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n=l 
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ABSTRACT. Let 0 < g be a dyadic H61der continuous function with period 1 and g(O) = i, and let 

G(x) = I-IT=0 g (x/2n). In this article we investigate the asymptotic behavior of fo  T [G(x)lqdx and 
1 n ~ k = 0  log g(2k x ) using the dynamical system techniques: the pressure function and the variational 

principle. An algorithm to calculate the pressure is presented. The results are applied to study the 

regularity of  wavelets and Bernoulli convolutions. 

1. Introduction 

The equation 

where/3 > 1 and g is a periodic function of period 1 with g (0) = 1, arises naturally as the Fourier 
transform of self-similar objects such as Bernoulli convolution measures, scaling functions, etc. 
Iteration of  the equation yields the infinite product 

G(x) = g 
k=l 

which we call a multiperiodic function [16]. The simplest multiperiodic function is defined by 

g(x) = cos(2zrx),/~ = 2: 
sin  x 

G(x) = l-'I cos = 2zrx 
k=l 
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(the Euler-Vieta formula). In general there is no closed form formula and the behavior of  G is rather 
complicated. 

Our main interest is on the asymptotic rate of G at infinity. There are many ways to estimate 
such a rate. The most common one is the Sobelev exponent defined by the supremum of the ot so 
that 

fR (X + lxl2)~ [G(x)12dx < c~ . 

In wavelet theory (/3 = 2), this exponent and some other similar types of  exponents had been 
studied by Daubechies [5, 6], C o h e n a n d  Daubechies [3], Lau et al. [20], Lau and Ma [21], and 
Villemoes [25, 26]. For self-similar measures/z,  Strichartz [24] and Lau and Wang [19] showed that 
under the open set condition on the iterated function system of p., (/3 is not necessarily an integer), 
if G = / 2 ,  then 

fo r ~ ---> oo IG(x)lZdx Q(T)T 1-~, T 

where a is the L2-dimension of /z  and Q is a positive continuous, multiplicatively periodic function 
of period/3. This estimation was extended to L2-scaling functions in [20] and a sharper estimate than 
the ones in [3, 5, 6] was obtained. In [16] Strichartz et al. made a head start study on the asymptotic 
behavior of  

Iq(T) = [G(x)lqdx, T ---> oo. 

While it is difficult to obtain a precise estimation like the case q = 2, they raised a weaker question: 
under what condition does 

lira loglq(T) exist (1.1) 
T-+co log T 

In the same paper they also initiated another direction to study the behavior of  G at infinity by 
considering G(ff'x) for x e [0, 1). Observe that log G(/3nx) log G(x) . - I  - = ~--~-~---0 logg(/3Jx). 
Therefore one can study the convergence of 

n--I 

1Elogg ( f l J x  ) (1.2) hn(x) = n 
j=0 

This will imply G(/3~x) "~ G(x)e nh"(x) as n --+ c~. For almost all x,/3Jx (mod 1) is uniformly 

distributed on [0, 1) [17], and it follows that i f g  > 0, hn(x) converges to f~ log g(t)dt for almost 
all x. However, the numerical experiments in [ 16] revealed a more complicated structure of  the limit 
of {hn} on the exceptional set. 

In this article we will study the asymptotic behavior of G(x) at infinity in the setup of (1.I)  
and (1.2). The basic idea comes from the following result which can be derived easily from the 
theory of Ruelle operator on symbolic dynamical systems [1]. Let g(x) be a period 1 dyadic Hrlder  
continuous function with g(0) = 1 and inf{g(x) : x e [0, 1)} > 0. For any q, s ~ R, let 

P(q) 
o ~ = S + - -  

log 2 

Then, 
T [ T ~ if c~ > 0 

f l  xSGq(x)dx~ l ogT  if ~ = 0  / O(1) if o~ < 0 

where P(q) is the pressure function associated with g (see Section 2). Moreover, 

d imn  x :  lim hn(x)=a = 
n-+co log 2 
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where P* is the Legendre transformation (convex conjugate) of  P and dimHE denotes the Hausdorff 
dimension of  E. 

The positivity of  g is a major restriction. In Section 3 we actually prove some more general 
theorems that include cases where g(x) is proximal (see Section I), or g contains a factor I cos 7rx I N 
which is common for wavelets and Bernoulli convolutions. For these we make use of Hennion's [ 13] 
quasi-compactness approach to the Ruelle operator. 

The other aim of  this article is to obtain explicit calculations of the pressure function P (q). We 
obtain an algorithm for the class of  functions constant on the dyadic intervals of [0, 1), i.e., dyadic 
step functions (Theorem 7). This can be used to approximate the pressure function for more general 
g. For example, we apply this to estimate the modulus of  continuity of  the Daubechies scaling 
functions and significantly improve the known estimate. The pressure of g can also be calculated 
explicitly in some special cases (see Proposition 4 and Section 5). 

The material is organized as follows. In Section 2, we recall some notations and results 
concerning the dynamical system, and Hennion's approach of the Ruelle operator. The main theorems 
are proved in Section 3. In Section 4, we obtain a matrix method which gives an exact calculation of 
the pressure function if g is a dyadic step function. We also present different calculation techniques 
for some other important special cases. Section 5 is devoted to the distribution solution of the 
dilation equation of  which we can apply our results. Specifically, we examine the Cantor measures, 
the Bernoulli convolutions, and the wavelets, as well as some other illustrating examples. 

We point out that here we are only dealing with the dyadic case; similar results can be stated 
directly for/~-adic case; higher dimension cases can be handled with certain modifications and will 
be presented in a forthcoming paper. The main unsettled case is that G(x) = g (x /~ )G(x /~ )  when 

> 1 is not an integer. 

2. The Transfer Operators 

Let E2 = {0, I}N be the symbolic space and equipped with the usual metric d(x, y) = 
min{2 - i  : xi ~ Yi}. Let tr : E2 ~ E2 be the shift transformation defined by ~r(xl,x2, . . . )  
= (x2, x3, -" "). For a continuous function on E2 (i.e., g e C(E2)), let 

varkg = sup{[g (yl) -- g (Y2)I : Yl,Y2 E Ik(x) ,x  E Z2} (2.1) 

where Ik(X) = {y : Yi = x i ,  i = 1, . . . ,  k} is the cylinder set with base (Xl, . . . ,  x~). A function 
g ~ C(E2) is said to be Hi~ldercontinuous if there exists c > 0 and 0 < ct < 1 such that 

varkg < c2 -ak for all k > I . (2.2) 

Denote by H(E2)  the class of all such functions and by Ha(E2) (0 < a < 1) the subspace of f 
satisfying (2.2). Let Ifl~ be the infimum of the c in (2.2) and let 

IIIflll~ = llfll -I- Ifl,~ 

(llfll being the uniform convergence norm of C(E2)).  Then the space Ha(E2) equipped with the 
norm Ill �9 II1~ becomes a Banach space. 

