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1. Introduction. The celebrated variational principle of Ekeland [13, 14] states
that if f is a lower semicontinuous (lsc) bounded below function on a complete metric
space (M,d) then for any γ > 0 and any x0 with f(x0) < +∞ there exists x̄ ∈ M
such that

f(x̄) ≤ f(x0)− γd(x0, x̄) (1.1)

and

f(x̄) < f(x) + γd(x, x̄), ∀x ∈M\{x̄}. (1.2)

This principle is an important tool with a lot of significant applications in many
areas including nonlinear analysis and optimization theory. There are many papers
(see [6, 8, 11, 35] for example) reporting different formulations and some have put
forward extended versions applicable to vector-valued/set-valued functions (see [3, 4,
5, 9, 15, 16, 18, 38]). This paper is devoted to further extensions which are especially
relevant for the study of error bound issue for the following inequality system:

fi(x) ≤ 0, i ∈ 1, n, (1.3)

where each fi is a proper lsc function on a Banach space X. The system is said to
have an error bound τ if there exists τ > 0 such that

d(x, S) ≤ τ
n∑
i=1

fi(x)+, ∀x ∈ X, (1.4)

where fi(x)+ := max{fi(x), 0}, and

S := {x ∈ X : fi(x) ≤ 0, i ∈ 1, n}. (1.5)

Since the pioneering work of Hoffman [19], this notion (and its local version) have
played an important role in many areas in mathematical programming and variational
analysis (see the excellent surveys [23, 31] for results before 1997, and for more recent
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results see [1, 2, 7, 10, 12, 27, 28, 29, 30, 36] and references therein). The earlier results
all are either under certain convexity assumption or restricted to the special case when
n = 1. The results obtained in Section 4 are for the general case that n can be any
positive integer, and provide sufficient conditions ensuring that the inequality system
(1.3) has an error bound. They are established via set-valued versions of Ekeland’s
variational principle obtained in Section 3.

2. Notations and Preliminary Results. In general we use (M,d) to denote
a metric space while X,Y and Z usually denote normed spaces (or Banach spaces);
B(x, r) denotes the closed ball with center x and radius r > 0. For short BZ denotes
the closed unit ball in Z and SZ := {z ∈ Z : ‖z‖ = 1} is the unit sphere. Let
〈z∗, z〉 := z∗(z). Given any subset K in Z, S(K) = K ∩ SZ . Let cl(K), co(K),
co(K), coneK and coneK respectively denote the closure, convex hull, closed convex
hull, (convex) conic hull, and closed (convex) conic hull of K. Let d(·,K) denote the
distance function of K, i.e.,

d(z,K) := inf{‖z − y‖ : y ∈ K}.

We say that a vector space Y is ordered by a convex cone C ⊂ Y , if Y is equipped
with a binary relation (quasiorder) ≤C for elements in Y such that

y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C (2.1)

(≤C is a partial order if and only if C is pointed, i.e., C ∩ (−C) = {0}). For example,
in multi-objective optimization problems, we often let Rn be ordered by Rn+, where
Rn+ consists of all n-vectors y = (y1, · · · , yn) ∈ Rn such that each yi ≥ 0. Here the

norm for Rn can be the usual Euclidean norm ‖y‖ =
(∑n

i=1 |yi|2
) 1

2 or the l1-norm
‖y‖1 =

∑n
i=1 |yi|. One of the advantages of using the l1-norm is that,

if H := {y ∈ Rn+ : ‖y‖1 = 1} then d(0, H) = 1 (2.2)

(and H is closed and convex). For convenience, we henceforth use the l1-norm for Rn.
As usual for a set-valued function F : M → 2Y , we use domF and graphF to

denote the domain and the graph of F respectively, that is, domF := {x ∈ M :
F (x) 6= ∅}, graphF := {(x, y) ∈M × Y : y ∈ F (x)}. Moreover, if Y is ordered by C,
epi F := {(x, y) ∈M × Y : y ∈ F (x) + C} is the epigraph of F . Thus

v ≤C y, v ∈ F (x) =⇒ (x, y) ∈ epi F. (2.3)

For any two nontrivial closed convex cones K1, K2 in a normed space Y we use
](K1,K2) to denote the quantity (cf. [24, equation (2.2)])

](K1,K2) := inf{d(k,K2) : k ∈ S(K1)}. (2.4)

Lemma 2.1. Let Y be a normed space ordered by a convex cone C ⊂ Y , and let
C0 be a convex cone such that {0} 6= C0 ⊂ C. Then the following implication is valid
for all y1 ∈ C0 and y2 ∈ Y :

y1 ≤C y2 =⇒ y2 ∈ C and ](C0,−C)‖y1‖ ≤ ‖y2‖. (2.5)

Proof. By (2.4), we have

](C0,−C) · ‖y‖ ≤ d(y,−C), ∀y ∈ C0. (2.6)
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Let y1 ∈ C0 and y2 ∈ Y with y1 ≤C y2. Then y2 ∈ y1 + C ⊂ C. Moreover since
y1 − y2 ∈ −C, one has by (2.6),

](C0,−C) · ‖y1‖ ≤ d(y1,−C) ≤ ‖y1 − (y1 − y2)‖ = ‖y2‖.

