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The paper considers the iterated function systems of similitudes which satisfy a separation condition
weaker than the open set condition, in that it allows overlaps in the iteration. Such systems include the
well-known Bernoulli convolutions associated with the PV numbers, and the contractive similitudes
associated with integral matrices. The latter appears frequently in wavelet analysis and the theory of
tilings. One of the basic questions is studied: the absolute continuity and singularity of the self-similar
measures generated by such systems. Various conditions to determine the dichotomy are given.

1. Introduction

We will call a family of contractive maps ²S
j
´N
j="

on 2d an iterated function system

(IFS). An iterated function system will generate an invariant compact subset K¯
5N

j="
S

j
K, and if, further, the system is associated with a set of probability weights

²w
j
´N
j="

, then it will generate an invariant measure

µ¯3
N

i="

w
j
µaS−"

j
. (1.1)

In order to obtain sharp results on the invariant set K or the invariant measure µ, it

is often assumed that the maps are similitudes (or the extension to self-conformal

maps). The corresponding K and µ are called the self-similar set and the self-similar

measure respectively. For the iteration, it is often assumed that the iterated function

system satisfies the open set condition (OSC) [10]. One of the advantages of the open

set condition is that the ‘generic ’ points of the set K can be uniquely represented in

a symbolic space, and the dynamics of the iterated function system can be identified

with the shift operation in the symbolic space. Without the open set condition, the

iteration has overlaps ; then such a representation will break down, and it is more

difficult to handle the situation.

The simplest case of an iterated function system with overlaps is provided by the

maps

S
"
x¯ ρx, S

#
x¯ ρx­1, x `2 with "

#
! ρ! 1. (1.2)

The invariant measure µ associated with the weights "

#
has been studied for a long time

in the context of Bernoulli convolutions [27]. Recently Solomyak [23, 28] proved
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that for almost all such ρ, the measure µ is absolutely continuous. This solves a

conjecture of Erdo$ s. The ‘transversality ’ argument used in [23] has also been used to

consider a variety of iterated function systems with overlaps (by Peres and Solomyak

[24], and by Peres and Schlag [22]). Other considerations on such systems with

overlaps related to digit expansion can be found in [11, 12, 25, 26].

In [17] Lau and Ngai introduced a weak separation condition (WSC) on an iterated

function system of similitudes that has overlaps. This condition is weaker than the

open set condition, and includes many of the important overlapping cases (see the

examples in Section 2). In particular, it includes the system in equation (1.2) where

ρ−" is a PV number. The multifractal structure of µ related to these numbers has been

studied in detail in [8, 9, 16–18].

In this paper we continue the study of the weak separation condition (see

Definition 2.1). We will restrict our attention to similitudes ²S
j
´N
j="

on 2d with the same

contraction ratio, that is,

S
j
x¯A

j
x­b

j
¯ ρR

j
x­b

j
(1.3)

where 0! ρ! 1 and R
j
is an orthogonal transformation. It is known that the self-

similar measure µ is either absolutely continuous or continuously singular, but it is

rather difficult to determine the dichotomy. Our main purpose in this paper is to study

this problem. We prove the following theorem.

T 1.1. Let ²S
j
´N
j="

be an IFS as in equation (1.3) and assume that it satisfies

the WSC. Suppose that w
j
" ρd for at least one j. Then the self-similar measure is

singular.

For the proof of the theorem we observe that the weak separation condition

implies that any ball Bρn(x) contains a (uniformly) bounded number of Sσ(x
!
), rσr¯ n.

This property yields the key Proposition 2.3 which allows us to retain some control

over counting the overlaps. We can then use it to handle the product measure on the

symbolic space and the self-similar µ as its projection.

By using the Lebesgue density theorem and Theorem 1.1 we have the following

interesting result.

T 1.2. Let ²S
j
´N
j="

be as abo�e. If the self-similar measure µ is absolutely

continuous, then the density function f¯Dµ `L"(2d) is actually in L¢(2d).

The second theorem allows us to determine the absolute continuity by checking

the existence of the L#-density, which is simpler for self-similar measures. By

assuming a slightly stronger condition on the iterated function system, which we call

WSC* (see §4), we can make use of the self-similar identity (1.1) and the correlation

of µ to construct a nonnegative, irreducible transition matrix T
I
(where I stands for

the identity map on 2d) and prove the following theorem.

T 1.3. Suppose that ²S
j
´N
j="

is an IFS as in equation (1.3) and satisfies the

WSC*. Then µ is absolutely continuous if and only if

λ
max

¯ ρd (1.4)

where λ
max

is the maximal eigen�alue of T
I
.
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We will see that λ
max

& ρd always holds (Proposition 4.4). When λ
max

" ρd, we can

use λ
max

to determine the L#-dimension of µ :dim
#
(µ)¯ rlog λ

max
}log ρr (Theorem 4.1).

The construction of the T
I
is quite direct, and can be implemented for the concrete

cases.

We organize the paper as follows. We give the definition of the weak separation

condition in Section 2, together with some examples and properties. Theorems 1.1

and 1.2 are proved in Section 3. In Section 4 we will define the transition matrix T
I

and prove Theorem 1.3. We also discuss some examples and the construction of the

matrix T
I
. To conclude the paper, we consider in Section 5 an extension of the classical

Bernoulli convolution associated with the PV numbers, and prove the singularity in

such a case. This extends a result of Erdo$ s [27].

We remark that for the case S
j
(x)¯ "

#
(x­j), where j¯ 0,… ,N on 2, if the µ in

Theorem 1.3 is absolutely continuous and if we let f¯Dµ be the Radon Nikodym

derivative of µ, then the eigenvalue of T
I

with the second-largest magnitude can be

used to determine the regularity of f. In other words, if we let

λh ¯max²rλr :λ is an eigenvalue of T
I
, λ1 λ

max
´,

then the L#-Lipschitz exponent of f is given by "

#
(r(log λh )}(log 2)r®1). The result is a

special case in [20]. The proof is more complicated than that of Theorem 1.3 because

the corresponding eigenvalue and eigenvector may not be positive. We conjecture

that the result is still true in the present setup of the weak separation condition.

