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Abstract

The coding and noncoding length sequences constructed from a complete genome are charac-
terised by multifractal analysis. The dimension spectrum Dq and its derivative, the ‘analogous’
speci3c heat Cq, are calculated for the coding and noncoding length sequences of bacteria, where
q is the moment order of the partition sum of the sequences. From the shape of the Dq and
Cq curves, it is seen that there exists a clear di6erence between the coding=noncoding length
sequences of all organisms considered and a completely random sequence. The complexity of
noncoding length sequences is higher than that of coding length sequences for bacteria. Almost
all Dq curves for coding length sequences are 7at, so their multifractality is small whereas almost
all Dq curves for noncoding length sequences are multifractal-like. It is seen that the ‘analogous’
speci3c heats of noncoding length sequences of bacteria have a rich variety of behaviour which is
much more complex than that of coding length sequences. We propose to characterise the bacte-
ria according to the types of the Cq curves of their noncoding length sequences. This new type of
classi3cation allows a better understanding of the relationship among bacteria at the global gene
level instead of nucleotide sequence level. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The rapidly accumulating complete genome sequences of bacteria and archaea
provide a new type of information resource for understanding gene functions and
evolution [1].
One can study the DNA sequences in detail by considering the order in which four

kinds of nucleotides of DNA are assembled, namely adenine (a), cytosine (c), guanine
(g), and thymine (t).
There has been considerable interest in the 3nding of long-range correlation (LRC)

in DNA sequences at this level. Li et al. [2,3] found that the spectral density of a DNA
sequence containing mostly introns shows 1=f� behaviour, which indicates the presence
of LRC. The correlation properties of coding and noncoding DNA sequences were also
studied by Peng et al. [4] in their fractal landscape or DNA walk model. The DNA
walk de3ned in Ref. [4] is that the walker steps ‘up’ if a pyrimidine (c or t) occurs
at position i along the DNA chain, while the walker steps ‘down’ if a purine (a or g)
occurs at position i. Peng et al. [4] discovered that there exists LRC in noncoding DNA
sequences while the coding sequences correspond to a regular random walk. By doing
a more detailed analysis, Chatzidimitriou-Dreismann and Larhammar [5] concluded that
both coding and noncoding sequences exhibit LRC. A subsequent work by Prabhu and
Claverie [6] also substantially corroborated these results. If one considers more details
by distinguishing c from t in pyrimidine, and a from g in purine (such as two- or
three-dimensional DNA walk model [7] and maps given in Ref. [8]), then the presence
of base correlation can be found even in coding sequences. In view of the controversy
about the presence of correlation in all DNA or only in noncoding DNA, Buldyrev
et al. [9] showed that the LRC appears mainly in noncoding DNA using all the DNA
sequences available. Alternatively, Voss [10,11], based on equal-symbol correlation,
showed a power-law behaviour for the sequences studied regardless of the percent
of intron contents. Investigations based on di6erent models seem to suggest di6erent
results, as they all look into only a certain aspect of the entire DNA sequence [12].
The avoided and under-represented strings in some bacterial complete genomes have

been discussed [13–15]. A time series model of CDS in complete genome has been
proposed [16]. Vieira [17] performed a low-frequency analysis of the complete DNA of
13 microbial genomes and found that their fractal behaviour does not always prevail
through the entire chain and their autocorrelation functions have a rich variety of
behaviours including the presence of anti-persistence.
For the importance of the numbers, sizes and ordering of genes along the chromo-

some, one can refer to Part 5 of Lewin [18]. Here, one may ignore the composition of
the four kinds of bases in coding and noncoding segments and only consider the rough
structure of the complete genome or long DNA sequences. Provata and Almirantis [19]
proposed a fractal Cantor pattern of DNA. They map coding segments to 3lled regions
and noncoding segments to empty regions of random Cantor set and then calculate the
fractal dimension of the random fractal set. They found that the coding=noncoding par-
tition in DNA sequences of lower organisms is homogeneous-like, while in the higher
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eucaryotes the partition is fractal. This result seems too rough to distinguish bacteria
because the fractal dimensions of bacteria they gave out are all the same.
Viewing from the level of structure, the complete genome of an organism is made

up of coding and noncoding segments. Here the length of a coding=noncoding segment
means the number of its bases. Based on the lengths of coding=noncoding segments
in the complete genome, one can get two kinds of integer sequences by the following
ways:
(i) Order all lengths of coding segments according to the order of coding segments

in the complete genome. This integer sequence is named coding length sequence.
(ii) Order all lengths of noncoding segments according to the order of noncoding seg-

ments in the complete genome. This integer sequence is named noncoding length
sequence.

Yu and Anh [20] proposed a time series model for the length sequences of DNA.
After calculating the correlation dimensions and Hurst exponents, it was found that one
can get more information from this model than that of fractal Cantor pattern [19]. The
quanti3cation of these correlations could give an insight into the role of the ordering
of genes on the chromosome. Through detrended 7uctuation analysis (DFA) [21] and
spectral analysis, the LRC was found in these length sequences [22].
The correlation dimension and Hurst exponent are parameters of global analysis.