This proves (2.5).
Remark 2.1. It is well-known (see [32]) that C is normal in (Y, ‖·‖) (in the sense

that any {yn}n∈N converges to zero whenever there are sequences {xn}n∈N, {zn}n∈N
convergent to zero such that xn ≤C yn ≤C zn for each n) if and only if there is an
equivalent norm ‖ · ‖1 on Y such that

y1 ≤C y2 =⇒ ‖y1‖1 ≤ ‖y2‖1, ∀y1, y2 ∈ C. (2.7)

In view of (2.4) and Lemma 2.1, it follows immediate that C is normal if and only if

](C,−C) > 0. (2.8)

In particular, if (2.7) is satisfied with ‖ · ‖ in place of ‖ · ‖1 (this condition is auto-
matically satisfied if Y is a Banach lattice with positive cone C; see [34, Definition
II.1.2, II.5.1]). Then ](C0,−C) = 1 for any convex cone C0 such that {0} 6= C0 ⊂ C.
Indeed, if y1 ∈ S(C0) then d(y1,−C) = inf{‖y1 + c‖ : c ∈ C} = ‖y1‖ = 1.

Example 2.1. Let Y be a Hilbert space. Fix e ∈ S(Y ) and let C := {y ∈ Y :
〈e, y〉 ≥ 1√

2
‖y‖}. It can be verified that ](C0,−C) = 1 for any convex cone C0 with

{0} 6= C0 ⊂ C.
Let A be a nonempty subset of a metric space (M,d), and let � be a partial order

defined on A. Recall that a point ā ∈ A is called a minimal point of A if there does
not exist a ∈ A\{ā} such that a � ā. The set of all the minimal points of A is denoted
by Min(A,�). Recall that A is said to have the domination property with respect to
� if for each x0 ∈ A, there is x̄ ∈ A such that

x̄ � x0 and x̄ ∈Min(A,�). (2.9)

The next result is due to Hamel and Tammer and would be convenient to be
stated in the following form:

Lemma 2.2. Let A be a nonempty subset of a metric space (M,d), and let � be a
partial order defined on A such that any decreasing sequence {xn}n∈N in A converges
to some ā ∈ A with

ā � xn ∀n ∈ N. (2.10)

Then A has the domination property with respect to �.
Proof. This follows immediately from [18, Theorem 2.2].

3. Partial Orders Generated by Set-Valued Functions. Let (M,d) be a
complete metric space and let Y be a Banach space ordered by a nontrivial closed
convex cone C. Let F : M → 2Y be a set-valued function.

Definition 3.1. Let γ > 0 and let H ⊂ C\{0} be a closed convex set such that

](coneH,−C) > 0. (3.1)

We define relations �(F,γ,H) and -(F,γ,H) (or �,- for short if no confusion can arise)
on domF by

x1 �(F,γ,H) x2 ⇐⇒
∀y2 ∈ F (x2), ∃y1 ∈ F (x1), h ∈ H, s.t. γd(x1, x2)h ≤C y2 − y1,

(3.2)
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and

x1 -(F,γ,H) x2 ⇐⇒ ∀γ′ ∈ (0, γ), x1 �(F,γ′,H) x2 (3.3)

respectively, where x1, x2 ∈ domF .
By (3.2), we have the following equivalences:

x1 �(F,γ,H) x2 ⇐⇒ F (x2) ⊂ F (x1) + γd(x1, x2)H + C (3.4)
⇐⇒ ∀y2 ∈ F (x2),∃h ∈ H s.t. (x1, y2 − γd(x1, x2)h) ∈ epi F. (3.5)

Since H ⊂ C and by (2.3), the following implications are also valid:

x1 �(F,γ,H) x2 =⇒ F (x2) ⊂ F (x1) + C, (3.6)
x1 �(F,γ,H) x2 =⇒ (x1, y2) ∈ epi F, ∀y2 ∈ F (x2). (3.7)

It is clear that for any x1, x2 ∈ domF,

x1 �(F,γ,H) x2 =⇒ x1 -(F,γ,H) x2. (3.8)

But generally, the inverse does not hold.
Example 3.1. Let Y = l2, the Hilbert space consisting of all square-summable

sequences of real numbers. For each n ∈ N, let en denote the element in l2 whose nth

coordinate is 1 and other coordinates are zero. Let C := {y ∈ l2 : 〈e1, y〉 ≥ 1√
2
‖y‖}.

