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THE PRESSURE FUNCTION FOR PRODUCTS
OF NON-NEGATIVE MATRICES

De-Jun Feng and Ka-Sing Lau

Abstract. Let (ΣA, σ) be a subshift of finite type and let M(x) be a continuous
function on ΣA taking values in the set of non-negative matrices. We extend
the classical scalar pressure function to this new setting and prove the existence
of the Gibbs measure and the differentiability of the pressure function. We are
especially interested on the case where M(x) takes finite values M1, · · · , Mm.

The pressure function reduces to P (q) := limn→∞ 1
n

log
∑

J∈ΣA,n
‖MJ‖q . The

expression is important when we consider the multifractal formalism for certain
iterated function systems with overlaps.

1. Introduction

Let σ be the shift map on Σ = {1, 2, · · · , m}N, m ≥ 2. As usual Σ is endowed
with the metric d(x, y) = m−n where x = (xk), y = (yk) and n is the smallest
of the k such that xk �= yk. Given an m × m matrix A with entries 0 or 1, we
consider the subshift of finite type (ΣA, σ) (see [B]). We shall always assume
that A is primitive.

Suppose M is a continuous function on ΣA taking values in the set of all
non-negative d × d matrices. For q ∈ R, we define the pressure function P (q) of
M by

P (q) = lim
n→∞

1
n

log
∑

J∈ΣA,n

sup
x∈[J]

‖M(x)M(σx) . . . M(σn−1x)‖q,(1.1)

where ΣA,n denotes the set of all admissible indices of length n over {1, . . . , m};
for J = j1 · · · jn ∈ ΣA,n, [J ] denotes the cylinder set {x = (xi) ∈ ΣA : xi =
ji, 1 ≤ i ≤ n}, ‖ · ‖ denotes the matrix norm defined by ‖B‖ := 1tB1, 1t =
(1, 1, . . . , 1). By using a subadditive argument, it is easy to show that for q > 0,
the limit in the above definition exists. With some additional conditions on the
matrices (see Theorem 1.1), the limit exists for q ∈ R.

The pressure function of the scalar case (i.e., M(x) = eφ(x) where φ(x) is
a real valued function called the potential of the subshift) has been studied
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in great detail in statistical mechanics and dynamical systems in conjunction
with the Gibbs measure, the entropy and the variational principle (c.f., e.g.,
[B],[P],[R]); it has also been used to study the multifractal structure of the
self-similar (or self-conformal) measures generated by iterated function systems
(IFS) with no overlap (the open set condition) ([MU],[FL]). By identifying with
the symbolic space, such self-similar measure µ is actually a Gibbs measure
and the pressure function is directly related to the scaling spectrum of µ [FL,
Theorem 3.3]. In all the above cases, the pressure functions under consideration
are differentiable (actually real analytic). This property is essential to investigate
the phase transition in thermodynamics and for the multifractal formalism in
the dimension theory of fractals.

In the recent investigation of the self-similar measures generated by iterated
function systems with overlaps, it is seen that in many interesting cases, such
measure µ can be put into a vector form with a new non-overlapping IFS and
with matrix weights ([LN1,2],[LNR],[Fe1],[FeO]). In this way, the validity of the
multifractal formalism depends on the differentiability of the pressure function
P (q) in (1.1) (more precisely (1.4) in the following) [LN2]. In another direction,
the expression of the matrix product in (1.1) also appears in the study of the
scaling functions in wavelet theory (the matrices are allowed to have negative
entries) in the form of Lq-joint spectral radius and the Lq-Lipschitz exponent
([DL1, 2], [LM]); the problem of differentiability of the P (q) also appears there.
So far there is no general theorem to guarantee this fact other than some special
cases (e.g., [LN1],[FLN],[Fe1],[FeO],[DL2]).

The main purpose of this paper is to consider the pressure functions and
the Gibbs measures for the products of matrices. We first study the case that
the matrices M(x), x ∈ ΣA are positive, we prove the following fundamental
theorems.

Theorem 1.1. Suppose that M is a Hölder continuous function on ΣA taking
values in the set of positive d × d matrices. Then for any q ∈ R, there is a
unique σ-invariant, ergodic probability measure µq on ΣA of which one can find
constants C1 > 0, C2 > 0 such that

C1 ≤ µq([J ])
exp (−nP (q)) · ‖M(x)M(σx) . . . M(σn−1x)‖q

≤ C2(1.2)

for any n > 0, J ∈ ΣA,n and x ∈ [J ].