2. The weak separation condition

Throughout the paper we assume that S
j
:2dMN2d, where 1% j%N, are

contractive similitudes defined by

S
j
x¯A

j
(x­d

j
)¯A

j
x­b

j
,

where b
j
¯A

j
d
j
`2d, A

j
¯ ρR

j
with 0! ρ! 1 and R

j
orthonormal matrices. We will

use Σ
n

to denote the set of multi-indices σ¯ ( j
"
,… , j

n
) and use rσr¯ n to denote the

length of σ. Let Sσ ¯S
j
"

a…aS
jn

. Then

Sσ(x)¯A
j
"
…jn

x­A
j
"
…jn−"

b
jn

­A
j
"
…jn−#

b
jn−"

­…­b
j
"

¯A
j
"
…jn

x­3
n

i="

A
j
"
…ji−"

b
ji

.

In particular, if A
j
¯A for all j then Sσ(x)¯Anx­3n

i="
Ai−"b

ji

.

Let ²w
j
´N
j="

be a set of probability weights associated with the iterated function

system ²S
j
´N
j="

, and let µ be the self-similar measure defined by µ¯3N

j="
w

j
µaS−"

j
as

in equation (1.1). For a fixed x
!
, we define the discrete measure µ

n
by

µ
n
²x´¯3²wσ :Sσ(x

!
)¯x, rσr¯ n´, x `2d

where wσ ¯w
jn

. It is well known that ²µ
n
´ converges to µ weakly. Moreover, if we

let c¯max
j
rb

j
r}(1®ρ), then suppµ is contained in a ball of radius c. For x¯

3¢

i="
A

j
"
…ji−"

b
ji

, it is easy to show that

µ(Bρn(x))%µ
n
(B

cρ
n(x))%µ(B

#c
ρn(x))

where B
r
(x) denotes the open ball of radius r centered at x [17]. If the iterated function

system satisfies the open set condition, then the term µ
n
(B

rρ
n(x)) is quite easy to

handle. In the following paragraph we define a condition on such a system that

extends the open set condition and allows us to handle the term.



102 - , -    

D 2.1. We say that ²S
j
´N
j="

satisfies the weak separation condition (WSC)

if there exists x
!
`2d and a constant a" 0 such that for rσr, rσ«r¯ n, then either

Sσ(x
!
)¯Sσ«(x

!
) or rSσ(x

!
)®Sσ«(x

!
)r& aρn. (2.1)

By a suitable translation we can assume that x
!
¯ 0. Also, note that the iterated

function system is invariant on the subspace in 2d spanned by Sσ, rσr¯ n, n `.. Hence

by restricting the iterated function system to the subspace, we can assume without

loss of generality that for some n large enough, ²Sσ(x
!
) : rσr¯ n´ spans 2d. The definition

says that after iterating x
!
by ²S

j
´N
j="

for n times, all the points Sσ(x
!
), rσr¯ n are either

identical or separated by a distance aρn. This definition was introduced in [17] under

the more general setting that the similitudes can have different contraction ratios.

Since for all the practical examples considered here, the maps in the iterated function

system have the same contraction ratio, we just impose it in the definition for

simplicity. The following proposition is immediate from the definition.

P 2.1. Suppose that the IFS ²S
j
´N
j="

satisfies the WSC. Then any ball

B
cρ

n(x) contains at most F distinct Sσ(x
!
),σ `Σ

n
.

It is also easy to see that condition (2.1) is equivalent to

either S−"
σ Sσ«(x

!
)¯x

!
or rS−"

σ Sσ«(x
!
)®x

!
r& a, crσr¯ rσ«r. (2.2)

In [4] Bandt and Graf showed that ²S
j
´N
j="

satisfies the open set condition if and only

if there exists x
!
`2d and a" 0 such that rS−"

σ Sσ«(x
!
)®x

!
r& a for all incomparable σ

and σ«. Proposition 2.2 follows.

P 2.2. If ²S
j
´N
j="

satisfies the open set condition, then it satisfies the

WSC.

Our main interest is in iterated function systems that do not satisfy the open set

condition. Below, we give a list of such examples with the weak separation condition.

E 2.1. Let ²S
j
´N
j="

be defined on 2 with S
j
x¯ 1}kx­b

j
where k& 2 is

an integer, and b
j
¯ cr

j
with c `2 and r

j
rationals. We take x

!
¯ 0. Then for σ¯

( j
"
,… , j

n
),

Sσ(0)¯ c3
n

i="

r
ji

ki−"

¯
c

q
3
n

i="

t
ji

ki−"

where t
j
¯ qr

j
, for 1% j%N, are integers. It is easy to see that the weak separation

condition is satisfied by taking a¯ c}q in the definition.

Note that the case with contraction ratio ρ¯ 1}2 has been studied in great detail

in wavelet theory in connection with the dilation equation

f(x)¯3
N

j="

c
j
f(2x®( j®1)).

The function f can be considered as the density function of the corresponding

absolutely continuous self-similar measure µ in equation (1.1), with c
j
¯ 2w

j
. In

wavelet theory the c
j
may be negative but 3 c

j
must be 2.
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Kenyon [12] and Rao and Wen [26] have studied the iterated function system for

the contraction ratio ρ¯ 1}3, with N¯ 3. They are interested in the dimension of the

invariant set K, and the tiling property related to the translation numbers r
j
. Hu and

Lau [9] and Fan et al. [5] have also given a detailed analysis of the multifractal

structure of the self-similar measure generated by the iterated function system with

such ρ.

E 2.2. Let ²S
j
´N
j="

be defined on 2 with S
j
x¯ ρx­b

j
where β¯ ρ−" is a

PV number, and b
j
¯ cr

j
with c `2 and r

j
rationals. (Recall that β" 1 is a PV number

if it is an algebraic integer such that all its algebraic conjugates have modulus less than

1 (see [27]), for example, the golden ratio (o5­1)}2.)