For g ~ C(E2),  define the transfer operator Lg : C(E2) ~ C(E2) by 

L g f ( X ) =  ~ g ( y ) f ( y ) .  
y~cr- l (x) 

(see [ 1, 4, 11, 13, 23, 27]). We shall need the following theorem, which is a special case of a theorem 
of Hennion [13] (see also [15] and [22]). 
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Theorem 1. 
Suppose O < g ~ Ha(E2) for some O < ot < 1. 
(i) The operators Lg and Lg IH~(r.2) have the same spectral radius p. 
(ii) Lg : Ha(E2) ---> H a ( E 2 ) i s  quasi-compact. 
(iii) p is an eigenvalue of maximal order among all eigenvalues 3~ with IXl = p. 
(iv) If g is irreducible, then p is the only eigenvalue with modulus p and the eigenfunction 

space corresponding to p is generated by one strictly positive function. 

Let us recall the two notions involved in the statement of  the theorem. The quasi-compactness 
of  Lg means that there exists a positive 0 < r < p and two closed subspaces E and F of Ha(E2) 
such that 

H~(E2) = E ~ F, Lg(E) c_ E, Lg(F) C F 

and that I < dim E < oo, the eigenvalues of Lgle are of modulus > r, the spectral radius of  
LIe  is strictly smaller than r [13]. The irreducibility of g (or of Lg) means that for any x and any 
continuous f > 0 not identically zero, there is an n such that L~f (x )  > 0. There is a geometrical 
way to describe the irreducibility. For g > 0, we define a path of x ~ E2 of  length n to be a finite 

X n sequence { k}k=l such that xk r c r - l (x~- l )  and g(xk) > 0 for all 1 < k < n (with the convention 
that xo = x); the orbit 0 (x) of x is defined to be the closure of the union of  all the paths {xn }. Then 
g is irreducible iff O(x) = E2 for any x e E2. To show this equivalence, it suffices to note that 

L~ f (x) = ~ g(x l )" ' "  g(xn) f(xn) 

where the sum is taken over all possible paths {xk} of x of length n. A still weaker condition 
concerning the positivity o f g  is theproximality, i.e., O(x) [-) O(y) ~ 0 for any x and y. 

Theorem 2. 
Suppose 0 < g E Ha(E2). Let p be the spectral radius of Lg. 
(i) Suppose that g is proximal and that there is a strictly positive p-eigenfunction h E C(E2). 

Then there is a probability measure v with (h, v) = 1 such that for every f ~ C(:E2), 

lim 1 ~--~ j - p - JL  f ( x )  = (f, v)h(x) uniformly for x E ~2 �9 
n--~oo n 

j - - I  

(ii) Suppose g is irreducible. Then the above strictly positive h exists and for every f E C (~2), 

lim p-nLngf = (f, v)h(x) uniformlyfor x ~ E2 . 
n ---~ c~ 

P r o o f .  
measure/z which satisfies L~(/z) = / z  and for each f E C(E2), 

N 
1 

lim - -  ~ Lng(f)(x) = (f, lz) 
N---* r  N 

n----1 

([4, p. 287]). For the present case with a positive h, we let 

h(x)g(x) 
~ ( x )  = - -  

ph(cyx) 

It is easy to check that ~ 6 Ha(E2) is proximal, L~ 1 = 1 and 

(i) It is known that if g is proximal and Lg 1 = 1, then there exists a unique probability 

uniformly on x (2.3) 
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Note that if h is changed to ch, ~ does not change. So, by changing the scale c, we can get a 
probability measure u = h-1/z.  By applying (2.3) to ~ and h- l  f ,  the assertion in (i) follows 

To prove (ii) we observe that p is the only eigenvalue with modulus p. Using the quasi- 
compactness, it is then easy to see that p - n  L~ f converges uniformly for every f ~ Ha (E2). In fact, 
every f ~ H~(~2)  can be decomposed into f l  + f2 with f l  E E and f2 E F where E and F are as 
in the definition of quasi-compactness. Moreover, suppose E is the p-eigenfunction space. So, 

= pnf!  + r, f2 

which implies the announced convergence because the spectral radius of  Lg restricted on F is strictly 
smaller than p. The limit is the same as in (i). Observe that H~(E2) is dense in C(E2).  So, the 
restriction f ~ Hc~(E2) can be reduced to f ~ C(E2).  [ ]  

To be able to apply (i), we should verify that there is a strictly positive eigenfunction for p. 
Under the condition that g has a finite number of zeros and that Lg l(x)  > 0 for all x, Herv6 [14] 
gave a necessary and sufficient condition for this: either there is no invariant periodic cycle or there 
is a (unique) invariant periodic cycle C with 

I-I g(Y) = p 
y~C 

and the order of  p equals to 1. Recall that a point x is periodic of order p if there exists p such 
that x ~ ~r-P(x), the periodic cycle determined by the periodic point x is by definition the set 
{x0 = x, x l , . " , X n - l }  where xi ~ cr-l(xi- l) ,  i = 1 , . . . , n  and a compact set F is said to be 
invariant if F contains all orbits of points in F.  The reader can refer to [4, 13] for all these notions. 

The measure u in (i) is continuous if g has no invariant periodic cycle, and v is discrete and 
supported by the cycle if g has a unique periodic cycle [4, p. 287-295]. In the case that g is 
irreducible, it is easy to see that the support of/zg is the whole 22 because for any 0 < f 6 C(E2) 
not identically zero, there exists n such that {x : L ~ f ( x )  ~ 0} n supp(/x) r 0. The invariance of 
/Zg implies that 

(f ,  Ixg) = (Lngf, lzg) > O. 

Therefore, supp(/x s) n supp( f )  g: 0. Since f is arbitrary, supp(/Zg) equals E2. 
We call 

Pg = log p .  

the pressure of g ([ 1, 23] where it is called the pressure of  log g). Since the operator Lg is positive, 
the operator norm of Lg equals to IILg 1 II. So we have 

Pg= lim l l o g  L~I . 