The above measure µq is called the Gibbs measure associated with M and
q. We remark that the theorem generalizes the classical existence result of the
Gibbs measure for a real-valued M(x) (see [B, §1.4]). The positivity of the
matrices is used to yield the follow simple estimate (Lemma 2.1)

‖M(x) · · ·M(σn+�−1x)‖ ≈ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+�−1x)‖.
(1.3)
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By using this we can apply a technique of Brown, Michon and Peyrière [BMP]
and Carleson [C] to construct a certain ergodic measure which is the Gibbs
measure µq. The µq has the following quasi-Bernoulli property (Heurteaux [H]):
there exists C > 0 such that for any n, k ∈ N with I ∈ ΣA,n, J ∈ ΣA,k and
IJ ∈ ΣA,n+k

C−1µq([I])µq([J ]) ≤ µq([IJ ]) ≤ Cµq([I])µq([J ])(1.4)

This together with a result of Heurteaux [H] imply:

Theorem 1.2. Under the condition of Theorem 1.1, P (q) is differentiable for
q �= 0.

As an application, we let

E(α) :=
{
x ∈ ΣA : lim

n→∞
log ‖M(x)M(σx) · · ·M(σn−1(x)‖

n
= α

}
.

We prove the following dimension formula.

Theorem 1.3. Under the same assumption of Theorem 1.1, we have for any
α = P ′(q), q �= 0,

dimH E(α) =
1

log m
(−αq + P (q))

where dimH denotes the Hausdorff dimension.

The above theorems depend very much on the positivity of the matrix-valued
M(x). In order to extend them to non-negative matrix-valued functions, we
have to impose more conditions on M(x):
(H1) M(x) = Mi if x ∈ [i], i = 1, · · · , m;
(H2) M is irreducible in the following sense: there exists r > 0 such that

for any i, j ∈ {1, 2, . . . , m},
r∑

k=1

∑
K∈ΣA,k;i,j

MK > 0(1.5)

where ΣA,k;i,j denotes the set of all K ∈ ΣA,k such that iKj ∈ ΣA,k+2.
We see that under the assumption (H1), the pressure function in (1.1) can be

re-written as

P (q) = lim
n→∞

1
n

log
∑

J∈ΣA,n

‖MJ‖q.(1.6)

where MJ = Mji · · ·Mjn . If ΣA = Σ is the symbolic space with a full shift, then
(H2) is equivalent to

∑r
k=1(M1 + · · · + Mm)k > 0.

In this new setting, we use (H2) to adjust (1.3) and the required lemmas,
the Gibbs measure µq is shown to exist for q > 0. This time µq only satisfies
µq([IJ ]) ≤ Cµq([I])µq([J ]) instead of (1.4); nevertheless we can still prove the
differentiability of P (q), q > 0 as in Theorem 1.2. Theorem 1.3 can be adjusted
likewise (see Theorem 3.3 and Theorem 3.4). As an application, the first author
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proves the smoothness of the Lq-spectrum (q > 0) and the multifractal formal-
ism for a class of self-similar measures with overlaps (including the Bernoulli
convolutions associated with Pisot numbers) in a forthcoming paper [Fe2].

For the organization of the paper, we prove the above results for the positive
matrix-valued functions in Section 2. In Section 3, we modify the proofs for the
non-negative matrix-valued functions with (H1) and (H2). In Section 4, we give
an illustration of reducing an IFS with overlap to a vector-valued IFS with no
overlap, and the pressure function in (1.6) arises. We also give some remark on
the theorems and raise a few unsettled problems.

2. Positive Matrices

In this section we assume that M is a Hölder continuous function on ΣA

taking values in the set of all positive d × d matrices.
For any two families of positive numbers {ai}i∈I , {bi}i∈I , we write, for

brevity, ai ≈ bi to mean the existence of a constant C > 0 such that C−1ai ≤
bi ≤ Cai for all i ∈ I; ai� bi to mean the existence of a constant C > 0 such
that ai ≤ Cbi for all i ∈ I and ai � bi means bi � ai.

We start with a simple lemma.

Lemma 2.1. For any x ∈ ΣA, n,  ∈ N,

‖M(x) · · ·M(σn+�−1x)‖ ≈ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+�−1x)‖
(the involved constant in ≈ is independent of n,  and x).

Proof. It is clear that

‖M(x) · · ·M(σn+�−1x)‖ ≤ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+�−1x)‖.
To prove the reverse inequality, we observe that M is positive and continuous,
there is a constant C > 0 such that

mini,j Mi,j(x)
maxi,j Mi,j(x)

≥ C ∀ x ∈ ΣA.

This implies that M(x) ≥ C
d EM(x) (A ≥ B means that Ai,j ≥ Bi,j for each

index (i, j)) where E = (Ei,j)1≤i,j≤d is the matrix whose entries are all equal
to 1. Let 1 be the d-dimensional column vector each coordinate of which is 1.
Then

‖M(x) · · ·M(σn+�−1x)‖ ≥ ‖M(x) · · ·M(σn−1x)
C

d
EM(σnx) · · ·M(σn+�−1x)‖

=
C

d
‖M(x) · · ·M(σn−1x)1t1M(σnx) · · ·M(σn+�−1x)‖

=
C

d
‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+�−1x)‖.
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We define

sn(I, q) = sup
x∈[I]

‖M(x)M(σx) . . . M(σn−1x)‖q ∀I ∈ ΣA,n

and

sn(q) =
∑

I∈ΣA,n

sn(I, q).(2.1)

Lemma 2.2. For a fixed q ∈ R,

sn(I, q) ≈ ‖M(x)M(σx) . . . M(σn−1x)‖q ∀ I ∈ ΣA,n, x ∈ [I].