Similar to the above, we can write Sσ(0)¯ c}q3n

i="
t
ji

ρi−", for t
ji

`:. The weak

separation condition follows from a lemma of Garsia [6, Lemma 1.51]. The self-

similar measure corresponding to S
"
x¯ ρx and S

#
x¯ ρx­(1®ρ) with weights "

#

each is the classical Bernoulli convolution [27]. The entropy dimension, Lp-spectrum,

local dimension spectrum and the multifractal formalism of the Bernoulli convolution

associated with the PV numbers, in particular with the golden ratio, have been studied

in great detail by many authors (for example, 1, 2, 8, 14–17, 21).

In the above two examples the contraction ratios ρ are algebraic integers. It is not

difficult to construct an example with a more arbitrary ρ.

E 2.3. Let 0! ρ! "

$
, S

"
x¯ ρx, S

#
x¯ ρx­ρ, and S

$
x¯ ρx­1, where

x `2. Then S
"
aS

$
(x)¯S

#
aS

"
(x)¯ ρ#x­ρ. This implies that the open set condition is

not satisfied according to the result of Bandt and Graf stated after equation (2.2).

However, the iterated function system satisfies the weak separation condition: it is

easy to show that

Sσ(0)®Sσ«(0)¯ 3
n−"

i=!

ρiε
i
, ε

i
¯ 0,³ρ,³1,³(1®ρ)

can be written into the form 3n

i=!
ρiη

i
where η

i
¯ 0, ³1, ³2. If 3n

i=!
ρiη

i
1 0 and k

is the smallest index such that η
k
1 0, then since 0! ρ! "

$
,

rSσ(0)®Sσ«(0)r& )ρk®2 3
¢

i=k+"

ρi)& 01®
2ρ

1®ρ1 ρk& aρn " 0,

where a¯ (1®3ρ)}(1®ρ).

E 2.4. In 2d, we let S
j
x¯A(x­d

j
) where B¯A−" is an integral

expanding similarity matrix, with d
j
`:d and d

"
¯ 0. Then under a suitable norm on

2d, A is a contraction [13]. It is easy to show that ²S
j
´N
j="

satisfies the weak separation

condition. Indeed, if we let x
!
¯ 0 and if S−"

σ Sσ«(0)1 0, then being an element in the

integer lattice, rS−"
σ Sσ«(0)r& 1 and equation (2.2) applies.

This class of iterated function system has been studied in detail in connection with

the theory of tiles under the more general setting using self-affine maps (see, for

example, [13] and the references there). In the case of tiles, it is necessary to take

N¯ rdetBr.

E 2.5. Let A be as above, let Γ be a finite group of integral matrices γ with

det γ¯³1 and assume that Γ satisfies ΓA¯AΓ. Let S
j
x¯A

j
(x­d

j
) where A

j
¯

γ
j
A, γ

j
`Γ, d

j
`:d. Then the above argument also implies that ²S

j
´N
j="

satisfies the weak



104 - , -    

separation condition. This class of iterated function system was used by Bandt [3] and

Xu [30] to study tiles that involve rotations and reflections. For example, let

A−"¯ 911
®1

1 : , Γ¯ (9ε"0
0

ε
#

: , 90ε
#

ε
"

0: :εi ¯³1* ,
S
"
x¯Ax, S

#
x¯ γAx­910: with γ¯ 9®1

0

0

1: . Then the corresponding invariant set

is the LeU �y dragon [3].

To conclude this section we prove some useful consequences of the weak

separation condition that will be needed in the following sections. In order to avoid

confusion in the counting, we will identify Sσ and Sσ«, rσr¯ rσ«r¯ n, if they are equal,

and denote the set of such distinct Sσ by !
n
. For σ `Σ

n
, we will use [σ] to denote the

equivalence class ²σ« `Σ
n
:Sσ« ¯Sσ´.

P 2.3. Suppose that ²S
j
´N
j="

satisfies the WSC. Then for any bounded

subset DZ2d, there exists γ" 0 such that for any x `2d, n `.,

g²S `!
n
:x `S(D)´! γ.

Proof. Suppose that the proposition is false ; then there exists a bounded D such

that for any M" 0,
g²S `!

n
:x `S(D)´"M

for some n and x. By enlarging the set D we can assume that the x
!
in the definition

of the weak separation condition is in D and that 5N

j="
S

j
(D)ZD. It follows that

g²S `!
n
:S(D)XBρnrDr(x)´"M, and hence that

g²S `!
n
:S(x

!
) `BρnrDr(x)´"M.

Since BρnrDr(x) contains at most l distinct Sσ(x
!
), rσr¯ n (see Proposition 2.1), there

exists s such that

g²S `!
n
:S(x

!
)¯ s´"

M

l
.

Let E
s
¯²S `!

n
:S(x

!
)¯ s´. For Sσ, Sσ« `E

s
, we have

Sσ(x)®Sσ«(x)¯ (Aσ(x®x
!
)­Sσ(x

!
))®(Aσ«(x®x

!
)­Sσ«(x

!
))

¯ (Aσ®Aσ«) (x®x
!
)¯ ρn(Rσ®Rσ«) (x®x

!
).

Since M can be arbitrarily large and there are at least M distinct Sσ in !
n
, we can

choose distinct Rσ,Rσ« so that sRσ®Rσ«s is arbitrarily small (depending on M ).

We can assume without loss of generality that there exists n
!

such that

²Sτ(x
!
) : rτr¯ n

!
´ contains 0 and spans 2d (see the remark after Definition 2.1). We

claim that for any σ,σ« `Σ
n

with Sσ« 1Sσ, we have S
(σ,τ)

(x
!
)1S

(σ«,τ)
(x

!
) for at least

one of the τ. Otherwise, if we let T¯S−"
σ« Sσ, then Sτ(x

!
), rτr¯ n

!
are fixed points of

T. Recall that ²Sτ(x
!
) : rτr¯ n

!
´ spans 2d and T is an isometry of 2d. This forces T to

be the identity map, which is a contradiction.

Now for any a" 0, we choose σ,σ« with Sσ, s!σ `E
s
such that

sRσ®Rσ«s% aρn
! min²sSτ(x

!
)®x

!
s−" : rτr¯ n

!
´.