For a fixed g we use P(q) to denote the one parameter family Pgq, q ~ R. It is easy to show that 
P(q) is a convex function (may attain ec). 

I f g  > 0, Theorem 2 corresponds to the Ruelle-Perron-Frobenius theorem [1, 23] (see also [1 I, 
27]). In this case, Pg is well related to the entropy via the variational principle. Recall that the entropy 
of a measure/z  is defined as 

h,r(/z) = lim ~ - ~  (In)log/z (In) . 
n -'*-O(3 

tn 

where the Ins are the cylinder sets of  E2 with bases (x~, . . .  xn). The variational principle states that 
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where Z denotes the set of  cr-invariant measures /z  on I22 (i.e.,/z ----/z o ~r-l) ,  and the supremum 
is uniquely attained by/Zg = h-Iv ,  called the Gibbs measure of g, where h and v are defined as in 
Theorem 2 [1, 28]. Moereover/Xg shares the following Gibbs property. There exists y > 0 such 
that for all x ~ 122 and n > 1, 

y-1 < lZg (In(x)) < y .  (2.4) 
- ( )) exp -nPg + Lk=O ogg  (~rkx 

The Gibbs measure/Zg is ergodic and even mixing. 
All the preceding results can be translated onto the interval [0, 1) instead of  122. Each x ~ [0, 1) 

has a dyadic representation. In the case where x has two representations x = 0.xl  . . - x n l 0 0  . . . .  
0.xt . . .  xnO11 - .- ,  we will use the first representation only. Let t : [0, 1) --+ I:2 be the natural 
embedding and let 12~ = t([0, 1)). Then we can identify [0, 1) with 12~. A HOlder continuous 
function ~o on 12~ [an obvious adjustment of  (2.1)] can be extended to a HOlder continuous function 
on E2 and hence we can identify H(12~) and H(122). Furthermore, E~ equals 122 except for countably 

! 
many points, and the non-atomic property of  the Gibbs measure/Zg enables us to restrict/zg on 122 
without any change. 

A function g on [0, 1) is said to be dyadic HOlder continuous if g o 1-1 E H (E2).  Equivalently 
there exist K > 0 and 0 < a < 1 such that 

Ig (Yl) - g  (Y2)[ < K2 -ha V Yt, Y2 E In(x), x E [0, 1), n > 1 

where In (x) is the dyadic interval of  length 2 -n containing x. Let H([0,  1)) denote the class of  all 
such functions, Ha([0, 1)) the subspaces of  H([0,  1)) corresponding to Ha(E2) ,  and H0([0, 1)) the 
class of  functions g on [0, 1) corresponding to C(E2),  i.e., g 6 H0([0, I)) if and only i fg  o , -1  is the 
restriction of a continuous function on 122. For convenience we extend these functions periodically 
on the real line and call them dyadic HOlder continuous (dyadic continuous respectively). It is clear 
that a dyadic continuous function is bounded; it is continuous on the non-dyadic points and is right 
continuous and left-hand limits exist on the dyadic points. 

Since a - l ( x )  = {S0(x), Sl(x)} where So(x) = �89 Sl(x) = �89 + �89 the transfer operator 
Lg is translated to 

The following two propositions explain why the transfer operator is useful in the study of 
multiperiodic functions. 

Proposition 1. 
Suppose 0 < g E H0([0, 1)) and is periodic on R. Then for any f ~ H0([0, 1)), 

f o i L n g f ( x ) d x = 2 n f o l  n-1 f ( x )  1-I g(2Jx)dx " 
j=o 

Proof. For n = 1, by making use of  a change of variables we have 

f0' /o' /o' Lgf (x )dx  = g (x /2 ) f ( x /2 )dx  + g(x/2 + 1 /2 ) f (x /2  4- 1/2)dx 

fo '/2 f '  = 2 g ( y ) f ( y ) d y + 2  g(y ) f (y )dy  
/2 Z' 

= 2 g ( x ) f ( x ) d x .  
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Suppose now the result is true for n. Then by using the same change of variable technique, 

n--1 n- - I  

fol'": fo' I = = g ( x ) f ( x )  I-I g ( 2 j+ lx  dx 
0 j=o 

which proves the proposition. [ ]  

Proposition 2. 
Suppose 0 < g E H([0,  1)). Let P(q) be the pressure function corresponding to g. 
(i) I f  g is irreducible, then 

1 :ol(  ( P(q) = nlirn log g 2ix + log2 .  
= 0  

(ii) I f  g(x) > 0 and g is not a constant, then P(q) is analytic, strictly convex, and strictly 
positive for all q E R. 

P r o o f .  Assertion (i) follows by taking f = 1 in Theorem 2 (ii) and making use of  Proposition 1. 
To prove (ii), we first note that if 

g(x) = Cu(2x) /u(x)  (2.5) 

for some constant C and some continuous function u > 0, then P(q) is affine; otherwise P(q) is 
strictly convex and analytic [23, p. 63, p. 91]. 

Now under the assumption that g satisfies (ii), we need only see that g is not of  the form (2.5) 
and the strict convexity and analyticity of P(q) follows. Assume otherwise, then the C in (2.5) must 
be 1 (check x = 0) and the equation on g reduces to 

f i g ( 2 _ J x  ) = u(2x) 

j = 0  u 

Without loss of  generality we can assume that u(0) = 1, then G(x) = 1-[~=0 g(2-Jx)  = u(2x). 
On the other hand, from G(x) = g(x /2)G(x /2) ,  it follows that u(2x) = g(x/2)u(x)  and hence 
g(x) = u(4x)/u(2x)  = g(2x).  We have inductively, g(x) = g(2nx) for all n. It is well known that 
for almost all x, (2nx) is uniformly distributed, a priori dense in the interval [0, 1), from which we 
deduce that g is a constant, which is a contradiction to the assumption. 

For the positivity of P,  we observe that S0 6 27 and the variational principle implies that 
P (q) > ha (80) = 0. Moreover, the above inequality must be strict by the fact that the maximality of  
P(q) in the variational principle is not attained at 80 which, being discrete, is not the Gibbs measure. 
[] 

We conclude this section by giving an illustrating example. Let g(x) = cos2rrx, then g(1/2)  = 
0 and g is not proximal because the orbits of  0 and 1 are the points themselves and they are disjoint. 
On the other hand, if we consider gl(x) = cos22zrx, then O(0) = {0, �89 O(1) = {1, �89 and 

O(�89 = {�89 It is easy to show that O(x) M O(y) ~ 0 for any x, y ~ [0, 1]. Consequently, gl is 
proximal but not irreducible. 