Proof. For any n ∈ N, define

ηn = sup
{

Mi,j(x)
Mi,j(y)

: I ∈ ΣA,n, x, y ∈ [I], 1 ≤ i, j ≤ d

}
.(2.2)

Since each Mi,j is positive and Hölder continuous, we have | log ηn| ≤ Cm−αn

for some C > 0 and 0 < α < 1. It follows easily that η :=
∏∞

n=1 ηn < ∞ and
hence for x ∈ [I],

‖M(x) . . . M(σn−1x)‖q ≤ sn(I, q) ≤ η|q|‖M(x) . . . M(σn−1x)‖q.

We have assumed that A is primitive, there is an integer p > 0 such that
Ap > 0. This implies that for any I ∈ ΣA,n, J ∈ ΣA,�, there exists K ∈ ΣA,p

such that IKJ ∈ ΣA,n+�+p.

Lemma 2.3. Let p be such that Ap > 0. Then for a fixed q ∈ R,
(i) s�(q) ≈ s�−p(q) for all  > p;
(ii) For I ∈ ΣA,n,  > p,

∑
J sn+�(IJ, q) ≈ ∑

J sn+�(JI, q) ≈ sn(I, q)s�(q)
where the first (second) sum is taken over all J ∈ ΣA,� such that IJ ∈ ΣA,n+�

(JI ∈ ΣA,n+� respectively );
(iii)

∑
K: IKJ∈ΣA,i

si(IKJ, q) ≈ sn(I, q)s�(J, q)si−n−�(q) for all I ∈ ΣA,n,

J ∈ ΣA,�, i > n +  + 2p.

Proof. For any I ∈ ΣA,�, write I = KJ where J ∈ ΣA,�−p. By Lemmas 2.1 and
2.2, we have (note that p is fixed)

s�(I, q) ≈ s�−p(J, q).

Since Ap > 0, for J ∈ ΣA,�−p, we can find K ∈ ΣA,p such that I = KJ ∈ ΣA,�.
Hence when we take the sum of I ∈ ΣA,� on the left side of the expression, it is
≈ to the right side summing over all J ∈ ΣA,�−p. This implies (i).

To prove (ii), we fix I ∈ ΣA,n and take J ∈ ΣA,� such that IJ ∈ ΣA,n+�. By
Lemmas 2.2 and 2.1, we have

sn+�(IJ, q) ≈ sn(I, q)s�(J, q).
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Thus ∑
J

sn+�(IJ, q) � sn(I, q)s�(q).

For the reverse inequality we note for any J ′ ∈ ΣA,�−p, there is K ∈ ΣA,p such
that IKJ ′ ∈ ΣA,n+� and

sn+�(IKJ ′) ≈ sn(I, q)sp(K, q)s�−p(J ′, q) ≈ sn(I, q)s�−p(J ′, q).

Therefore summing over the above J ′, we have∑
IJ∈ΣA,n+�

sn+�(IJ, q) �
∑
J′

sn+�(IKJ ′, q) ≈ sn(I, q)s�−p(q) ≈ sn(I, q)s�(q)

(we make used of Ap > 0 as in (i)). This proves one of the ≈ in (ii). The
remaining part follows from the same argument.

To prove (iii), we first observe that∑
K: IKJ∈ΣA,i

si(IKJ, q) ≈
∑

K: IKJ∈ΣA,i

sn(I, q)si−n−�(K, q)s�(J, q)

� sn(I, q)s�(J, q)si−n−�(q)

On the other hand, for any K1 ∈ ΣA,i−n−�−2p, there exists K2, K3 ∈ ΣA,p such
that IK2K1K3J ∈ ΣA,i. Therefore∑

K: IKJ∈ΣA,i

si(IKJ, q) � sn(I, q)s�(J, q)
∑

K1∈ΣA,i−n−�−2p

si−n−�−2p(K1, q)

≈ sn(I, q)s�(J, q)si−n−�−2p(q)
≈ sn(I, q)s�(J, q)si−n−�(q).

Lemma 2.4. For a fixed q ∈ R,
(i) s�+n(q) ≈ s�(q)sn(q).
(ii) sn(q) ≈ exp (nP (q)) where P (q) is the pressure function defined in (1.1).

Proof. From Lemma 2.3 (ii), there exist C, C ′ > 0 such that

C ′s�(q)sn(q) ≤ s�+n(q) ≤ Cs�(q)sn(q),

which proves (i). To prove (ii), we can write Cs�+n(q) ≤ (Cs�(q)) (Csn(q)).
Hence the subadditivity property implies

P (q) = lim
n→∞

log (Csn(q))
n

= inf
n

log (Csn(q))
n

,

so that C−1 exp (nP (q)) ≤ sn(q). The reverse inequality follows from a similar
argument.