Global calculations neglect the fact that length sequences from a complete genome
are highly inhomogeneous. Thus multifractal analysis is a useful way to characterise
the spatial inhomogeneity of both theoretical and experimental fractal patterns [23].
It was initially proposed to treat turbulence data. In recent years, it has been applied
successfully in many di6erent 3elds including time series analysis [24] and 3nancial
modelling [25,26]. For DNA sequences, application of the multifractal technique seems
rare (we have found only Berthelsen et al. [27]). Recently, Yu et al. [28] considered
the multifractal property of the measure representation of a complete genome. In this
paper, we pay more attention to the multifractal characterisation of the coding and
noncoding length sequences.
Some sets of physical interest have a nonanalytic dependence of dimension spectrum

Dq on the q-moments of the partition sum of the sequences. Moreover, multifractality
has a direct analogy to the phenomenon of phase transition in condensed-matter physics
[29]. The existence and type of phase transitions might turn out to be a worthwhile
characterisation of universality classes for the structures [30]. The concept of phase
transition in multifractal spectra was introduced in the study of logistic maps, Julia sets
and other simple systems. Evidence of phase transition was found in the multifractal
spectrum of di6usion-limited aggregation [31]. By following the thermodynamic formu-
lation of multifractal measures, where q represents an analogous temperature, Canessa
[25] applied a standard expression for the ‘analogous’ speci3c heat and showed that its
form resembles a classical phase transition at a critical point for 3nancial time series.
In this paper, we calculate the ‘analogous’ speci3c heat of coding and noncoding

length sequences. Our motivation to apply Canessa’s framework to characterise stochas-
tic sequences is to see whether there is a similar type of phase transition in the coding
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and noncoding length sequences as in other time series. We show that based on the
shape of the Cq curves and associated type of phase transitions, one can discuss the
classi3cation of bacteria. This new type of classi3cation allows to better understand
the relationship among bacteria at the global gene level instead of nucleotide sequence
level.

2. Multifractal analysis

Let Tt; t=1; 2; : : : ; N; be the length sequence of coding or noncoding segments in
the complete genome of an organism. First we de3ne

Ft =Tt

/
 N∑
j=1

Tj


 (1)

to be the frequency of Tt . It follows that
∑

t Ft =1. Now we can de3ne a measure �
on [0; 1[ by d�(x)=Y (x) dx, where

Y (x)=N × Ft when x∈
[
t − 1
N

;
t
N

[
: (2)

It is easy to see that
∫ 1
0 d�(x)= 1 and �([(t − 1)=N; t=N [)=Ft .

The most common numerical implementations of multifractal analysis are the so-called
<xed-size box-counting algorithms [32]. In the one-dimensional case, for a given mea-
sure � with support E ⊂ R, we consider the partition sum

Z�(q)=
∑

�(B) �= 0

[�(B)]q ; (3)

q∈R, where the sum runs over all di6erent nonempty boxes B of a given side � in a
grid covering of the support E, that is,

B= [k�; (k + 1)�[ : (4)

The scaling exponent �(q) is de3ned by

�(q)= lim
�→0

log Z�(q)
log �

(5)

and the generalized fractal dimensions of the measure are de3ned as

Dq= �(q)=(q− 1) for q �=1 (6)

and

Dq= lim
�→0

Z1; �
log �

for q=1 ; (7)
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where Z1; �=
∑

�(B) �= 0 �(B) log �(B). The generalized fractal dimensions are numerically
estimated through a linear regression of

1
q− 1

log Z�(q)

against log � for q �=1, and similarly through a linear regression of Z1; � against log �
for q=1. D1 is called the information dimension and D2 the correlation dimension.
The Dq of the positive values of q give relevance to the regions where the measure is
large, i.e., to the coding or noncoding segments which are relatively long. The Dq of
the negative values of q deal with the structure and the properties of the most rare3ed
regions of the measure, i.e., to the segments which are relatively short.
By following the thermodynamic formulation of multifractal measures, Canessa [25]

derived an expression for the ‘analogous’ speci3c heat as

Cq ≡ −@
2�(q)
@q2

≈ 2�(q)− �(q+ 1)− �(q− 1) : (8)

He showed that the form of Cq resembles a classical phase transition at a critical point
for 3nancial time series. In the following we calculate the ‘analogous’ speci3c heat of
coding and noncoding length sequences for the 3rst time. The types of phase transitions
are helpful to discuss the classi3cation of bacteria.