It is easy to see that Lg has maximal eigenvalue 1 and the corresponding eigenfunction is the 
constant function 1. Lg~ also has maximal eigenvalue 1 in view of the calculation (for P(1)) in the 
following, but there is no simple form for the eigenfunction. 

The pressure function of g (and also of gl )  is given by 

( 1 - 2 q ) l o g 2  if 0 < q < l / 2  
P(q) = 0 if q > 1 /2 .  (2.6) 
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To see this, we use P(q) = limn~oo II Lgq 1 (x)II l / . .  Note that 

( n ~  ( ) )q  (sinYc2ny)q 
Lng q l (x )= ~ g 2ky = Z \2-g~ln-~y 

y~a-~(x) \k=O y~o--" (x) 

Since y ~ cr-n(x) if and only i f y  = k/2 n q- x/2 n for some 0 < k < 2 q, i f x  = 1/2, sin~r2ny = 1 
for every y 6 cr-n(x),  then 

1_ 
Lg ' l l (x)= Z (2nsinrry) 2q �9 

yEa-I (x) 

I f  x # 1/2, Zgq 1 (x) is always bounded by the right-hand member in the above expression. By using 
sin y = sin(k~2 n + x/2 n) ~ k/2 n, we have 

2 n 2q / "~ 20-2q)n if 0 < q < 1/2 

ILngql(x) ~ E ( k )  [ ~ n  if q = l / 2  
k=l converges if q > 1/2 

and (2.6) follows. This example also shows that in general P(q) is neither strictly convex nor 
analytic. 

3. Asymptotics of Multiperiodic Functions 

Let g 6 H([0,  1)) with g(0) = 1. Then the product 

Oo H(x) O ( x )  = g 

k=l 
(3.1) 

converges uniformly on compact subsets of R and G > 0 provided that g > 0. The function G 
defined by the product (3.1) is called a multiperiodicfunction in [ 16]. Observe that on every bounded 
interval G is H61der continuous and is of the same order as g. 

Theorem 3. 
Let 0 < g ~ H([0,  1)) with g(O) = 1. Let P (q ) be the pressure function of g q. For any s ~ R 

and any q > O, we have the inequality 

lim sup 
r ~  log T 

log fl T x s G q (x )dx P(q) I 
< m a x  0, s + 1--~g2 / . 

If in addition g is proximal without an invariant cycle and has at most finitely many zeros, and if 
Lg 1 > O, then the limit exists and equality holds in the above expression. 

P r o o f .  By using G(x) = G(2-nx) I'I~=l g(2-kx), we have 

f2 ~'+l G(x)qdx f22'*+1 f i (  )qdx = G (2-nx) q g 2-kx 
n 

k=l 
2 n - I  

= 2n fl  G(x)q H g(2kX)qdX 
k=O 

(change of  variable) 
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I n--I 
= 2n f0 G(1 +X) q Fig  (2kx)qdX (g has period 1) 

k=0 

= fo 1 L g q f ( x ) d x  (Proposition I) 

where f(x) = G(1 + X) q. For T = 2 N, we have 

T N-1 f22n+l N- I  p( ) f01 xSa(x)qdx ~ Z 2sn O(x)qdx = ~ 2n(s+~)pgq Lgqf(x)ax. 
n 

n=O n=0 
(3.2) 

where pq is the spectral radius of Lgq. Note that the eigenvalue #q corresponding to Lgq is of 

finite multiplicity (by Theorem 1). It follows that I I L : f l l  - -  O(nm-lP~), so that fJ L~f(x)dx = 
O(nm-lpq) and there is a constant C such that 

T N- I  [ . p(q).~ 
xS G(x )q dx <_ C Z nm-12nl's+ "g2 ) 

n=0 

m--I N ( s + ~ )  A c c o r d i n g t o s +  P(q) > 0 , =  0, or < 0, the last sum is bounded by N 2 gz ,Nm,orO(1). log 2 
Thus, the inequality in the theorem follows. 

To prove the reverse inequality, we only need to treat the case s + P(q) > 0. We first observe log 2 -- 
that the hypotheses implies that Lgq has a strictly positive eigenfunction [14]. For any 0 < 8 < 1, 
Theorem 2 (i) implies that for large N, 

1 N- I  

fo z 
n=6N 

1 N-I  
-N Z pqnLng qf(x)dx >- CN(f, v) > 0 

n=SN 

where C = (1 - 8) f hd v. Since g has finitely many zeros, f (x) = G q (1 + x) has at most countably 
many zeros. Also the additional assumption that g has no invariant periodic cycle implies that/z is 
a continuous measure. Hence, (f ,  v) --# 0. By (3.2) there exists a constant C8 > 0 such that 

fl TxsG(x)qdx > 2 m ( s + ~ )  fo 
1 N - I  

Z pqnLng qf(x)dx > C'~N2m(s+~~ 
n=SN 

It follows that 
l~ f?  xsGq(x)dx ( P(q) ~ 

l iminf  > 8 s + 
T---,,. oo log.T - ~ . ]  

which gives the reverse inequality as 8 ~ 1. [ ]  

We remark that the proximality alone is not sufficient for the equality of the identity in the 
theorem. An easy example is to check the P(g) of g(x) = cos22rrx in the last section. 

I f  g is irreducible, by Theorem 2 (ii), f l  Lgq f ~ pq. It follows from (3.2) that 

f 2u N-12n(s+~) xSG(x)qdx "~ Z 
n=O 

Consequently, we have the following. 
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Theorem 4. 
Suppose 0 < g ~ H([0,  1)) is irreducible and g(O) = 1. Let 

P(q) 
o e = s + ~  

log 2 

Then for q ~ R, 

r I Ta if c~ > 0 
f l  xSGq(x)dx "~ log T if = 0 / 0~ 

O(1) if ~ < 0 

Corollary 1. 
Let g ~ H([0,  1)) with g(O) = 1. Suppose infx g(x) > O, then we have 

(3.3) 

fo r r ~  G(x)qdx ~ 

In particular G ~ Lq(R) for any q > O. 