For each integer n > 0, let Bn be the σ-algebra generated by the cylinders
[I], I ∈ ΣA,n. We define a sequence of probability measures {νn,q} on Bn by

νn,q([I]) =
sn(I, q)
sn(q)

∀ I ∈ ΣA,n .(2.3)
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Then there is a subsequence {νnk,q}k≥1 converges in the weak-star topology to
a probability measure νq. The following assertion shows that νq has the “Gibbs
property”.

Lemma 2.5. For a fixed q ∈ R, νq([I]) ≈ sn(I, q) exp (−nP (q)) for all n >
0, I ∈ ΣA,n.

Proof. Let p be such that Ap > 0. For any I ∈ ΣA,n and  > n + p, we have

ν�,q([I]) =
∑

J: IJ∈ΣA,�

ν�,q([IJ ]) =
∑

J: IJ∈ΣA,�

s�(IJ, q)
s�(q)

≈ sn(I, q)
s�−n(q)
s�(q)

(by Lemma 2.3 (ii))

≈ sn(I, q) exp (−nP (q)). (by Lemma 2.4).

Letting  = nk ↑ ∞, we obtain the desired result.

Proof of Theorem 1.1. Fix q ∈ R. Let µq be a limit point of the subsequence of{
1
n (νq + νq ◦ σ−1 + . . . + νq ◦ σ−(n−1))

}
in the weak-star topology. Then µq is a

σ-invariant measure on ΣA. We have for each I ∈ ΣA,n and  > p,

νq ◦ σ−�([I]) =
∑

J: JI∈ΣA,n+�

νq([JI])

≈
∑

J: JI∈ΣA,n+�

sn+�(JI, q) exp (−(n +  )P (q)) (by Lemma 2.5)

≈ s�(q)sn(I, q) exp (−( + n)P (q)) (by Lemma 2.3 (ii))
≈ sn(I, q) exp (−nP (q)) (by Lemma 2.4).(2.4)

This proves that µq is a Gibbs measure. In what follows we prove that µq is
ergodic. First we show that there is a constant C > 0 such that for each I ∈ Σn,
J ∈ Σ�,

lim
k→∞

1
k

k−1∑
i=0

µq

(
[I] ∩ σ−i([J ])

)
≥ Cµq([I])µq([J ]).(2.5)

Since µq is supported on ΣA, it suffices to prove (2.5) for I ∈ ΣA,n and J ∈ ΣA,�.
Note that when i > n + 2p,

µq

(
[I] ∩ σ−i([J ])

)

=
∑

K: IKJ∈ΣA,i+�

µq([IKJ ])

�
∑

K: IKJ∈ΣA,i+�

si+�(IKJ, q) exp (−(i +  )P (q))

≈ sn(I, q)s�(J, q)si−n(q) exp (−(i +  )P (q)) (by Lemma 2.3 (iii))
≈ sn(I, q)s�(J, q) exp (−(n +  )P (q))
≈ µq([I])µq([J ])
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from which (2.5) follows. Since the collection {[I] : I ∈ Σn, n ∈ N} is a semi-
algebra that generates the Borel σ-algebra on Σ, a standard argument (e.g., see
the proof of [W, Theorem 1.17]) shows that for any Borel sets A, B ⊂ Σ,

lim
k→∞

1
k

k−1∑
i=0

µq

(
A ∩ σ−i(B)

)
≥ Cµq(A)µq(B).

This implies that for any Borel sets A, B ⊂ Σ with µq(A) > 0, µq(B) > 0, there
exists n > 0 with µq(A ∩ σ−n(B)) > 0. By [W, Theorem 1.5], µq is ergodic.

For the uniqueness we recall that any two distinct ergodic measures must be
singular to each other; but the Gibbs property (1.2) implies that any two µq

must be absolutely continuous to each other. Hence µq must be unique.

Corollary 2.6. Let µq be the Gibbs measure in Theorem 1.1. There exists C >
0 such that for any I ∈ ΣA,n, J ∈ ΣA,� with IJ ∈ ΣA,n+�,

C−1µq([IJ ]) ≤ µq([I])µq([J ]) ≤ Cµq([I])µq([J ]).

Proof. We have seen from the proof of Lemma 2.3 that for the above I, J ,
sn+�(IJ, q) ≈ sn(I, q)s�(J, q) and from Lemma 2.4, s�+n(q) ≈ sn(q)s�(q). By
the definition of νn,q, we have

νn,q([IJ ]) ≈ νn,q([I])νn,q([J ])

which implies that the Gibbs measure µq has the same property.

