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CORRIGENDUM

Volume 231, Number 2 (1999), in the article “Iterated Function System
and Ruelle Operator,” by Ai Hua Fan and Ka-Sing Lau, pages 319–344
(doi:10.1006/jmaa.1998.6210):

1. INTRODUCTION

We adopt the same notation as in [FL]. Let �wj�Nj=1 be a finite family of
contractive, one-to-one self-conformal maps on an open set V ⊆ �d with

0 < inf
x�j

�w′
j�x�� ≤ sup

x�j

�w′
j�x�� < 1 (1.1)

and all the �w′
j� satisfying the Dini condition. Let K be the invariant set

under �wj�Nj=1; i.e., K = ∪Nj=1wj�K�
 We say that �wj�Nj=1 satisfies the open
set condition (OSC) if there exists a bounded open set U ⊆ V such that

wj�U� ⊆ U and wi�U� ∩wj�U� = � for i 
= j�

and the strong open set condition (SOSC) if in addition, the above bounded
open set U can be chosen so that U ∩ K 
= �. The SOSC has technical
importance [FL]. Schief [S] proved, among the other results, that the OSC
implies the SOSC for self-similar maps. In [FL, Lemma 2.6] we claimed the
result for the self-conformal maps. However, it was pointed out by Peres
et al [P] (and also by Patzschke and Öberg) that there is a gap in the
proof and they also provided a new proof. Their proof involves a delicate
extension of Schief’s method and seems to be quite complicated. Here
we give a much simpler argument to close up the gap (Theorem 3.3). It
involves some strategic change of Schief’s construction. We include some
details here so that it can be read independently.
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2. THE CONSTRUCTION

We let � denote the set of finite indices J = j1 · · · jn� 1 ≤ ji ≤ N , and let

wJ = wj1 ◦ · · · ◦wjn� KJ = wJ�K�� rJ = diam KJ 


For convenience we assume that V is connected so that we can use the
mean value theorem freely in Lemma 2.1. The condition is not essential
and can be omitted, as is proved in [Y]. We have

Lemma 2.1. For the IFS �wj�Nj=1,

(i) there exists c1 > 0 such that for any x� y ∈ V� J ∈ � ,

c−1
1 rJ ≤

�wJ�x� −wJ�y��
�x− y� ≤ c1rJ � (2.1)

(ii) there exists c2 > 1 such that for any I� J ∈ � ,

c−1
2 rIrJ ≤ rIJ ≤ c2rIrJ 
 (2.2)

Proof. See [FL, Lemma 2.3 and (2.4)] for an elementary proof. Note
that in [FL], the notation rJ is �w′

J�x0�� for some fixed x0 in V ; it differs
from the rJ here by a universal constant.

For any fixed ε > 0 and for any set A ⊆ �d, we let B�A�ε� = �y ∈ V �
d�x� y� < ε for some x ∈ A�; B�x� ε� is the ε-ball in V center at x. Let

GJ = wJ�B�K�ε��


By Lemma 2.1(i), we have, for any x ∈ V ,

B�wJ�x�� c−1
1 εrJ� ⊆ wJ�B�x� ε�� ⊆ B�wJ�x�� c1εrJ�
 (2.3)

It follows that

B�KJ� c−1
1 εrJ� ⊆ GJ ⊆ B�KJ� c1εrJ�
 (2.4)

For 0 < b < 1, we let

�b = �J = j1 · · · jn � rj1···jn < b ≤ rj1···jn−1
�


Our most crucial difference from [S, P] is the following inductive way of
defining the index set ��J�� J ∈ � : For J = j, we define

��J� = �I ∈ �diamGJ
� KI ∩GJ 
= ��
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Suppose ��J� is defined; we define

��jJ� = � ∪��

where

� = �jI � I ∈ ��J��

and

� = �I ∈ �diamGjJ
� i1 
= j and KI ∩GjJ 
= ��


(Note that in [S], ��J� is defined as �I ∈ �diamGJ
� KI ∩GJ 
= ��; the two

definitions do not contain each other.) It is easy to see from the construc-
tion that for I ∈ ��J� of either type � or �, KI ∩GJ 
= �; also KI and KJ
are comparable in size (Lemma 3.1).

For fixed J0 ∈ � , the construction of the set � implies trivially that

��jJ0� ⊇ �jI � I ∈ ��J0��� j = 1� · · · �N


Our aim is to find J0 such that the equality holds (Lemma 3.2). In this case
the set � is empty.

3. THE PROOFS

Lemma 3.1. There exists c > 0 such that c−1 ≤ rJ
rI

≤ c for all I ∈
��J�� J ∈ � .

Proof. For I ∈ ��J�� J ∈ � , we consider the two cases:

(i) If i1 
= j1, then by the construction in �, we see that I ∈ �diamGJ

and by Lemma 2.1(i),

rJ ≤ diam GJ ≤ ri1···in−1
≤ c1

rmin
rI�

where rmin = infj�diamKj�. Also by (2.1) and (2.4) we have

rJ ≥ �1 + 2c1ε�−1diam GJ ≥ �1 + 2c1ε�−1rI 


Hence there exists a > 0 such that

a−1 ≤ rJ
rI

≤ a
 (3.1)
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(ii) If i1 = j1, we write

J = j1 · · · jl jl+1 · · · jn �= j1 · · · jlJ ′� I = j1 · · · jl il+1 · · · im �= j1 · · · jlI ′�

where jl+1 
= il+1. Then by the construction of �, we see inductively that
I ′ ∈ ��J ′� and by (3.1), a−1 ≤ rJ ′/rI ′ ≤ a. This and (2.2) imply that

�ac2
2�−1 ≤ rJ

rI
≤ ac2

2 


If we let c = ac2
2 , then the lemma follows from the conclusion of the two

cases.