P r o o f .  The last statement follows from the fact that P (q) > 0 for q > 0, which is a consequence 
of  the variational principle (take v to be 30). [ ]  

Theorem 4 gives a partial answer to Problem 1.3 in [16]. Note that the zeros of  g actually 
play a crucial rule in the behavior of G(x) as x ~ c~. Besides the above two theorems, we can see 
this more explicitly from the following theorem. Such g appears frequently in wavelet theory (see 
Section 5). 

Theorem 5. 
Let g (x) = I cos Jr x IN gl (x ) where g I ~ H ([0, 1)) is irreducible and g I (0) = 1. Let P| ( q ) be 

the pressure of g q and let 
Pl (q) 

o t = s  + - - - N q .  
log 2 

Then (3.3) holds the same. 

P r o o f .  The proof will be based on Theorem 4 and the formula 

zrx sin Jrx 
H cos ~ = Jrx 
k=l 

The H61der continuity of  g at 0 implies that if 2 n < x < 2 n+l, 

OO 

k = n + l  

for some constant C > 0 depending only on gl- Hence, 

f l  2" xSGq(x)dx = f l  s ~q-  - [ sin :rx] Nq 2nx Crl(X ) ~xNq dx 

>)q n f0 t sinTr2ky Nq dy ,~ E 2k(l+s-Nq) gl (2J y 

k= 1 =0 
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Let I = [ i /2  k, (i + 1)/2 k) be a dyadic interval of [0, 1) and Yt an arbitrary point in this 
interval. The dyadic H61der condition of log gl implies that 

k 
maxt  l'-Ij=0 gl (2 j Y) 

1 <  < C  
- . k 

m i n t  l"[j=0 gl (2Jy) 

where C is a constant independent of  k and I .  By the mean value theorem for integral, 

fol C=~ogl(2JY))q  sinTr2kyNqdY )q J, = Z g l ( 2 j y l )  sinrr2~yNqdY I 

(j~=O ( ))q = C '2-k ~_~ gl 2Jyt 1 
fo gl 2J Y dy . 

If we denote G l the multiperiodic function defined by gl,  then 

q 

xSGq(x)dx ~" 2 k(l+s-Nq) gl 

k = l  "=  

(the last approximation is in the proof of  Theorem 3). By applying Theorem 4 to G l, the assertion 
of the theorem follows. [ ]  

Remark  1. 
Theorem 3 implies that x s G (x) q is integrable on [ 1 ~ )  if s + e(q) < O. In particular, G E L q ' log 2 

if P(q) < O. Corollary 1 shows that for G q to be integrable, g must be zero somewhere. Under 
the condition g (1/2) = 0, Hervi [14] proved that if P (q) = 0 and the spectral radius of  Lgq is a 
simple eigenvalue, then G E L q. He also proved that this condition is necessary if, moreover, every 
invariant compact set associated with g contains 0 or 1. [] 

Remark  2. 
For q > 0 and s ~ R, we define Lq(R) to be the space o fF  on R such that 

R(1 + I~[)qslF(~)lqd~ < oo. 

When q = 2, L2(R) is just the Fourier transformation of the Sobolev space H2(R). I f  G is a 
P~ (q) [] 

multiperiodic function as in Theorem 5, then G ~ Lq (R) if and only if s < N -  q log z" 

Now we are going to study the limit (1.2). For an (extended value) convex function f on R, 
we define the convex conjugate (also called the Legendre transformation) of f by 

f*(ot) = s u p { ~ x -  f ( x ) :  x E R}.  

Note that f *  is a convex function and if f is differentiable, then f*(~)  = otx -- f ( x )  where 
= f ' (x ) .  For a fixed a 6 R, let 

K , ~ =  x ~ [ 0 , 1 ) :  lira - logg  2ix =c~ . 
n--*e~ n j=0 
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Theorem 6. 
Let g ~ H([0, 1)). Suppose inf{g(x) : x e [0, 1)} > 0, g(0) = 1 and g is not identically 

constant. Then for ct E R such that -oo  < P*(ot) < c~, we have 

P*(e 0 
dim K ~  = - -  

l o g  2 

where dim Ku means the Hausdorff dimension of Kco 

Proof .  If we take ~ = P~(q), we claim that/s is concentrated in Ka. Indeed since/s is ergodic 
we can apply the ergodic theorem to the Gibbs measure/Zq: 

ln--I f0 lim n ~-~logg(2Jx ) t n ~  = logg(x)dlzq(X) 
j---0 

(3.4) 

for/Zg almost all x ~ [0, 1]. From the variational principle, /Zq is the unique invariant measure 
which attains the supremum 

P(q) = her (IJ, q) -}-q log g(x)dlzq(X). 

This combines with the property of the convex conjugate that P(q) = -P*(ot) -t- qa implies that 

hcr(IZq) = -P*(ot) and ot = f~ l o g g ( x ) d l z q ( X ) .  Hence, l z q ( K u )  = 1. 
Next we note that the Gibbs property of//,q implies that 

n-I 
lim l ~ l o g g ( 2 J x )  lim log/.tq (In(x)) = p(q) - qn~oo n 

n-.-~ oo n 
j=0 

provided that either one of the limits exists. Hence, we have for x ~ Ka, 

lim log/zq (In(x)) _ P(q) - qct = -P*(ot) 
n ~  log 2 -n log 2 log 2 

We have seen that/l,q is concentrated on the set 

K~={x~[0,1] :n~ool im loglzq(In(x))_-P*(ot)}log2 -n log2 

The mass distribution theorem (Proposition 4.9 in [ 10]) implies that dim Ks = - P *  (~)/ log 2 which 
completes the proof of the theorem. [ ]  

Remark  3. 
By using the uniformly distribution property of 2"x (rood 1), it is easy to show that if g(x) > O, 

then 
n--I 1 

lim l = fo logg(t)dt 
n~cr n 

j=o 

for almost all x ~ [0, 1). See also [16]for more general cases. [] 

To illustrate this theorem, we let g(x) = (1 + 2 sin 2 rrx). Note that the multiperiodic function 
2 defined by cos rr x g~/~'x') is the modulus of the Fourier transformation of the well-known Daubechies 

scaling function D4 (denoted by f2 in Section 5). Figure 1 is the graph of G(x)  = ['Ik=o~176 g(~).x 
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Figure 2 is the graph of hn(x) = 1 ET_~I log(1 -t- 2sinEzrx) for n = 5, 7, 9, 11. Figure 3 is the 

graph of P(q) and P*(ot). In view of the above remark, oto = P'(O) = f l  logg(t)dt = 0.62381 
and P*(oto) = 1 as in the picture. Also, in the picture the domain of P*(~)  is in-between 0 and 0.85 
which agrees with the values of  {hn (x)}. The set of x that assumes such values are becoming more 
rare as the values are off from the mean do. 