The above property is called quasi-Bernoulli property by Heurteaux [H] (we
remark that Heurteaux only introduced and studied it for measures in the full
shift space Σ). To prove Theorem 1.2, we need a result in [H]. Let η be a
probability measure on Σ. For q ∈ R, let τη(q) be the Lq-spectrum of η, i.e.,

τη(q) = lim inf
n→∞

log
∑

I η([I])q

log m−n
,

where the summation is taken over all I ∈ Σn with η([I]) �= 0.

Proposition 2.7. ([H, Theorem 2.1]) Let η be a probability measure on Σ. As-
sume that there exists a constant C > 0 such that

η([IJ ]) ≤ Cη([I])η([J ]) ∀ I ∈ Σn, J ∈ Σ� .(2.6)

Then τ ′
η(1) exists if η is a Young measure (i.e., lim

n→∞
log η

(
In(x)

)
log m−n

= constant

for η almost all x = (ji) ∈ Σ, here In(x) = [j1 . . . jn]). This is the case when η
is quasi-Bernoulli.

Proof of Theorem 1.2. For each q, let µq be the corresponding Gibbs measure
in Theorem 1.1. We can view µq as a measure on Σ. For t ∈ R, let τµq

(t) be the
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Lt-spectrum of µq. Since µq has the Gibbs property, it is easy to show by the
definition of Lt-spectrum that

τµq (t) =
tP (q) − P (qt)

log m
.(2.7)

Note that µq satisfies the condition (2.6). Since µq is ergodic on Σ, it is a Young

measure by the Shannon-McMillan-Brieman theorem (i.e., lim
n→∞

− log µq

(
In(x)

)
n

equals the entropy of µq (with respect to σ) for µq-almost all x = (ji) ∈ Σ and
In(x) = [j1 . . . jn]). Hence by Proposition 2.7, τµq (t) is differentiable at t = 1.
This implies that P (q) is differential at any fixed q �= 0, and

P ′(q) =
P (q) − log m · τ ′

µq
(1)

q
.

Proof of Theorem 1.3. Let α = τ ′(q) with q �= 0. Let µq be the corresponding
Gibbs measures in Theorem 1.1, then (2.7) implies that

τµ1(q) =
qP (1) − P (q)

log m

and

E(α) =
{

x ∈ Σ : lim
n→∞

log µ1([x1 · · ·xn])
log m−n

=
P (1) − α

log m

}

By [BMP, Theorem 1] or [LN2, Theorem 4.1], we have

dimH E(α) ≤ (P (1) − α

log m

)
q − τµ1(q) =

1
log m

(−αq + P (q)) ∀ q ∈ R.(2.8)

For the reverse inequality, we see from the proof of Theorem 1.2 that τ ′
µq

(1)
exists and

τ ′
µq

(1) =
−qP ′(q) + P (q)

log m
.

By [N], we have for µq almost all I = (i1 . . . in . . . ) ∈ Σ,

lim
n→∞

log µq([i1, . . . , in])
log m−n

= τ ′
µq

(1) =
−qP ′(q) + P (q)

log m
.

This implies that

lim
n→∞

log ‖M(x)M(σx) · · ·M(σn−1x)‖
n

= P ′(q) = α µq − a.a. x ∈ Σ.

Therefore we have

dimH E(α) ≥ dimH µq =
−qα + P (q)

log m
.
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3. Nonnegative matrices

In this section, we always assume that M is a function on ΣA taking values
in the set of all d× d non-negative matrices and satisfies (H1) and (H2) defined
in Section 1. Let q > 0 be fixed. Then sn(I, q) and sn(q) in (2.1) are reduced to

sn(I, q) = ‖MI‖q ∀ I ∈ ΣA,n and sn(q) =
∑

I∈ΣA,n

sn(I, q).

For convenience, we let

b = min
s,t∈{1,2,...m}

min
1≤i,j≤d


 r∑

k=1

∑
K∈ΣA,k;s,t

MK




i,j

.(3.1)

Then b > 0 by (H2).
We will reformulate the three theorems in the previous section. The proofs

are almost the same and for simplicity, we only point out the differences. Here
Lemmas 2.1, 2.2 do not hold anymore; on the other hand we can use (H2) to
replace these lemmas to obtain an analog of Lemma 2.3:

Lemma 3.1. For a fixed q > 0,
(i) s�+1(q) ≈ s�(q).
(ii) For I ∈ ΣA,n,

∑
J sn+�(IJ, q) ≈ ∑

J sn+�(JI, q) ≈ sn(I, q)s�(q) where the
first (second) sum is taken over all J ∈ ΣA,� such that IJ ∈ ΣA,n+�

( JI ∈ ΣA,n+� respectively).
(iii)

∑2r
k=1

∑
K: IKJ∈ΣA,i+k

si+k(IKJ, q) ≈ sn(I, q)s�(J, q)si−n−�(q) for all I ∈
ΣA,n, J ∈ ΣA,�, i > n +  .

Proof. For any I ∈ ΣA,�+1, write I = iJ with J ∈ ΣA,�. Using ‖MI‖ ≤
‖Mi‖‖MJ‖, we have for q > 0,

s�+1(q) ≤ m
(

sup
i∈{1,2,... ,m}

‖Mi‖q
)
s�(q).

