tremely well theD, curves of the generalized dimensions GENOMES

and the corresponding, curves of the above probability

measures of the complete genomes. We first outline the method of Yet al. [31] in deriving

A conclusion of the work reported by Yet al. [31] and  the measure representation of a DNA sequence. We call any
Anh et al. [33] is that the histogram of thk strings of the  string made up ok letters from the sefg,c,a,t} ak string.
complete genome provides a good representation of the gé&or a givenk there are a total of ¥ different k strings. In
nome and that these probability measures are multifractabrder to count the number of each kindkodtrings in a given
This multifractality is, in most of the cases studied, charac-DNA sequence, Y counters are needed. We divide the inter-
teristic of the DNA sequences, and hence can be used foral [0,1) into 4 disjoint subintervals, and use each subinter-
their classification. val to represent a counter. Les=s;,...S, S

In this paper, we consider the problem of recognition ofe{a,c,qg,t},i=1,... k, be a substring with lengthk, we
an organism based on fragments of their complete genomedefine
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FIG. 1. Histograms of substrings with different lengths.

k
X.
xi(9)=2, =, (1)
where
0 if s=a
1 if S;=C 5
T2 it s=g @
3 if Si:t
and
1
X (8)=X(s) + e 3

We then use the subintervp,(s),x;(s)) to represent the
substrings. Let N(s) be the times of substringappearing in

to be the frequency of substrirg It follows that =, F(s)
=1. We can now view~(s) as a function ok and define a
measurew, on[0,1) by

Mi(X) =Y (x)dx,
where

Yi(X) =4 F(s),  xe[x().X(9)). ()
We then haveu,([0,1))=1 and w, ([ X(S),X,(S))) =F(s).
We call u(x) themeasure representatiaf an organism. As
an example, the measure representatiohl o§enitaliumfor
k=3,...,6 isgiven in Fig. 1. A fractal-like behavior is ap-
parent in the measures.

Remark:The ordering ofa,c,g,t in Eq. (2) follows the
natural dictionary ordering ofk strings in the one-
dimensional space. A different ordering afc,g,t would

change the nature of the correlations of the measure. But in

the complete genome. If the number of bases in the completeur case, a different ordering afc,g,t in Eg. (2) gives the

genome id, we define

F(s)=N(s)/(L—k+1) (4

same multifractal spectruni; curve, which will be defined
in the following sectiop when the absolute value af is
relatively small(see Fig. 2 in Ref[31]). Hence the multi-
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fractal characteristics is independent of the ordering. In th&, , ..., =S, °S; - -°S, (Eo) and
comparison of different organisms using the measure repre-

sentation, once the ordering afc,g,t in Eq. (2) is given, it
is fixed for all organism$31].

IIl. MULTIFRACTAL ANALYSIS

The most common algorithms of multifractal analysis are

the so-calledixed-size box-counting algorithmi86]. In the
one-dimensional case, for a given measuravith support
ECR, we consider thgartition sum

ZJ(q)= (2 [(B)], (6)

B)#0

g e R, where the sum runs over all different nonempty boxes®

B of a given sidee in a grid covering of the suppoH, that
is,

B=[ke,(k+1)€]. (7)
The exponent(q) is defined by
~InZ(q)
T(Q) - lILTI') In € ’ (8)

N}Errl(rz~ oy
ThenE=N;_,E, is theattractor of the IFS. Given a set of
probabilitiesp;>0, =N ,p;=1, we pick anxye E and de-
fine iteratively the sequence
Xn+1=S; (Xn), N=012..., (11)
where the indices, are chosen randomly and independently
from the set{1,2, ... N} with probabilitiesP(o,=i)=p;.
Then every orbi{x,} is dense in the attractdt [37,38. For
n large enough, we can view the orfky,X4, . .. X,} as an
pproximation oft. This iterative process is calledchaos
am

Given a system of contractive maps-{S;,S,, ... ,S\}
on a compact metric spa&’, we associate with these maps
a matrix of probabilitiesP=(p;;) such that>;p;;=1, i
=1,2,... N. Consider a random sequence generated by a
chaos game,

Xn41=S, (Xn), N=012..., (12)

wherex, is any starting point and-, is chosen with a prob-

and the generalized fractal dimensions of the measure a@bility that depends on the previous index_;:

defined as
Dy=7(a)/(q—1) for q#1, (9
and
D= lmZk for q=1 10
FTER . o

where Z; =% ,(g)-om(B)In w(B). The generalized fractal
dimensions are estimated through a linear regression of

! Inz

-1 nZ.(q)
against Ine for q# 1, and similarly through a linear regres-
sion of Z, . against Ire for q=1. D, is calledinformation
dimensiorandD, is calledcorrelation dimensionThe D, of
the positive values of] give relevance to the regions where
the measure is large, i.e., to tkestrings with high probabil-
ity. The D, of the negative values afdeal with the structure
and the properties of the most rarefied regions of the me
sure.