2500 

2000 

1500 

I000 

500 

i , 

I0 20 30 40 

FIGURE 1. G(x) = l-'I~=0 ( l  + 2sin2 ( ~ ) ) .  

50 

4. Calculation Techniques 

In view of applications of  the previous results, we should calculate the spectral radius of a 
transfer operator. However, it is in general difficult. We present here an approximation approach. 

Let us first consider the case where g is a dyadic step function. If  g > 0 takes only two 
values on [0, 1/2) and [ I /2 ,  1), i.e., g(x) = aox[o,l/2) + alX[1/2.1) with ao, al > 0. Then for 
x = 0.XlX2 �9 �9 

n-1 
H g ( 2 k x ) = a x l ' " a x , , .  
k=O 

Hence, 

f o '  n-1 ( ) )  q ( a q l - a q )  n 

Xl ,"',Xn 

Consequently by Proposition 2, 
P ( q ) = l o g ( a  q + a  q) . 

Theorem Z 
Let m > O. Suppose g > 0 takes 2 (re+l) values on the dyadic intervals of length 2 -(re+l) and 

let Gin(x) -- I-I~n_-o 1 g(2kx). Let Mq be the 2 m x 2 m matrix defined by 

[ { i2ra+-J ) ]  O < i , j < 2 r a - - 1  
Mq = G q k 22m ' - - 
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FIGURE 3. P(q)  and P*(c0. 

a n d  let )~q is the m a x i m a l  e igenvalue .  Then  

l o g  ~.q 
e ( q )  - -  

m 

0.2 0.4 0.6 0.8 

Proo f .  Suppose g > 0 takes 2 m+l values on the dyadic intervals of  length 2-(re+l): 

g ( x ) = a ( x l , . . . , X m + l )  if x = 0 . x l . - . X m + l " .  �9 

Then for x = O.xl  . .  " x m Y l  "" �9 Ym " " ", by shifting the coordinates we have 

ra--I m 

Ym) = F I  g (2kx)  = l '-I  a (xk ,  " " , X m ,  Y l , ' " ,  Yk) �9 Gm (O.Xl " " XmYl " " 
k=0  k= l  

Inductively i fx  = O.xi  �9 �9 . XmYl  . . .  Ym "'" Wl "'" tOmZl "'" Zm "'" [the first (n + 1)m coordinates are 
regrouped into (n + 1) blocks], then 

nm--I 

I - I  g ( 2 k x )  = Gm (O.xl " " xmYl  " " ym)  " " Gm (O.Wl " " WmZl " " Zm) . 
k=0 

It follows that 

fO \k~I=o g 1 ( nm- I  ( 2 k X ) ) q d X  ~ 2 - ( n + l '  m 

G q ( O . x l ' " x m Y l " "  Y m ) " "  G q ( 0 . W l " "  W m Z l " ' Z m )  

where the sum is taken over all the possible choices of  0s and ls of the variables in the n-products. 
To arrange this in a matrix form, we let 

Mq-- a q \  , o< i ,  j s  - 1 .  

Then 
1 /nm-1 \ q  

f o  Ik~=O g ( 2 k x ) )  d x  ~ 2 - ( n + l ) m l M q l t  

where 1 = [ 1 . . . . .  1 ]. The statement of  the theorem follows from this expression and Proposition 2. 
[] 
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E x a m p l e  1, Suppose g > 0 takes four values on the four dyadic intervals [0, 1/4),  . - . ,  [3/4, 1). 
Let g(x) = a(xl,x2) if x = 0 .x lx2 . . . .  Then according to the above notation, Gt(O.xlyl) = 
a(xl, Yl) and 

( aq(O,O) aq(O,l) ) 
Mq = aq(1, O) aq(1, 1) 

and we can calculate the maximal eigenvalue of Mq and then the pressure of  g. 

E x a m p l e  2. For x = O.xlx2x3..., let g(x) = a(xl, x2, x3) with 

a(O, O, O) = a(1, 1, 1) = 1, 

1 
a(0,  1,0) = a ( l , 0 ,  1) = ~, 

3 
a(0,  0, 1) = a(1, 1, 0) = - 

4 
1 

a(0,  1, 1) = a ( 1 , 0 , 0 )  = - 
4 "  

Then g takes 8 values and m = 2 in the above theorem and G2 (0.xl XEyl y2) = a (x l, x2, y l )a  (x2, Yl, y2). 
Write Gq(o.xlx2YlY2) = b(xlx2; YlY2), the corresponding Mq is the 4 x 4 matrix defined by 

b(00; 00) 
b(01; 00) 
b(10;00)  
b ( l l ; 0 0 )  

16 q 
_ 1 2 q 

16q 4 q 
3 q 

b(O0; 01) 
b(O1; 01) 
b(lO; 01) 
b ( l l ;  01) 

12 q 6 q 
4 q 3 q 
6 q 4 q 
12 q 12 q 

b(00; 10) 
b(01; 10) 
b(10; 10) 
b ( l l ; 1 0 )  

3 q 
4 q 
2 q 
16 q 

b(O0; 11) '~ 
b(01; 11) ) b(10; 11) 
b ( l l ;  11) 

The eigenvalues k.q can be calculated and the graphs of P(q) = log Lq and P* (t~) are drawn. 

O. 

1 

0.8 

0.6 

0.4 

1 2 3 -2 L 1  4 -0 .8  -0 .6  - 0 . 4  -0 .2  

FIGURE 4. P(q) = logXq and P*(r 

The above dyadic functions can be used to approximate any other functions g ~ H([0,  1)). 
Specifically, we have the following. 

Proposition 3. 
Suppose f ,  g > 0 are in H([O, 1)), q ~ R, 

(i) I f  f <_ g, then Pf(q) < Pg(q). 
(ii) Ill log f ( x )  - l o g  g(x)l < ~, then I P f ( q )  - Pg(q) l  < IqlE. 