Then for τ satisfying S
(σ,τ)

(x
!
)1S

(σ«,τ)
(x

!
) we have

0! sS
(σ,τ)

(x
!
)®S

(σ«,τ)
(x

!
)s¯ sSσ Sτ(x

!
)®Sσ« Sτ(x

!
)s

¯ ρns(Rσ®Rσ«) (Sτ(x
!
)®x

!
)s% aρ(n+n

!
).

This contradicts the weak separation condition. *
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Note that if the iterated function system satisfies the open set condition with an

associated open set U, and if we take D¯U, then the γ in the above proposition is

1. In later applications we actually assume that

D is closed, D°1W, x
!
`D° and 5N

j="
S

j
(D)ZD.

We will call such D a basic region. It follows that the invariant set K is contained

in D.

C 2.1. Suppose that ²S
j
´N
j="

satisfies the WSC. Then there exists

γ" 0 such that g!
n
% γρ−dn.

Proof. Let D be a basic region, and let γ be as in Proposition 2.3. Then

5
S`!

n

S(D)ZD and m(D)" 0 where m is the Lebesgue measure. By the above

proposition, we see that each x `D is covered by at most γ of S(D) with S `!
n
. It

follows that

3
S`!

n

m(S(D))% γm(D).

The self-similarity implies that m(S(D))¯ ρdnm(D). Therefore g!
n
% γρ−dn, as

claimed. *

C 2.2. Suppose that ²S
j
´N
j="

satisfies the WSC. Let D be a basic region.

Then for any c" 0, there exists c
"
" 0 such that for any n and x,

g²S `!
n
:S(D)fB

cρ
n(x)1W´! c

"
.

Proof. Let r
n
¯ cρn­rDr ρn. Then S(D)fB

cρ
n(x)1W implies that S(D)Z

B
rn

(x). Also, by Proposition 2.3, we know that every point is covered by at most γ of

the S(D), S `!
n
. It follows that

γ[m(B
rn

(x)& 3
S`!

n

²m(S(D)) :S(D)fB
cρ

n(x)1W´

¯ ρdnm(D)[g²S `!
n
:S(D)fB

cρ
n(x)1W´.

Hence
g²S `!

n
:S(D)fB

cρ
n(x)1W´% γ(m(D) ρdn)−"m(B

rn

(x))

and we can choose a bound c
"

for the last expression. *

3. A sufficient condition for singularity

Let ²S
j
´N
j="

be an iterated function system with associated weights ²w
j
´N
j="

and let µ

be the self-similar measure as defined in the last section. Our first theorem in this

section gives a simple criterion for such a measure to be singular. First we will

introduce some notations in the symbolic space. Let

Σ¯²σa ¯ ( j
"
, j

#
,…) : j

i
` ²1,… ,N ´´,

and let Σ
n

be the set of σ with length n. Let π be the projection of Σ to 2d defined by

π(σa )¯ 4
¢

n="

S
j
"
…jn

(K ), σa ¯ ( j
"
, j

#
,…),

where K is the invariant set of the iterated function system. For Cσ a cylinder set with

base σ `Σ
n
, it is clear that π(Cσ)¯Sσ(K ). We let P be the probability measure on Σ,
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and P
n

the probability on Σ
n
. For ΛZΣ

n
, we will use the abbreviated notation P(Λ)

to denote P
n
(Λ) ; that is, P(Λ)¯P

n
(Λ)¯P(CΛ), where CΛ is the cylinder set with base

Λ. Note that µ¯Paπ−", and for σ `Σ
n
,

µ(π(Cσ))¯P(C
[σ]

)¯ 3
σ«`[σ]

wσ«.

L 3.1. Suppose that ²S
j
´N
j="

satisfies the WSC. For any ΛXΣ
n
, we let

Λ4 ¯ (σ `Λ : 3
σ«`[σ]fΛ

wσ« "
ρdn

4γ * .
Then P(Λ)" "

#
implies that P(Λ4 )" "

%
.

Proof. By Corollary 2.1 we have g!
n
% γρ−dn. This implies that

P(ΛcΛ4 )¯3 ²wσ :σ `ΛcΛ4 ´¯3
[σ]

3
σ«`[σ]

²wσ« :σ« `ΛcΛ4 ´%g!
n
[
ρdn

4γ
% "

%
,

and P(Λ4 )¯P(Λ)®P(ΛcΛ4 )" 1}2®1}4¯ 1}4. *

T 3.1. Suppose that ²S
j
´N
j="

satisfies the WSC, and suppose that w
j
" ρd for

at least one 1% j%N. Then µ is singular.

Proof. Our aim is to choose, for any ε" 0, a subset EX2d such that µ(E )& "

#

and m(E )! ε. Without loss of generality we assume that w
"
" ρd. Let D be a basic

region as in the last section, and let p `. be such that

4γm(D) 0ρd

w
"

1p ! ε.

Let
Λ

"
¯Σ

"
¯²1,… ,N ´,

Λ4
"
¯ (σ `Λ

"
:wσ "

ρd

4γ* ,
Λ$

"
¯²(σ, 1,… , 1) `Σ

"+p
:σ `Λ4

"
´,

E
"
¯5 ²Sσ(D) :σ `Λ$

"
´.

Then Lemma 3.1 implies that P(Λ4
"
)& "

%
, so that P(Λ$

"
)& "

%
ωp

"
. Moreover, for σ `Λ$

"

we have

wσ "
ρd

4γ
wp

"
¯

ρd("+p)

4γ 0w"

ρd1
p

"
ρd("+p)

ε
m(D).

It follows that

m(E
"
)% ρd("+p)m(D)[g²Sσ :σ `Λ$

"
´% ε 3

σ`Λ$

"

wσ % εP(Λ$

"
). (3.1)

Suppose that we have chosen Λ$
i
XΣ

"+ip
, and E

i
¯5 ²Sσ(D) :σ `Λ$

i
´, for i¯

1,… ,k®1, such that

(i) Λ$
i
XΣ

"+ip
and CΛ$

i

fCΛ$

j

¯W for i1 j ;

(ii) P(Λ$
i
)& "

%
wp

"
;

(iii) m(E
i
)% εP(Λ$

i
).
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If 3k−"
i="

P(Λ$
i
)& 1}2, we stop the construction. Otherwise we let σr

n
denote the first

n coordinates of σ and define

Λ
k
¯²σ `Σ

"+(k−")p
:σr

"+ip
¡Λ$

i
, 1% i%k®1´,

Λ4
k
¯ (σ `Λ

k
: 3
σ«`[σ]fΛ

wσ« "
ρd(1­(k®1)p)

4γ * ,
Λ$

k
¯²(σ, 1,… , 1) `Σ

"+kp
:σ `Λ4

k
´,

E
k
¯5 ²Sσ(D) :σ `Λ$

k
´.