Lemma 3.2. If in addition �wj�Nj=1 satisfies the OSC, then γ = supJ∈�
#��J� <∞. If we let J0 ∈ � such that #��J0� = γ, then

��IJ0� = �IJ � J ∈ ��J0�� for all I ∈ � 
 (3.2)

Proof. Let U be a bounded open set in the definition of the OSC; then
K ⊂ U . We claim that there exists α > 0 such that for any x ∈ KJ ,

wI�U� ⊆ B�x� αrJ� for all I ∈ ��J�
 (3.3)

Indeed from the construction of I ∈ ��J� in � and �, we have wI�K� ∩
GJ 
= �. Since wI�U� ⊇ wI�K�, we see that wI�U� ∩ GJ 
= �. Also by
(2.1), there exists c3 > 0 such that

rI ≤ diam wI�Ū� ≤ c3rI 


By (2.4) we have

GJ ⊆ B�x� �1 + c1ε�rJ�


From these we have wI�U� ⊆ B�x� αrJ� for α = 1 + c1ε+ c3.
Now we observe that wI�U�� I ∈ ��J� are disjoint and each contains a

ball of radius larger than arJ for some constant a > 0 (by (2.1)). Thus by
using (3.3) and a simple volume argument, we conclude that the number
of I ∈ ��J� is bounded; i.e., γ = supJ∈� ��J� <∞.

For (3.2), we have remarked after the definition of ��J� that ⊇ is trivial.
On the other hand, the choice of J0 implies that #�IJ � J ∈ ��J0�� = γ.
Thus the maximality of γ implies that ��IJ0� = γ also and (3.2) follows.

Theorem 3.3. Suppose �wj�Nj=1 is a family of contractive, one-to-one self-
conformal maps with ��w′

j��Nj=1 satisfying (1.1) and the Dini condition. Then
the OSC implies the SOSC.
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Proof. The proof needs only a small modification of [S]; we put it down
for completeness. Let J0 ∈ � be chosen as in Lemma 3.2. For any fixed
1 ≤ l ≤ N and J ∈ � with j1 
= l, we consider the family

� = �KL � L ∈ �diamGJJ0
with l1 = l��

where l1 is the first index of the multiple indices of L. Then � is a cover of
Kl. Since j1 
= l, (3.2) implies that L 
∈ ��JJ0�; hence KL ∩GJJ0

= �. If we
let D�A�B� = inf��x − y� � x ∈ A� y ∈ B�, then by (2.4), D�KL�KJJ0

� ≥
c−1

1 εrJJ0
� which implies

D�Kl�KJJ0
� ≥ c−1

1 εrJJ0
for l 
= j1
 (3.4)

Now let G∗
J = wJ

(
B�K�ε/2c2

1�
)

and let

U∗ = ⋃

J∈�
G∗
JJ0



Then U∗ is a bounded open set, U∗ ∩K 
= �, and

wj�U∗� = ⋃

J∈�
wj�G∗

JJ0
� = ⋃

J∈�
G∗
jJJ0

⊆ U∗


For i 
= j, we claim that wi�U∗� ∩ wj�U∗� = �. Otherwise, there are I� J
such that G∗

iIJ0
∩G∗

jJJ0

= �. We assume riIJ0

≥ rjJJ0
. Let y be in the inter-

section; then there exist y1 ∈ KiIJ0
and y2 ∈ KjJJ0

such that

d�y� y1� ≤ c1 ·
1

2c2
1

ε · riIJ0
≤ ε

2c1
riIJ0

and

d�y� y2� ≤ c1 ·
1

2c2
1

ε · rjJJ0
≤ ε

2c1
riJJ0




Hence

D�KiIJ0
�Kj� < c−1

1 εriIJ0
�

which contradicts (3.4) and the proof is complete.

We remark that we can actually prove as in [S] that the OSC is equivalent
to 0 < �α�K� <∞ for a Hausdorff measure �α. The approach is the same
as in [S], modified with this new definition of ��J� and using the Ruelle
operator for the appropriate α [FL].
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of this while he was visiting the Department of Mathematics, CUHK.

REFERENCES

[FL] A. H. Fan and K. S. Lau, Iterated Function System and Ruelle Operator, J. Math.
Anal. Appl. 231 (1999), 319–344.

[P] Y. Peres, M. Rams, K. Simon, and B. Solomyak, Equivalence of positive Hausdorff
measure and the open set condition for self-conformal sets, preprint.

[S] A. Schief, Separation properties of self-similar measures, Proc. Amer. Math. Soc. 112
(1994), 111–115.

[Y] Y.L. Ye, “Ruelle Operator with Weakly Contractive Maps,” CUHK Ph.D. thesis,
2000.

Ka-Sing Lau
Department of Mathematics
The Chinese University of Hong Kong
Shatin, Hong Kong
E-mail: kslau@math.cuhk.edu.hk

Hui Rao
Department of Mathematics
Wuhan University
Wuhan, People’s Republic of China
E-mail: raohui@nlsc.whu.edu.cn

Yuan-Ling Ye
Department of Mathematics
The Chinese University of Hong Kong,
Shatin, Hong Kong
E-mail: ylye@math.cuhk.edu.hk


	1.INTRODUCTION
	2.THE CONSTRUCTION
	3.THE PROOFS
	ACKNOWLEDGMENTS
	REFERENCES