P r o o f .  (i) follows immediately from the definition. (ii) is a simple consequence of the variational 
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principle. It can also be proved directly. In fact, by assumption, 

n - - I  n - I  

E l o g f ( 2 k x ) - - E l o g g ( 2 k x )  < n , ,  
k=0 k=0 

so that 
n- -1  

e-n, < l"Ik=o f (2kx) < e n, 
- -  n - -1  - -  " 1-lk=o g (2kx) 

This combined with Proposition 2 yields the desired inequality. [ ]  

Remark  4. 
The above approximation also holds if f and g are replaced by functions of the form in 

Theorem 5 (with the same factor IcosTrxlN ). Furthermore, the approximation holds the same if 
fl = 2 is replaced by any integer fl > 2. [] 

The next method is especially useful for larger integral fl (e.g., fl = 3 in connection with the 
Fourier transformation of the Cantor measure), we hence formulate it with a more general ft. The 
multiperiodic function is defined by G(x) = g(x / f l )G(x/ f l )  where fl > 2 is an integer. Given a 
function 0 < g 6 H([0,  1)), the transfer operator becomes 

#-1 

j=O 

Proposition 4. 
Let 0 < g ~ H([0,  1)) and fl > 2 be an integer. Let p be the spectral radius of  Lg. 
(i) l f  m < Lrg 1 < M for some integer r and some constants m, M (depending on r), then 

m < p r  ~ M .  

(ii) Let an be the Fourier coefficients of g, then 

P 
ao - E I atin I <- -~ <- ao + E [ al3n 1" 

n~O n~O 

In particular, if a#n = O for all n ~ O, then p = flao = f f l  g(x)dx. 
(iii) l f  g is periodic and continuously differentiable, then 

P ao max Ig'(x)[ ~ -  < 
- t ~  

P r o o f .  (i) By iterating L~ l < M, wegetL~rl  < Mn foranyn > 1. Thatp  = limn--,oo IIL~rlll 1In 
implies that M is the upper bound of pr. In the same way, we can obtain the lower bound of pr. 

(ii) By developing g as a Fourier series, we have 

( t-l__ ' /  
27rin~ | ~ e27rin~ Lgl(x)  = E a,e 

n = - c ~  \ j = O  ] 

Observe that the second sum equals fl if n is a factor of fl and equals 0 otherwise. So, 

oo 

Lgl(x)  = fl E a#rne2rrimx " (4.1) 
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Then (i) with r = 1 applies. 
(iii) Let t# be the best approximation (under the supremum norm) of g by trigonometric 

polynomial of order/~ - 1. Let 8 = / 3  -111g'll~. Then, by the Jackson theorem [29, p. 115], 

Consequently 

t 0 - 8 < g ( x ) < t / ~ + 8 .  

By (4.1) Lt# l (x)  = a0 and the result follows from (i). 

Lt# l ( x ) -  138 < Lg l ( x )  < Ltal(x)  + j6~ . 

[] 

5. Applications 

A dilation equation is a functional equation of the form 

f (t) = ~ Cnf (2t - n) (5.1) 
n 

where {cn} is a given finite sequence of real (or complex) numbers. Here the solution f is regarded 
as a distribution (in the Schwartz sense) and is called a scaling distribution. We are interested in the 
compactly supported solution, It is known that a necessary and sufficient condition for existence of 
such a solution is Y~.n cn = 2 m where m is an integer (see, e.g., [7]). The Fourier transform f of  
such f is an entire function of exponential type by the Paley-Wiener Theorem. Its restriction on the 
real line is a multiperiodic function 

1 ~ 27rinx f ( x )  = p ( x / 2 ) f ( x / 2 )  with p(x)  = ~ ]__. cne . 
n 

If ~ cn = 2, we have the following expression of f in terms of the polynomial p 

OQ 

= I-I  
n = l  

where p(0) = 1. If  ~ cn = 2 m, m :# 1, then 

f = F fro-l) and f ( x )  = ( i x ) m - l # ( x )  

where F satisfies F(t )  = 2 - (m- l )  ~,n c~F(2t - n). Again the scale 2 in Equation (5.1) can be 
replaced by an integer/~ > 2 and the above holds only with some obvious modification. Next, we 
give some concrete examples. We can find some other examples in [12]. 

E x a m p l e  3. Let g(x)  = COS 27"(X and G(x) = I"[~=l g(x /2k)  �9 We can consider this as g(x) = 
Ip(x)l 2 where p is the polynomial corresponding to the dilation equation 

f ( t )  = f ( 2 t )  -t- f ( 2 t  - 1).  

The solution is f = XtO, ll. As a simple demonstration of Proposition 4 (ii), we note that the Fourier 
series of g(x)  satisfies ~-~nr laznl = 0, hence 

p --- 2ao = 2 g(x )dx  = 1 
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and the pressure P(1)  of  g equals to 0. The complete calculation of  the pressure function P(g) has 
been given at the end of Section 2. 

E x a m p l e  4. Let g(x) = cos 2 zrx and G(x) = I-I~=! g(x/3~) �9 The g(x) ---- Ip(x)l 2 where p is 
the polynomial corresponding to the dilation equation 

f ( t ) =  f ( 3 t ) + ~ f ( 3 t - 2 ) .  

Then f is the (Schwartz) derivative of the classical Cantor measure. Similar to the above example, 
the Fourier series of  g(x) satisfies Y'~n~O la3n I = 0. Proposition 4 (ii) implies that p = 3a0 = 3/2; 

the pressure P(1) o f g  hence is equal to log 3. 

We next claim that g is irreducible (adjusted the definition to [0, I]). LetS0x = ~,x Six = ~+~,x ! 

x 2. Sin �9 Sh, then and S2x = ~ + For J = ( j ! , . . . ,  in), let Sj = .. 

x k 
S j x =  ~-~ + 3--- ~ 

for some 0 < k < 3 n. By using that 1/2 is the only zero o f g  and that S j x =  1/2 implies x = 1/2, 
we deduce that for every x # 1/2, the orbit is the whole [0, 1]. Also the orbit of  1/2 is the whole 
interval [0, 1] because So(1/2) = 1/6 ~ 1/2 and becomes the case x ~ 1/2. This proves the claim. 
Now by Theorem 4 we have for t~ = s + 1og(3/2)/ log 3, 

r [ T ~ if ot > 0 
fl  xSG(x)dx "~ T if t~ = 0 log / O(I )  if t~ < 0 

This implies that f E HS(R) (Sobolev space) iff s < t~. In particular, t~ = 0 corresponds to 
s = - 1 + log 2 / l o g  3. So, s/2 ~ - 1.84535 is the Sobolev exponent of  f .  