That is, s�+1(q) � s�(q). For the reverse inequality, since for any J ∈ ΣA,�,
r∑

k=1

∑
K∈ΣA,k: KJ∈ΣA,�+k

‖MKJ‖ =
∥∥( r∑

k=1

∑
K∈ΣA,k: KJ∈ΣA,�+k

MK

)
MJ

∥∥ ≥ b‖MJ‖,

it follows that
r∑

k=1

∑
K∈ΣA,k: KJ∈ΣA,�+k

‖MKJ‖q ≥ ( b∑r
k=1 mk

)q‖MJ‖q.

This combines with s�+1(q) � s�(q) imply that

s�+1(q) �
r∑

k=1

s�+k(q) ≥ s�(q)

and completes the proof of (i).
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To prove (ii), it follows from the inequality ‖MIJ‖ ≤ ‖MI‖‖MJ‖ that∑
J∈ΣA,�: IJ∈ΣA,n+�

sn+�(IJ, q) � sn(I, q)s�(q). For the reverse inequality, we use
(H2) as above to conclude that for any J ∈ ΣA,� ,

r∑
k=1

∑
K∈ΣA,k: IKJ∈ΣA,n+�+k

‖MIKJ‖ � ‖MI‖‖MJ‖.

Hence
∑r

k=1

∑
K∈ΣA,k: IKJ∈ΣA,n+�+k

‖MIKJ‖q � ‖MI‖q‖MJ‖q and therefore,
summing over the J ∈ ΣA,�,

r∑
k=1

∑
L∈ΣA,�+k: IL∈ΣA,n+�+k

sn+�+k(IL, q) � sn(I, q)s�(q).

Since ∑
J∈ΣA,�: IJ∈ΣA,n+�

sn+�(IJ, q) �
∑

J∈ΣA,�+1: IJ∈ΣA,n+�+1

sn+�+1(IJ, q),

we have
∑

J∈ΣA,�: IJ∈ΣA,n+�

sn+�(IJ, q) �
r∑

k=1

∑
J∈ΣA,�+k: IJ∈ΣA,n+�+k

sn+�+k(IJ, q) � sn(I, q)s�(q).

This completes the proof of an ≈ in (ii); the other ≈ follows from an identical
argument.

To prove (iii), we have,
2r∑

k=1

∑
K: IKJ∈ΣA,i+k

si+k(IKJ, q) ≤ sn(I, q)s�(J, q)
2r∑

k=1

si+k−n−�(q)

≈ sn(q)s�(J, q)si−n−�(q) (by (i)).

On the other hand, for any W ∈ ΣA,i−n−�, by (H2), there exist 1 ≤ k1 ≤ r,
K1 ∈ ΣA,k1 such that IK1W ∈ ΣA,i−�+k1 and

‖IK1W‖ ≥ b‖I‖‖W‖∑r
k=1 mk

,

where b is defined by (3.1). By using (H2) again, there exist 1 ≤ k2 ≤ r,
K2 ∈ ΣA,k2 such that IK1WK2J ∈ ΣA,i+k1+k2 and

‖IK1WK2J‖ ≥ b‖IK1W‖‖J‖∑r
k=1 mk

≥ b2‖I‖‖W‖‖J‖
(
∑r

k=1 mk)2
.

Therefore we have
2r∑

k=1

∑
K: IKJ∈ΣA,i+k

si+k(IKJ, q) � sn(I, q)s�(J, q)si−n−�(q)

and (iii) follows.

We now state the corresponding theorems as in Section 1.
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Theorem 3.2. Suppose M is a function on ΣA taking values in the set of all
d × d non-negative matrices and satisfies (H1) and (H2). Then for any q > 0,
there is a unique Gibbs measure µq on ΣA as in Theorem 1.1.

The proof is almost identical to that of Theorem 1.1, using Lemma 3.1.
The only adjustment is to replace

µq

(
[I] ∩ σ−i([J ])

) ≈ µq(I)µq(J), i > n + 2p.

by
2r∑

i=1

µq

(
[I] ∩ σ−i([J ])

) ≈ µq(I)µq(J) ∀ i > n.

We use the same proof as in Section 2 for the next two theorems.

Theorem 3.3. Under the same conditions of Theorem 3.2, P (q) is differen-
tiable for any q > 0.

Theorem 3.4. Under the same conditions of Theorem 3.2, we have for any
α = P ′(q), q > 0,

dimH E(α) =
1

log m
(−αq + P (q))

where E(α) =
{
J = (ji) ∈ ΣA : limn→∞ log ‖Mj1 · · ·Mjn‖/n = α

}
.