Then it is clear that P(Λ
k
)" "

#
and Λ$

k
`Σ

"+kp
. That CΛ$

i

fCΛ$

k

¯W for 0% i!k

follows from the choice of Λ
k
. Condition (ii) is a direct consequence of the

construction of Λ and Λ$
k

and an application of Lemma 3.1. The proof of condition

(iii) is similar to that of inequality (3.1).

In view of condition (ii), the process must stop at some finite step, say at k. Let

E¯5k

i="
E

i
. We recall that D satisfies 5N

j="
S

j
(D)XD, and the closedness of D

implies that KXD. Hence

π(CΛ$

i

)¯ 5
σ`Λ$

i

Sσ(K )X 5
σ`Λ$

i

Sσ(D)¯E
i
.

This implies that π(5k

i="
CΛ$

i

)XE, and it follows that

µ(E )¯P(π−"E )&P 05k
i="

CΛ$

i
1¯3

k

i="

P(CΛ$

i

)& "

#
.

On the other hand, condition (iii) implies that

m(E )%3
k

i="

m(E
i
)% ε3

k

i="

P(CΛ$

i

)! ε.

The singularity of µ is proved. *

We have an interesting consequence of the above theorem.

T 3.2. Suppose that ²S
j
´N
j="

satisfies the WSC. If µ is absolutely continuous,

then the density function f¯Dµ will be bounded; that is, f `L¢(2d). Moreo�er, f

satisfies

f(x)¯3
N

j="

c
j
f aS−"

j
(x), x `2d,

where c
j
¯ rdetA

j
r−"w

j
.

Proof. We need only to show that f `L¢(2d). Suppose otherwise ; then for any

large M" 0, the Lebesgue density theorem implies that there exists a ball Bρn(x) such

that

µ(Bρn(x))

ρdn
¯

1

ρdn&
Bρn(x)

f(t) dt"M. (3.2)

If we iterate ²S
j
´N
j="

for n times, we obtain the family !
n
, which we will use to form a

new iterated function system. For each S¯Sσ `!
n
, the associated weight is

w
S
¯3 ²wσ« :σ« ` [σ]´.
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The corresponding self-similar identity is µ¯3
S`!

n

w
S
µaS−". By equation (3.2) we

have
3
S`!

n

w
S
µaS−"(Bρn(x))"Mρdn. (3.3)

Now we fix a basic region D ; then µ is supported by D. Hence S(D)4Bρn(x)¯W
implies that D4S−"(Bρn(x))¯W, and thus µ(S−"(Bρn(x)))¯ 0. In view of Corollary

2.2, g²S `!
n
:S(D)fBρn(x)1W´! c

"
, so we see that the sum on the left of inequality

(3.3) has at most c
"

nonzero terms, and there exists at least one w
S

such that w
S
"

(M}c
"
) ρdn. We choose M such that M}c

"
" 1. Then Theorem 3.1 implies that µ is

singular. This is a contradiction. *

C 3.1. Suppose that ²S
j
´N
j="

satisfies the WSC. Then the self-similar

measure µ is absolutely continuous if and only if the L#-density of µ exists.

4. The transition matrix

Hardy and Littlewood [7] proved that for a probability measure µ,

lim
h!

!

1

h#d
&

2d

rµ(B
h
(x))r# dx!¢

if and only if µ is absolutely continuous and Dµ `L#. There is no similar criterion for

the absolute continuity of µ (with Dµ `L"). However, by using Corollary 3.1, we

have the following proposition.

P 4.1. Suppose that ²S
j
´N
j="

satisfies the WSC. Let β be such that

0! lim
h!

!

1

h#
β&

2d

rµ(B
h
(x))r# dx!¢. (4.1)

Then µ is absolutely continuous if and only if β¯ d.

In the following we will study the expression (4.1) and the exponent β through

certain transition matrix, to be defined. Note that the L#-dimension (also called the

correlation dimension) of µ is defined as

dim
#
(µ)¯ lim

h!
!

log!2drµ(B
h
(x))r# dx

log h
®d

¯ sup(α : lim
h!

!

1

hd+α&
2d

rµ(B
h
(x))r# dx!¢* ,

and it follows that dim
#
(µ)¯ 2β®d (see [29]). The limit expression in expression (4.1)

corresponding to the β is called the upper mean quadratic �ariation of µ (see [19]).

Similarly, we can define dim
#
(µ) and dim

#
(µ).

Let 3 denote the set of maps S¯S−"
σ Sσ« for (σ,σ«) `5¢

n="
(Σ

n
¬Σ

n
). We will

consider 3 as a state space and define an (infinite) transition matrix on 3 as follows.

For S `3, let
T(S )¯ 3

S «`3

w
(S,S «)

S «

where
w

(S,S «)
¯3

i,j

²w
i
w

j
:S−"

i
aSaS

j
¯S «´.
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This amounts to saying that the transition from S to S « has weight w
(S,S «)

. Also note

that 3
S « w(S,S «)

¯ (3
i
w

i
)#¯ 1. It follows that T defines a Markov matrix on 3.

For a fixed β and for any S `3, we define

Φ
S
(h)¯

1

h#
β&

2d

µ(B
h
(Sx))µ(B

h
(x)) dx.

We use Φ(h) to denote the vector ²Φ
S
(h)´

S`3 and let ©3ª denote the linear space

spanned by 3. Then Φ
S
(h)¯©Φ(h),Sª and for any � `©3ª,

©Φ(h), �ª¯3
S

�
S
Φ

S
(h).

For convenience we also write the above expression as Φ
v
(h). The following is the

main purpose for defining the Markov matrix T and the consideration of Φ
S
(h).