If  we take q = 2, then the Fourier coefficients of g2 are supported by {0, 4-2 4- 4} and 
Proposition 4 (ii) can be applied: 

f0 
1 1 -3 

p = 3 cos 4 Jrxdx, - 2 �9 4 

Let s2 be the supremum of s such that f ?  xSG(x)2dx < co, then by Theorem 4, 

log (3 f~ cos2' zrxdx) 
s2 = .-~ -0 .10721 . 

log 3 

It follows that the Sobelev exponent of f �9 f is approximately -0 .053605 

E x a m p l e  5. Consider the random series 

oo 
~n 

n - - I  

where {~n } is an i.i.d, random sequence where each En takes values 0 or 1 with probability a0 and al,  
respectively. We are interested in the probability measure/z corresponding to the sum of the series. 
The variable En is called the Bernoulli random variable and the corresponding measure is called the 
Bernoulli convolution measure. The measure/z is concentrated on the interval [0, 1]. We can also 
put it into the form in (5.1) 

/z(E) = a0/z(2E) + allz(2E - 1) 
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If  aj = 1/2, then/z is the Lebesgue measure on [0, 11. Otherwise, /z is singular. The Fourier 
transformation of/z is of the form 

130 

= 1-I p (2-"x) 
n=l  

with 1 ale2reix ) p(x) = ~ (ao + 

Let g(x) --- Ip(x)l 2, then g contains no terms of the form e +2ni(2n)x, n > 0. By Proposition 4 (ii), 
I 2 s o  we have p = ~ (a 0 + that 

= log (a02 + a~)) P(1) = log ((1/4)(ao 2 + a12)) - 2  + 
log 2 log 2 

Since p(x) ~ 0, then by Theorem 4 we have 

log (a g + a 2) 
s < - I + if and only if 

2 log 2 fo ~x2SG(x)dx < ~ . 

It follows that/x ~ HS(R) for such s and only for such s. 
We remark that in [18], by using an entirely different method we can obtain the exact value 

of P(1) for the class of self-similar measures satisfies the open set condition which includes the 
measure considered here. 

E x a m p l e  6, In wavelet theory we are interested in the solution f of (5.1) which is a compactly 
supported L 2, or continuous or differentiable function. The condition on the coefficients are more 
conveniently assumed to be ~ c, = 2. A basic question in the theory is to estimate the regularity of 
f .  Very often it reduces to estimate the asymptotic behavior of f (x )  as x ~ 4-oo. Daubechies [5] 
constructed the following class of scaling functions, which has become classic, 

o o  (x) f , , (x )  = 1--I m,, 
k=l 

with m l v ( x ) [ � 8 9  N = QN(x) where N > 1 is an integer and QN is a polynomial such 

that 
N-1 

IQN(X)I2= pN(sinTrx), pN(X) = E ( N - - 1  + j  )x2J 
j=0 J 

Let gN(x) = IQN(x)I = ~/pN(sinrrx), then IpN(x)l = IcoszrxlUgu(x) and gN(x) > O. Theo- 
rem 5 implies that 

(1 + ]xl)aqlfN(x)lqdx < eo .,t-"> ot < N PN(q) (5.2) 
q log 2 

where PN (q) is the pressure ofgN. This is a criterion for f ~ Ls q (R) (see Remark 2 after Theorem 5). 
Herr6 [14] showed almost the same result but without discussing the critical value. 

We can use Proposition 3 to approximate g~t by a dyadic step function h which takes a value 
of gN on each of the 2 'n dyadic intervals of length 2 - " .  By using such an h we  can construct a 
2 m - I  X 2 m - I  matrix Mq as in Section 4. Denote by X(q rn) the largest eigenvalue o f  Mq, then 

PN(q) l~ X(qm) 
m - - 1  

qTr(N- 1) 
< (5.3) 
- -  2 m 
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Indeed in view of  Proposition 3, we check on ply(X). For 0 < x < 1, 

N-I  N-1 
dxd lOgpN(X)= E (N--I+J)2jx2j-I/E(N--'+' j 

j=l j=0 

The mean value theorem implies that 

Ilog pN(x) - log pN(x + Ax)[ < 2(N - 1)lAxl . 

As I sinxl ~ Ixl, it follows that 

1 
Ilog pN(sin~rx) - logpN(sinrr(x  + Ax))[ < rr(N - 1)IAxl 

and by Proposition 3, (5.3) follows. 
If  we take h on the dyadic subintervals to be the maximal value of  gN on the subintervals, 

and let h be defined similarly by taking infimum on the subintervals instead. Then according to the 
monotonicity of  the pressure function, we have 

_r,,) , ~(m) 
log ~.- lOg Aq 
- -  <_ P ( q )  <_ 
m - 1  m - I  

where the definitions of~_~ (m) and ~(qm) are self-explained. These approximations can be used to give 
numerical approximations. 

We remark that when q = 2, PN (2) [as in (5.2)] corresponds to the Sobolev exponent of fN 
in [3, 9, 25] and the L2-Lipshitz exponent in [20, 21]. These exponents can be calculated exactly 
by using certain simple matrices obtained from the transfer operator Lg. Our approximation is 
hence most useful for the case q ~ 2. In particular, the values PN(1) can be used to estimate the 
modulus of continuity of  fN in [5, Chapter 7]. The following are some numerical estimations of the 

= N - P N ( 1 ) / l o g 2  in (5.2) using m = 8. We have ~min < ot < ~max. The third column is an 
approximation of the a from [6, p. 232]. It is off from the true value significantly when N is large. 

N Otmi n Otmax o~ [D2] N ~min ffmax ~ [D2] 
2 0.5210 0.5216 0.5 12 3.8238 3.8281 
3 0.9793 0.9803 0.915 13 4.0697 4.0744 
4 1.3911 1.3925 1.275 14 4.3100 4.3151 
5 1.7676 1.7694 1.596 15 4.5459 4.5514 
6 2.1159 2.1181 1.888 16 4.7785 4.7844 
7 2.4407 2.4434 2.158 17 5.0084 5.0147 
8 2.7458 2.7488 2.415 18 5.2363 5.2431 
9 3.0340 3.0373 2.661 19 5.4626 5.4697 
10 3.3080 3.3117 2.902 20 5.6875 5.6951 
11 3.5705 3.5745 
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