3. Data and results

More than 31 bacterial complete genomes are now available in public databases.
There are 3ve Archaebacteria: Archaeoglobus fulgidus (aful), Pyrococcus abyssi
(pabyssi), Methanococcus jannaschii (mjan), Aeropyrum pernix (aero) and Methano-
bacterium thermoautotrophicum (mthe); 3ve Gram-positive Eubacteria: Myco-
bacterium tuberculosis (mtub), Mycoplasma pneumoniae (mpneu), Mycoplasma
genitalium (mgen), Ureaplasma urealyticum (uure), and Bacillus subtilis (bsub). The
others are Gram-negative Eubacteria, which consist of two Hyperthermophilic bac-
teria: Aquifex aeolicus (aquae) and Thermotoga maritima (tmar); three Chlamydia:
Chlamydia trachomatisserovar (ctra), Chlamydia muridarum (ctraM), and Chlamydia
pneumoniae (cpneu); two Spirochaete: Borrelia burgdorferi (bbur) and Treponema pal-
lidum (tpal); one Cyanobacterium: Synechocystis sp. PCC6803 (synecho); and 13 Pro-
teobacteria. The 13 Proteobacteria are divided into four subdivisions, which are alpha
subdivision: Rhizobium sp. NGR234 (pNGR234) and Rickettsia prowazekii (rpxx);
gamma subdivision: Escherichia coli (ecoli), Haemophilus inBuenzae (hinf), Xylella
fastidiosa (xfas), Vibrio cholerae (vcho1), Pseudomonas aeruginosa (paer) and Buch-
nera sp. APS (buch); beta subdivision: Neisseria meningitidis MC58 (nmen) and
Neisseria meningitidis Z2491 (nmenA); epsilon subdivision: Helicobacter pylori J99
(hpyl99), Helicobacter pylori 26695 (hpyl) and Campylobacter jejuni (cjej).
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Fig. 1. The coding and noncoding length sequences of Pseudomonas aeruginosa.

Fig. 2. Cq curves of coding and noncoding length sequences of 19 bacteria.
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Fig. 3. Cq curves of coding and noncoding length sequences of another 12 bacteria.

First we counted out the length of coding and noncoding segments in the complete
genomes of the above bacteria and obtained the coding and noncoding length sequences
of these organisms. For example, we give the coding and noncoding length sequences
of Pseudomonas aeruginosa (paer) in Fig. 1.
Then we calculated the dimension spectra Dq and ‘analogous’ speci3c heat Cq of

the coding and noncoding length sequences of all the above bacteria according to
the methods given in Section 2. In order to show the di6erence between coding and
noncoding length sequences, we give the Cq curves of length sequences of all the
above bacteria as Fig. 2 (for 19 bacteria) and Fig. 3 (for another 12 bacteria).
The hill behaviour of the dimension spectrum Dq for q¡ 0 is a well-known fact

when using the box-counting method [24,25]. In Figs. 4 and 5, we present Dq of the
coding or noncoding length sequences of all bacteria selected within the range q¿ 0.

4. Discussion and conclusions

If a length sequence is completely random, then our measure de3nition yields a
uniform measure (Dq=1; Cq=0).
From the curves of Dq and Cq, it is seen that there exists a clear di6erence

between the coding=noncoding length sequences of all organisms considered here and
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Fig. 4. Dq curves of coding and noncoding length sequences of 19 bacteria.

the completely random sequence. Hence we can conclude that complete genomes are
not random sequences. But the Dq values of coding length sequences are closer to 1
than that of noncoding length sequences. In other words, noncoding length sequences
are further away from a complete random sequence than coding length sequences. The
property of the length sequences is the same as that of the DNA sequences [4].
We also found that for each bacterium selected, the Dq values for q¿ 0 of a non-

coding length sequence are smaller than those of a coding length sequence, but for
q¡ 0, the situation is reversed. It is well known that the dimension is a measure for
complexity. Here the complexity of noncoding length sequences is higher than that of
coding length sequences for bacteria.
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Fig. 5. Dq curves of coding and noncoding length sequences of another 12 bacteria.

From Figs. 4 and 5, almost all Dq curves for coding length sequences are 7at, so
their multifractality is not pronounced. On the other hand, almost all Dq curves for
noncoding length sequences are multifractal-like.
In our previous paper [28], we counted out all substrings with 3xed length appearing

in the complete genome and gave a measure representation of the complete genome. We
found that the shape of the Cq curves of all bacteria we selected are single-peaked.
Hence this type of phase transition of the measure representation is not useful for
classi3cation of bacteria. On the other hand, from Figs. 2 and 3, one can see that the
‘analogous’ speci3c heats of noncoding length sequences of bacteria have a rich variety
of behaviours which is much more complex than that of coding length sequences. Some
have only one main single peak. In this class, some Cq curves display a shoulder to the
right of the main peak, some display a shoulder to the left of the main peak, and some
have no shoulder, which resembles a classical (3rst-order) phase transition at a critical
point. In another class, the Cq curves display a balance double peak. So this provides
a useful tool for classi3cation of bacteria according to the types of ‘analogous’ speci3c
heats of the noncoding length sequences. The relevant 3nding here is that noncoding
length sequences display higher Cq peak heights and clear double-peaked structures
than coding length sequences. This reveals di6erent types of long-range correlations
between the two classes of sequences. This new type of classi3cation allows a better
understanding of the relationship among bacteria at the global gene level instead of the
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nucleotide sequence level. It can be useful to distinguish between sequence curves as
given in the example of Fig. 1.
To conclude, multifractal analysis provides a simple yet powerful method to amplify

the di6erence between a DNA length sequence and a random sequence. In particu-
lar, the multifractal characterisation given by the ‘analogous’ speci3c heat allows to
distinguish DNA length sequences in more detail.
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