P 4.2. For S `3, Φ
S
(h)¯ ρd−#

βΦ
TS

(h}ρ).

Proof. By substituting µ¯3
j
w

j
µaS−"

j
into Φ

S
(h), we have

Φ
S
(h)¯

1

h#
β
3
i,j

w
i
w

j&µ(B
h/ρ

(S−"
i

S(x)))µ(B
h/ρ

(S−"
j

(x))) dx

¯
ρd

h#
β
3
i,j

w
i
w

j&µ(B
h/ρ

(S−"
i

SS
j
(x)))µ(B

h/ρ
(x)) dx

¯
ρd

h#
β
3
S «

w
(S,S «)&µ(B

h/ρ
(S «(x)))µ(B

h/ρ
(x)) dx

¯ ρd−#
βΦ

TS 0 h

ρ1 . *

We recall that suppµ is contained in a ball of radius (ρ}(1®ρ))maxrd
j
r. We also

recall that in the definition of the weak separation condition we can take x
!
¯ 0

without loss of generality.

D 4.2. Let S
j
(x)¯A

j
(x­d

j
), where j¯ 1,… ,N, with A

j
¯ ρR

j
as

before. Let Ch ¯ (2ρ}(1®ρ))max
j
rd

j
r, and let

3h ¯²S `3 : rS(0)r%Ch ´.

We say that ²S
j
´N
j="

satisfies the weak separation condition* (WSC*) if 3h is a finite set.

We remark that from the definition of the WSC*, the set ²S(0) :S `3h ´ is a finite

set, so there exists a" 0 such that for S,S « `3h with S(0)1S «(0), then rS(0)®S «(0)r&
a" 0. This makes the WSC* stronger than the WSC, which only requires that

rS(0)r& a for any S `3h with S(0)1 0 (see equation (2.2)).

We also remark that all the examples in Section 2 satisfy the WSC*. We will

discuss this in more detail at the end of the section.

P 4.3. Suppose that ²S
j
´N
j="

satisfies the WSC*. Then

(i) T maps 3c3h to itself ;

(ii) There exists h
!
" 0 such that for 0! h! h

!
and S `3c3h , Φ

S
(h)¯ 0.
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Proof. (i) We let S¯S−"
σ Sσ« `3c3h , then rS(0)r"Ch ­δ for some δ" 0. It

follows that

rS−"
i

SS
j
(0)r& ρ−"rSS

j
(0)r®rd

i
r& ρ−"rS(0)­ρR−"

σ Rσ«(Rj
d
j
)r®max

k

rd
k
r

&
2ρ

(1®ρ)
max

k

rd
k
r­

δ

ρ
¯Ch ­

δ

ρ
.

(ii) In view of the above fact that rS(0)r"Ch ­δ implies that rS−"
i

SS
j
(0)r"Ch ­ρ−"δ

and the hypothesis that 3h is a finite set, we can choose h
!
small enough so that for

S ¡3h , rS(0)r"Ch ­2h
!
. We claim that for such S, µ(B

h
(Sx))µ(B

h
(x))¯ 0 for all x.

Otherwise, there exist x and h such that µ(B
h
(Sx))1 0. By observing that the support

of µ is continuous in C4 }2, we have rxr%Ch }2­h. It follows that

rS(x)r¯ rS(0)­R−"
σ Rσ«(x)r" (Ch ­2h

!
)®0Ch2­h

!1"
Ch

2
­h

!

and µ(B
h
(Sx))¯ 0 for h% h

!
. This is a contradiction, and part (ii) follows from the

claim. *

From the above proposition we can write T as

T¯ 0ThQ
0

T «1
where Th is a sub-Markov matrix on the states 3h (since the sum of each column of T

is 1, the sum of each column of Th is % 1). Th is a finite matrix by the WSC*.

Let λ be an eigenvalue of Th and � a corresponding eigenvector. By Propositions

4.2 and 4.3, we have

Φ
v
(h) ¯ ρd−#

βΦ
Tv 0hρ1¯ ρd−#

β 0ΦT
h
v 0hρ1­Φ

Qv 0hρ11
¯ ρd−#

β 0ΦT
h
v 0hρ1­01¯ ρd−#

βΦλv 0hρ1¯ λρd−#
βΦ

v 0hρ1 .
If the matrix Th is irreducible, the Perron–Frobenius theorem implies that the maximal

eigenvalue λ
max

is positive, and that all the coordinates of the eigenvector � are

positive. If we take β such that λ
max

ρd−#
β ¯ 1, then Φ

v
(h)¯Φ

v
(h}ρ). It is easy to show

that Φ
v
(h)" 0 and 0! lim

h!
!
Φ

v
(h)% lim

h!
!
Φ

v
(h)!¢. From Proposition 4.1 we

see that the absolute continuity criterion is λ
max

¯ ρd.

However the matrix Th is not always irreducible. Hence we cannot guarantee that

Φ
v
(h)" 0, and we will need a little more elaborate work. We need to pick up the

essential part of Th first. Let I be the identity map in 3h . Let 3
I
be the Th -irreducible

component of 3h that contains I ; that is,

S `3
I
if and only if there exist m, n& 1 such that w(m)

(I,S)
,w(n)

(S,I)
" 0

where w(n)

(S,S «)
denotes the (S,S «) entry of Th n. Let T

I
be the truncated square matrix of

Th on 3
I
; then T

I
is irreducible and is a finite matrix by the WSC*.

T 4.1. Suppose that ²S
j
´N
j="

satisfies the WSC*. Let λ
max

be the maximal

eigen�alue of T
I
and let

β¯
1

2 0d­)log λ
max

log ρ )1 .
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Then the mean quadratic �ariation satisfies

0! lim
h!

!

1

h#
β&

2d

rµ(B
h
(x))r# dx% lim

h!
!

1

h#
β&

2d

rµ(B
h
(x))r# dx!¢.

The L#-dimension of µ is hence gi�en by dim
#
(µ)¯ rlog λ

max
}log ρr.

As a direct consequence we have the following corollary.

C 4.1. Suppose that ²S
j
´N
j="

satisfies the hypotheses of Theorem 4.1. Then

µ is absolutely continuous if and only if λ
max

¯ ρd.