To relate Theorem 3.4 to the classical random product of matrices, we let {Yn}
be the i.i.d. random variables that take values M1, . . . , Mm , invertible matrices
and with uniform distribution, then limn→∞ 1

n log ‖Yn . . . Y1‖ = λ a.s. and λ is
called the upper Lyapunov exponent ([FK], [BL, Chapter 1]). In comparison
with Theorem 3.4, we let ΣA = Σ be the space of full shift (i.e., all the entries of
A are 1), then P (0) = log m. The limit of the random variables corresponds to
the case for q = 0, λ = P ′(0) and dimH E(λ) = P (0)/ log m = 1 (the existence of
the derivative follows from some additional assumptions on the Mj ([BL, p.119]).

We remark that if ΣA = Σ, then condition (H2) is reduced to a more simple
form:

∑r
k=1 Hk > 0 where H = M1 + · · · + Mm. The condition is essential for

the theorems in Section 3. Indeed we have:

Example 3.5. Let M1 =
(

2 0
0 1

)
and M2 =

(
2 0
0 3

)
. Then H = M1 +M2

is reducible. Since MJ =
(

2n 0
0 3k

)
where |J | = n and k is the number of 2’s

appeared in J .
∑

|J|=n ‖MJ‖q =
∑n

k=0

(
n
k

)
(2n + 3k)q. Note that

n∑
k=0

(
n

k

)
(2n+3k)q ≥ max

{ n∑
k=0

(
n

k

)
2nq,

n∑
k=0

(
n

k

)
3kq

}
= max{2n(q+1), (1+3q)n}

and
n∑

k=0

(
n

k

)
(2n + 3k)q ≤

n∑
k=0

(
n

k

)
2q(2nq + 3kq) = 2q

(
2n(q+1) + (1 + 3q)n

)
.
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We have P (q) = max{(q + 1) log 2, log(1 + 3q)}, which is not differentiable at
q = 1.

We see that the Gibbs measure µq in Section 2 has the quasi-Bernoulli
property. However for the case of non-negative matrices, only µq([IJ ]) ≤
Cµq([I])µq([J ]), I ∈ Σn, J ∈ Σ�. The following example shows that the re-
verse inequality may not hold.

Example 3.6. Let M1 =
(

1 1
0 1

)
and M2 an arbitrarily positive matrix,

then H = M1 +M2 is an irreducible positive matrix. Let J = 1 . . . 1 (n-times),
then ‖MJ‖ = n + 2 and hence

‖MJ‖ ‖MJ‖ ≥ n

2
‖MJJ‖ .

Since µq(I) ≈ exp (−nP (q)) · ‖MI‖, I ∈ Σn, we see that there does not exist
C ′ > 0 such that C ′µq([J ])µ([J ]) ≤ µ([JJ ]).

4. Examples and remarks

Consider the classical Bernoulli convolution X = (1−ρ)−1
∑∞

n=1 ρnXn where
the Xn’s are i.i.d. random variables which take values 0, 1 and with probability
1/2 on each value. Let µρ be the distribution measure of X. It is well known that
for 0 < ρ < 1/2, the measure is a Cantor type measure. It was proved recently
that µρ is absolutely continuous for almost all 1/2 < ρ < 1 [S], however, it is still
not clear which µρ is absolutely continuous or singular. The question has been
subjected to intensive investigation. The reader can refer to the survey articles
[L], [PSS] and the references there. The interest of the Bernoulli convolution in
our setting is that the µρ satisfies the self-similar identity

µρ =
1
2
µρS

−1
1 +

1
2
µρS

−1
2

where S1x = ρx, S2x = ρx + (1 − ρ); {S1, S2} is the iterated function system
(IFS). The support of µq is [0, 1]. For 0 < ρ < 1/2, the SJ(0, 1)’s are disjoint (as
in the basic intervals of the Cantor set); for 1/2 < ρ < 1, the SJ(0, 1) overlaps
which is the source of difficulty.

For ρ = (
√

5− 1)/2, the reciprocal of the golden ratio, it was shown by Erdös
that µρ is singular. In order to consider the multifractal structure of µρ, we can
put the IFS {S1, S2} to a new set of IFS {Ri}3

i=1with no overlap:

R1(x) = ρ2x, R2(x) = ρ3x + ρ2, and R3(x) = ρ2x + ρ.

Then the measure µρ satisfies

µρ([i1 . . . in]) ≈ 1
4n

‖Mi1 . . . Min‖
where [i1 . . . in] = Ri1 . . . Rin

([0, 1]) and

M1 =
(

1 1
0 1

)
, M2 =

(
1
2

1
2

1
2

1
2

)
and M3 =

(
1 0
1 1

)
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([LN1],[Fe1],[FeO]). The {Mi}3
i=1 satisfies the conditions (H2). Hence by The-

orem 3.2, 3.3, P (q) is differentiable for q > 0 and the multifractal formalism
holds.