IV. IFS AND RIFS MODELS AND THE MOMENT
METHOD FOR PARAMETER ESTIMATION

a

P(0n1=1)=P, - (13)
The choice of the indices,, as prescribed by Eq13) pre-
sents a fundamental difference between this iterative process
and that defined by Ed11) of the usual chaos game. Then
(E*,S,P) is called arecurrentIFS. The flexibility of RIFS
permits the construction of more general sets and measures
which do not have to exhibit the strict self-similarity of IFS.
This would offer a more suitable framework to model
fractal-like objects and measures in nature.

Let u be the invariant measure on the attradioof an
IFS or RIFS andyg the characteristic function for the Borel
subseBCE, then from the ergodic theorem for IFS or RIFS
[37],

n

1o

wu(B)=Iim Nl

n—oo

Xo(Xi) |- (14)

In other words(B) is the relative visitation frequency &f
during the chaos game. A histogram approximation of the
Invariant measure may then be obtained by counting the
number of visits made to each pixel on the computer screen.
The coefficients in the contractive maps and the probabili-
ties in the IFS or RIFS model are the parameters to be esti-
mated for a given measure which we want to simulate. Vr-

In this paper, we propose to model the measure defined iﬁcay_[38] iqtrodgced a moment method to perform this task.
Sec. Il for a complete genome by a recurrent IFS. As wef w is the invariant measure aittithe attractor of the IFS or
work with measures on compact intervals, the theory of SecdIFS inR, the moments of. are

Il is narrowed down to the one-dimensional cdse., d
=1). Consider a system of contractive mapS
={S,S,, ...,S\}. Let E; be a compact interval oR,

gi:f x'dpu, go:f du=1. (15
E E
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FIG. 2. Left panel shows simulation of the measure represent@istrings of the whole genome df1. genitaliumusing the recurrent
IFS model. Right panel shows walk comparison for measure representatstrings of M. genitaliumand its RIFS simulation.
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FIG. 4. Left panel shows simulation of the measure represent@istrings of 1/20 fragment oM. genitaliumusing the recurrent IFS
model. Right panel shows walk comparison for measure representatitrings of 1/20 fragment oM. genitaliumand its RIFS simulation.

If Si(x)=cix+d;, i=1,...N, then the following well- we can obtain the estimates of the parameters in the IFS or
known recursion relations hold for the IFS model: RIFS model.
N ) \ From the measure representation of a complete genome, it
n o is natural to choos&l=4 and
(1—21 pici”>gn=121 (.>gn_j(i21 pict 'd%)- (16)

Si(X)=x/4, S,(x)=x/4+1/4,
Thus, settinggg=1, the momentg,, n=1, may be com-

puted recursively from a knowledge gf, . . . .91 [38]. TABLE |. Values of vector representatiofP{,P,,P3) of frag-
For the RIES model. we have ments from the five organisms.
N Organism Sequence P P, P3
= @)
Gn 121 G (19 1/4 Fragment 0.255114 0.248454 0.234208

1/8 Fragment 0.257610 0.248891 0.232988

whereg!, j=1,... N, are given by the solution of the A. fulgidus 1/15 Fragment 0.260611 0.245235 0.229882
following system of linear equations: 1/20 Fragment 0.253536 0.247569 0.233501
" ) N Whole genome 0.257277 0.248579 0.233379

. = . 1/4 Fragment 0.305165 0.160478 0.165485

le (pjicl— 0=~ 2, (k)(le crdf kpjig(k’))l 1/8 Fragment  0.303635 0.160063 0.166952
B. burgdorferi  1/15 Fragment 0.351298 0.188586 0.135497

i—1 .. N.n=1. (19) 1/20 Fragment 0.310800 0.163463 0.162279

Whole genome 0.335605 0.173103 0.143191

Forn=0, we setgg)=mi , wherem; are given by the solu- 1/4 Fragment 0.293139 0.226877 0.197907
tion of the linear equations 1/8 Fragment 0.275901 0.220717 0.206184
C. trachomatis 1/15 Fragment 0.299231 0.226269 0.194245

N N 1/20 Fragment 0.293706 0.219299 0.192447

2 pjim=m;, i=12,...N, 9022 m;=1. Whole genome 0.284452 0.223418 0.201998

=1 =1 1/4 Fragment 0.253291 0.253147 0.237551

(19 1/8 Fragment  0.250753 0.250494 0.240300
If we denote byG, the moments obtained directly from a E- ¢oli 1/15 Fragment  0.256441 0.248731 0.232963
given measure using EGL5), andg, the formal expression 1/20 Fragment  0.252115 0.252027 0.237276
of moments obtained from Eq16) for the IFS model or Whole genome 0.248986 0.255393 0.242893
from Eqs.(17)—(19) for the RIFS model, then through solv- 1/4 Fragment  0.339263 0.165702 0.140649
|ng the 0pt|ma| prob|em 1/8 Fragment  0.335415 0.187653 0.158851
M. genitalium 1/15 Fragment 0.337408 0.173610 0.144801
n 1/20 Fragment 0.336145 0.182237 0.149540
. dn;inorp P2 (gk—Gy)? for some chosem, (20) Whole genome 0.335212 0.175269 0.147534

i Qi P ij
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(tj)j‘il and (fj)fil being the densities of the original mea-
sure and the RIFS simulated measure, respectively. The
goodness of fit is indicated by the resatt 1. For example,
the RIFS simulation of 6-strings measure representation of
M. genitaliumis shown in the left panel of Fig. 2, and the
_ walk of its original 6-strings measure representation and that
A 016 0.2 QA simulated from the corresponding RIFS are shown in the
2 right panel of Fig. 2. For the whole genomeg;
=0.000206 75,e,=0.0003207, anck=0.644K1. It is
seen that the RIFS simulation fits the original measure very
well.