The theorem is a direct consequence of the following Lemmas 4.1 and 4.2. We first

observe that the (I, I ) entry of Tn

I
is

w(n)

(I,I)
¯ 3

σ,σ«`Σ
n

²wσ wσ« :S−"
σ Sσ« ¯ I ´

and w(n)

(I,I)
¯3

S`!
n

w#
S
. Since T

I
is a nonnegative irreducible matrix, it is well known

that there exist a
"
, a

#
" 0 such that

a
"
λn

max
%w(n)

(I,I)
% a

#
λn

max
. (4.2)

P 4.4. Under the assumption of Theorem 4.1, we ha�e λ
max

& ρd.

Proof. By Corollary 2.1, we have g!
n
% γρ−dn. Since 3

S `!
n

w
S
¯ 1, the Cauchy–

Schwartz inequality implies that

w(n)

(I,I)
¯ 3

S`!
n

w#
S
& γ−"ρdn.

Hence by inequality (4.2) we conclude that λ
max

& ρd. *

L 4.1. Under the assumption of Theorem 4.1 and letting D be a basic region,

there exists c" 0 such that

&
2d

rµ(BrDrρn(x))r# dx& cρndλn

max
.

Proof. Let h¯ rDr ρn. For S `!
n
, if x `S(D), then S(D)ZB

h
(x). It follows that

&
S(D)

rµ(B
h
(x))r# dx&&

S(D)

rµ(S(D))r# dx&&
S(D)

w#
S
dx¯m(D) ρdnw#

S
.

Since the WSC* implies the WSC, we see that each point is covered by at most γ of

the S(D) (by Proposition 2.3). Hence

&
2d

rµ(B
h
(x))r# dx&

1

γ
3
S`!

n

&
S(D)

rµ(S(D))r# dx&
m(D)

γ
ρdn 3

S`!
n

w#
S
¯ cρndw(n)

(I,I)

where c¯m(D)}γ. This, together with inequality (4.2), implies the lemma. *

L 4.2. Under the same assumption as in Theorem 4.1 and for ρn+"% h! ρn,

we ha�e

&
2d

rµ(B
h
(x))r# dx! cρdnλn

max
,

for some c" 0 independent of n.
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Proof. Let Q
j
be a ρn-mesh cube and let Qh

j
¯5

x`Qj

B
h
(x). Let D(YK ) be a basic

region as before. Then by using µ¯3
S`!

n

w
S
µaS−", we have for x `Q

j
,

µ(B
h
(x))% 3

S`!
n

²w
S
:DfS−"(B

h
(x))1W´% 3

S`!
n

²w
S
:S(D)fQh

j
1W´.

By Corollary 2.2, g²S `!
n
:S(D)fQh

j
1W´! c

"
. It follows that

&
Qj

rµ(B
h
(x))r# dx

% 03
S`!

n

²w
S
:S(D)fQh

j
1W´1#[m(Q

j
)

% c
"

3
S`!

n

²w#
S
:S(D)fQh

j
1W´[m(Q

j
) (Cauchy–Schwartz inequality)

¯ c
#
ρdn 3

S`!
n

²w#
S
:S(D)fQh

j
1W´.

For each S `!
n
, it is clear that g²Q

j
:S(D)fQh

j
1W´! c

$
for some fixed c

$
. Summing

both sides of the above expressions, we obtain

&
2d

rµ(B
h
(x))r# dx% c

#
c
$
ρdn 3

S`!
n

w#
S
¯ c

%
ρdnw(n)

(I,I)
.

The lemma now follows from expression (4.2). *

To conclude this section we will discuss the examples in Section 2 in regard to the

WSC*. We show that the state space 3h and the matrix Th can easily be implemented

after some concrete identifications.

Let ²S
j
´N
j="

be an iterated function system on 2 with S
j
(x)¯ ρ(x­d

j
), where 0!

ρ! 1. Without loss of generality we assume that 0¯ d
"
! d

#
…! d

N
. We can prove

by induction that the state S¯S−"
σ Sσ« `3 has the form

Sx¯x­s,x `2

for some s `2. We can represent the map S by the translation number s. We construct

the set 3 inductively, starting from s¯ 0, by letting

s«¯ ρ−"s­d
j
®d

i
, 1% i, j%N. (4.3)

The set 3h can be obtained by keeping those s« with rs«r%Ch ¯ (2ρ}(1®ρ)) d
N
. The

matrix T will send s into the states s« in equation (4.3) with weight

w
(s,s«)

¯3 ²w
i
w

j
:ρ−"s­d

j
®d

i
¯ s«´.

It can be checked from this that Examples 2.1–2.3 have the WSC* (for Example 2.2,

we need to use Garsia’s lemma again). For the numerical examples the reader can

check on [5, 15, 18]. In all those cases Th ¯T
I
and Th can be reduced further to smaller

size by the symmetry of the 3h .
For the iterated function system in Example 2.4, S

j
(x)¯A(x­d

j
) in 2d, the maps

S `3 still have the form Sx¯x­s. The WSC* is clear and the construction of the

set 3h and the map Th is the same as the above one-dimensional case.

For the iterated function system in Example 2.5, we can prove by induction that

each S¯S−"
σ Sσ« `3 can be represented as

S(x)¯ γ(x)­s,

where γ¯A−"
σ Aσ« `Γ and s¯S−"

σ Sσ«(0) `:d. Hence each S `3 can be represented by
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(γ, s). It is immediate to see that the system satisfies the WSC* since Γ is a finite set

and s `:d.

For the construction of 3h and Th , we first define γg by γA¯Aγg and then observe

that
S−"

i
SS

j
(0)¯A−"

i
(γA

j
d
j
­s)®d

i

¯ (γ−"
i

γγ
j
)g d

j
­A−"

i
s®d

i

¯ (γ−"
i

γγ
j
)g d

j
­S−"

i
(s).

Hence the set 3 can be constructed inductively as follows, starting from (γ, s)¯
(I, 0),

(γ«, s«)¯ ((γ−"
i

γγ
j
)g, (γ−"

i
γγ

j
)g d

j
­S−"

i
(s)), 1% i, j%N.