Actually, more can be said about the Lq-spectrum τ(q) of µq: an explicit
formula was given in [LN1] for q > 0 and was extended to q < 0 in [Fe1]. By
using the formula it was proved that τ(q) is differentiable (actually real analytic)
on R except one point in R

− in [Fe1].
The above example of Bernoulli convolution gives rise to another interesting

question. Note that the above example is a special case of the overlapping IFS
that can be reduced to new sets of IFS with no overlap and the calculation of
the τ(q) can be converted into the product of matrices. Such IFS forms an
important subclass of those that satisfy the weak separation condition ([LN2],
[LNR])(it will be interesting to classify this subclass of IFS). Under the weak
separation condition it was proved that the multifractal formalism is valid pro-
vided that τ(q) is differentiable [LN2]. However we do not know its differentia-
bility in the general case. In a forthcoming paper [Fe2], the first author proves
the differentiability of τ(q) for q > 0 in the case that the IFS is equicontractive
and satisfies the finite type condition (see [NW]).

The behavior for q < 0 is also important for the multifractal analysis. There
is no problem when M is a positive matrix-valued function as we considered in
Section 2. For the non-negative matrix-valued M , MJ can be 0, we have to
modify the pressure function P (q) in (1.6) slightly:

P (q) = lim
n→∞

1
n

log
∑

J∈Nn

‖MJ‖q(4.1)

where Nn consists of all the J ∈ ΣA,n such that MJ �= 0. It is clear that if
MJ �= 0 for all J ∈ ΣA,n, then the super-additivity of the sum in (4.1) implies
that the limit exists. We include a simple proposition with ΣA = Σ to set up
the consideration:

Proposition 4.4 Suppose M1, · · · , Mm are non-negative matrices and H =∑m
i=1 Mi is irreducible, then the limit in (4.1) exists for each q < 0 .

Proof. By the irreducibility, there exists integer r with
∑r

k=1 Hk > 0. Hence
there is a constant C > 0 such that for any two finite indices I, J , there exists
K0 ∈ ⋃r

k=1 Σk satisfying

0 < ‖MIK0J‖ ≤ C‖MI‖‖MJ‖.(4.2)

Denote by sn =
∑

J∈Nn
‖MJ‖q. Then (4.2) implies sns� ≤ C−q

∑r
k=1 sn+�+k.

From (4.2) we also deduce that for any finite index I, there exists i ∈ Σ1 such
that MIi �= 0; Since ‖MIi‖ ≤ C1‖MI‖ for some constant C1 > 0, we have
sn ≤ C−q

1 sn+1 for any integer n,  . It follows that sns� ≤ C ′sn+�+r for some
constant C ′ > 0 (depending on q), which implies that an = 1

C′ sn−r is super-
multiplicative. This yields the existence of the limit.
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The differentiability of such P (q) for q < 0 is still unknown. We know that in
the above Bernoulli convolution of the golden ratio, it is possible for the P (q) to
be non-differentiable at a point of q < 0 [Fe1]. On the other hand, it is known
that by imposing some stronger conditions on the matrices, the pressure function
P (q) is analytic near q = 0 (see e.g., [BL, Theorem 4.3]).

Finally we remark that we do not know whether the theorems can be ex-
tended to matrices with entries in R. An important theorem concerning this is
in [BL, Theorem 4.3] for the analyticity of P (q) near zero. Much closer to our
development is the scaling functions: f(x) =

∑m
i=0 cif(2x− i). It is known that

such function can be put into matrix form as in the previous example [DL1].
Daubechies and Lagarias studied the multifractal formalism of the well known
scaling function D4 [DL2]. They showed the differentiability of the correspond-
ing τ(q), but the consideration depends on the two 2 × 2 matrices involved to
have a common eigenvector. There are some extensions in [LM].
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des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 3, 309–338.

[L] K. S. Lau, Iteration function systems with overlaps and multifractal structure, Trends
in probability and related analysis (Taipei, 1998), 35–76, World Sci. Publishing, River
Edge, NJ, 1999.

[LM] K. S. Lau and M. F. Ma, The regularity of Lp-scaling functions, Asian J. Math 1
(1997), no. 2, 272–292.

[LN1] K. S. Lau and S. M. Ngai, Lq-spectrum of the Bernoulli convolution associated with
the golden ratio, Studia Math. 131 (1998), no. 3, 225–251.

[LN2] , Multifractal measures and a weak separation condition, Adv. Math. 141
(1999), no. 1, 45–96.

[LNR] K. S. Lau, S. M. Ngai and H. Rao, Iterated function systems with overlaps and self-
similar measures, J. London Math. Soc. (2) 63 (2001), no. 1, 99–116.

[MU] D. Mauldin and M. Urbanski, Dimension and measures in infinite iterated function
systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105–154.

[N] S. M. Ngai, A dimension result arising from the Lq spectrum of a measure, Proc. Amer.
Math. Soc. 125 (1997), no. 10, 2943–2951.

[NW] S. M. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J.
London Math. Soc. (2) 63 (2001), no. 3, 655–672.

[PSS] Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal
geometry and stochastics, II (Greifswald/Koserow, 1998), 39–65, Progr. Probab., 46,
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