We next pick out five organismsvithout any particulaa
priori reason from about 50 organisms whose complete ge-

_ ) nomes are currently available. These Ardulgidus, B. burg-
in the IFS or RIFS model. Based on the estimated values oforferi, C. trachomatis, E. caliand M. genitalium Frag-

the probabilities, we can use the chaos game to generatengents of different length rates ranging from 1/20 to 1/4 and
histogram approximation of the invariant measure of the IFSyjth random starting points along the sequences were then
or RIFS, which then can be compared with the given mease|ected. Here the length rate of a fragment means the length

FIG. 5. Vector representationPg,P,,P5) of all fragments from
five organisms.

S;(X)=x/4+1/2, S,(x)=x/4+3/4

sure of the complete genome. of this fragment divided by the length of the genome of the
same organism. For example, the measure representations of
V. APPLICATION TO THE RECOGNITION PROBLEM different fragments oM. genitaliumare shown in Fig. 3. The

RIFS model for each of these fragments was next estimated.
The measure representations for a large number of comp/e also show the RIFS simulation of the 6-strings measure
plete genomes, as described in Sec. Il, were obtained in Yiepresentation of the 1/20 fragment Mf genitaliumin the
etal. [31]. It was found that substrings witk=6 seem to |eft panel of Fig. 4. The walk of its original 6-strings mea-

provide a limiting measure that can be used for the classifisure representation and that of RIFS simulation are shown in
cation and recognition of DNA sequences. Hence we will usghe right panel of Fig. 4. For this fragmente;

6 strings in this paper. We then estimated their IFS and RIFS-0.000 23169, e,=0.00035475, and e=0.653k1.
models using the moment method described in Sec. IV. Thagain, the RIFS simulation fits the original measure of this
chaos game algorithm was next performed to generate afpagment very well.

orbit as in Egs(11) or (12) with Eq. (13). From these orbits, It should be noted that colunirin the matrixP describes
simulated approximations of the invariant measures of IFS ofhe activity of similarityS; in each RIFS. To be able to rep-

RIFS were obtained via the ergodic theor€). In order to  resent each fragment on a three-dimensional plot, we define
clarify how close the simulated measure is to the original

measure, we convert a measure to its walk representation: P1=(p11t P21t P31t Pan)/4,

We denote byt;,j=1,2,... 4} the density of a measure

and t,,e its average, then define the walkj=3}_,(t, P2= (P12t P22t P32t Pa)/4,

—tae): j=1,2,...,4 The two walks of the given measure

and the measure generated by the chaos game of an IFS or P3= (P13t P2at Past Paz)/4. (21)

RIFS are then plotted in the same figure for comparison. We )
found that RIFS is a better model to simulate complete geEach fragment is then represented Dby the vector
nomes. We determine the “goodness” of the measure simu(P1,P2,P3). The values of these vectors are provided in
lated from the RIFS model relative to the original measure!@P!€ |, and the vectors are plotted in Fig. 5. It is seen that
based on the followingelative standard errore, the vectors of thg fragments from the same organism cluster
together, and this clustering holds for all selected lengths.

This accuracy is uniform for all five organisms randomly

e= ﬁ, selected.
€ In matching a fragment to organism, tBg curve, which
depicts the generalized dimension of the invariant measure
where as described in Sec. lll, can also be used. We computed these
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curves for the above five organisms at a variety of lengthof the measure representation of their genomes. It was dem-
sizes, to 1/100th of the original sequence. The results werenstrated empirically that the underlying mechanism of this
reported forM. genitaliumin Fig. 6. It is seen that this multifractality can be captured by a recurrent IFS, whose
method also performs very well. However, it suffers a draw-theory is well founded in the fractal geometry literature. Fast
back that many different organisms seem to have the same afgorithms for the computation of these RIFS and related
closely related curve. In this sense, the method based omquantities as well as tools for comparison are available. The
the RIFS has higher resolution in distinguishing the ge-method seems to work reasonably well with low computing
nomes. If necessary, the entire matfixnay be used, instead cost. This fast and economical method can be performed at a
of Eg. (21), in this comparison. This would enhance the preliminary stage to cluster fragments before a more exten-
matching, but will not be as economical as E2fl). Yuet al. ~ sive method, such as the random shotgun sequencing method
[39] used the entire matri® to define the distance between as mentioned in the Introduction, is decided to be brought in
two organisms in higher-dimensional space and then the evder higher accuracy.

lutionary tree of more than 50 organisms was constructed.

The RIFS model can also be used to simulate the measure ACKNOWLEDGMENTS
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