The set 3h is obtained by choosing the (γ, s) `3 such that (γ−"
i

γγ
j
)g d

j
­S−"

i
(s)%Ch in

the construction. The map T will send (γ, s) into the above states with weight

w
((γ,s),(γ«,s«))

¯3
i,j

²w
i
w

j
: (γ−"

i
γγ

j
)g ¯ γ«, (γ−"

i
γγ

j
)g d

j
­S−"

i
(s)¯ s«´.

5. The case of PV numbers

Erdo$ s proved that if X¯3¢

i="
ρnX

n
where ²X

n
´¢

n="
are independent identically

distributed Bernoulli random variables and 1! ρ−"! 2 is a PV number, then the

distributional measure µ is singular [27]. In our present notation, µ is the self-similar

measure
µ¯ "

#
µaS−"

"
­"

#
µaS−"

#

where S
"
x¯ ρx, and S

#
x¯ ρx­1. In the following we will extend Erdo$ s’ theorem

to S
j
(x)¯ ρx­b

j
, 1% j%N, where ρ−"" 1 is a PV number and b

j
are rationals, and

the probability weights are arbitrary (even negative). We need two technical lemmas.

For fixed (k
!
, n

!
) `:¬:, consider the following relation:

kβn­k
!
βn

! `:. (5.1)

If k, n, p `: satisfy kβn­k
!
βn

! ¯ p, we say that (k, n, p) is a solution of relation (5.1) ;

we also say that (k, n) is a solution of relation (5.1) if (k, n, p) is a solution for some

p `:.

L 5.1. Suppose that β" 1 is an algebraic number and that at least one of its

conjugate roots has modulus ! 1. Then for any (k
!
, n

!
) `:¬: with k

!
, n

!
1 0, the

number of solutions of equation (5.1) is finite.

Proof. We first observe that n1 0, for otherwise βn
! ¯ (p®k)}k

!
will imply that

β and its conjugates are multiples of unity. This contradicts that β" 1 and one of its

conjugates has modulus ! 1. Next, if (k, n, p) and (k«, n«, p) are two distinct solutions

of relation (5.1), then βn−n« ¯k«}k which is impossible for the same reason.

Let λ be a conjugate of β such that rλr! 1. If relation (5.1) has infinitely many

solutions (for different p), then we have solutions (k, n, p) with rpr arbitrarily large.

Hence

)βλ)
n

¯
rkβnr
rkλnr

¯
rp®k

!
βn

!r
rp®k

!
λn

!r
! 1,

when r p r!¢. This contradicts the fact that rβ}λrn " rβ}λr" 1 when n" 0, and

rβ}λrn ! rβ}λr−"! 1 when n! 0. *
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L 5.2. Let Q(ξ )¯3N

j="
c
j
e#πibj

ξ be a trigonometric polynomial with

3N

j="
c
j
1 0, c

j
`2 and b

j
rationals. Let B be such that B

j
¯Bb

j
, where 1% j%N, are

integers, and let β be an algebraic number as in Lemma 5.1. Then there exists m `:

such that Q(mBβk)1 0 for all k `:.

Proof. Let Qh (x)¯3N

j="
c
j
xBj and let ²x

"
,… ,x

s
´ be the roots of Qh (x) with

modulus 1 that can be written as e#πikFβnF, where 1% F% s. Then 3N

j="
c
j
1 0 implies

that k
l
and nF 1 0 for all 1% l% s. Note that Q(mBβk)¯ 0 if and only if e#πimβk is

a root of Qh . It follows that

mβk®kF βnF `: (5.2)

for some 1% F% s. By Lemma 5.1 there are only finitely many m for equation (5.2)

to hold. Hence we can choose m `: such that Q(mBβk)1 0 for all k `:. *

T 5.1. Let ρ−" be an irrational PV number, let b
j
be rationals, and let

S
j
x¯ ρx­b

j
, j¯ 1,… ,N.

Then for any set of probability weights ²w
j
´N
j="

the self-similar measure µ is singular.

Proof. By equation (1.1), the Fourier transformation Φ(ξ )¯µW (ξ ) satisfies

Φ(ξ )¯Q(ξ )Φ(ρξ )¯0
¢

j=!

Q(ρ jξ ),

where Q(ξ )¯3N

j="
w

j
e#πibj

ξ. Note that Φ(0)¯ 1 and the product converges to Φ

uniformly on compact subsets of 2. We will show that rΦ(ξ )r does not converge to 0

as rξ r!¢. The Riemann–Lebesgue lemma will imply that µ is singular.

Let β¯ ρ−". We assume without loss of generality that there exists B such that

B
j
¯Bb

j
are integers and Q(Bβk)1 0 for all k `: (Lemma 5.2). Let C¯0¢

n=!
Q(Bβ−n).

Then C1 0. For k" 0,

rΦ(Bβk)r¯ 0
¢

n=!

rQ(Bβk−n)r¯C 0
k

n="

rQ(Bβn)r&C 0
¢

n="

rQ(Bβn)r. (5.3)

Now we recall a well-known property of the PV number [27] : there exists 0! θ! 1

such that r[βn]r! θn for large n, where [x] denotes the distance from x to the nearest

integer. We can choose n
!
such that for n" n

!
, 2B

j
θn ! "

#
. Let C «¯0n

!
n="

rQ(Bβn)r" 0.

Then

0
¢

n="

rQ(Bβn)r¯C « 0
¢

n=n
!
+"

rQ(Bβn)r

¯C « 0
¢

n=n
!
+"

)3N
j="

w
j
e#πiBj[

βn])
&C « 0

¢

n=n
!
+"

min

"
%j%N

rRe e#πiBj
θnr

&C « 0
"
%j%N

0
¢

n=n
!
+"

cos(2πB
j
θn).

The product is a positive constant and if we put it back into expression (5.3), we have

Φ(Bβk)2 0 as k!¢. *
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Note that in the proof we have not used the property of the positive weights. The

proof can hence be applied directly to conclude the following corollary.

C 5.1. Let the IFS be as in Theorem 5.1, and let 3N

j="
c
j
¯ ρ−". Then the

functional equation

f¯3
N

j="

c
j
f aS−"

j

has no L"-solution.
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