Consider two distinct points x1, x2 in metric space (M,d) with

d(x1, x2) = 1. (3.9)

Let H := {y ∈ C : 〈e1, y〉 = 1}. Then H is a closed convex subset of C such that
coneH = C (so coneH is closed). By Example 2.1,

](coneH,−C) = 1. (3.10)

Let F : {x1, x2} → 2Y be defined by

F (x2) = {0}, (3.11)

F (x1) = {( 1
n
− 1)(e1 + en)}n≥2. (3.12)

We claim that

x1 -(F,1,H) x2, (3.13)

but that

x1 �(F,1,H) x2, (3.14)

First, since e1 + en ∈ H for all n ≥ 2, we have

F (x2) ⊂ F (x1) + (1− 1
n

)H + C, ∀n ≥ 2. (3.15)

Also, for any γ′ ∈ (0, 1), there exists n′ ≥ 2 such that γ′ < 1 − 1
n′ . Hence by (3.15)

and the fact that (1− 1
n′ )H ⊂ γ′H + C, it follows from (3.9) that

F (x2) ⊂ F (x1) + γ′H + C

= F (x1) + γ′d(x1, x2)H + C.
(3.16)
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Together with (3.3) and (3.4), we obtain (3.13).
Second, since ( 1

n − 1)(e1 + en) /∈ −H − C for all n ≥ 2, we have

F (x1) ∩ (−H − C) = ∅, (3.17)

and then

F (x2) = {0} * F (x1) +H + C. (3.18)

Together with (3.4), (3.14) holds.
Recall that a subset D of Y is said to be C-bounded (cf. [25, pp. 13-14]) if

there exists some bounded set D0 ⊂ Y such that D ⊂ D0 + C. For example, with
(Y,C) = (R,R+), a subset D of R is R+-bounded if and only if D is a bounded below
set of real numbers.

For the remainder of this section, the following assumptions will be considered:
(A1) H ⊂ C\{0} is a closed convex set (thus we have κ := d(0, H) > 0).
(A2) ζ := ](coneH,−C) > 0.
(A3) F (M) is C-bounded: there exists η > 0 such that

∀y ∈ F (M),∃u ∈ Y s.t. ‖u‖ ≤ η and u ≤C y. (3.19)

(A4) epi F is closed in M × Y .
Example 3.2. In the ordered Banach space (Y,C) = (Rn,Rn+), let H be defined

as (2.2). Then (A1) is satisfied. Moveover, it is obvious that coneH = Rn+ and

](coneH,−Rn+) = 1. (3.20)

So (A2) is also true.
For the inequality system (1.3), let D := ∩ni=1domfi and let F : X → Rn be a

set-valued function defined as

F (x) :=
{
{(f1(x)+, f2(x)+, · · · , fn(x)+)} x ∈ D
∅ x /∈ D . (3.21)

Then F (X) ⊂ Rn+ is Rn+-bounded. It is easy to verify that epi F is closed. Thus (A3)
and (A4) are satisfied.

The following proposition provides a sufficient condition ensuring that � and -
are partial orders:

Proposition 3.2. Consider γ > 0 and F,H satisfying assumptions (A1)-(A3)
with the associated constants κ, ζ, η > 0. Then, both the relations �(F,γ,H) and
-(F,γ,H) defined in Definition 3.1 are partial orders on domF .

Proof. We need only to show that the relation � is a partial order on domF
(as the corresponding result for - follows easily). It is easy to see that the relation
� is reflexive, that is, x � x for all x ∈ domF . Let x1, x2, x3 be distinct elements
of domF such that x1 � x2 and x2 � x3. Then for any y3 ∈ F (x3), there exist
y2 ∈ F (x2), y1 ∈ F (x1) and h1, h2 ∈ H such that γd(x1, x2)h1 ≤C y2 − y1 and
γd(x2, x3)h2 ≤C y3 − y2. Let h3 := d(x1,x2)

d(x1,x2)+d(x2,x3)
h1 + d(x2,x3)

d(x1,x2)+d(x2,x3)
h2. Then

h3 ∈ H ⊂ C and

γd(x1, x3)h3 ≤C γ [d(x1, x2) + d(x2, x3)]h3

≤C y3 − y1.
(3.22)
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So x1 � x3. To prove the anti-symmetry of �, suppose that x � x′ and x′ � x. By
what has just been proved, for any z ∈ F (x), there exist z′ ∈ F (x) and h′ ∈ H such
that

2γd(x, x′)h′ ≤C z − z′. (3.23)

Therefore, inductively, there exist sequences {zn}n∈N ⊂ F (x) and {h′n}n∈N ⊂ H such
that

2γd(x, x′)h′n ≤C zn − zn+1, ∀n ∈ N. (3.24)

By assumption (A3), there exists a sequence {un}n∈N ⊂ Z such that

‖un‖ ≤ η, ∀n ∈ N, (3.25)

and

un ≤C zn, ∀n ∈ N. (3.26)

It follows from (3.24) and (3.26) that

2γd(x, x′)
n∑
i=1

h′i ≤C z1 − zn+1 ≤C z1 − un+1, ∀n ∈ N. (3.27)

Since H ⊂ C\{0} and C is a closed convex cone, C0 := coneH ⊂ C. Using (2.5) with
y1 and y2 replaced by 2γd(x, x′)

∑n
i=1 h

′
i and z1 − un+1, we have

ζ · 2γd(x, x′) · nκ ≤ ζ ·

∥∥∥∥∥2γd(x, x′)
n∑
i=1

h′i

∥∥∥∥∥
≤ ‖z1 − un+1‖
≤ (‖z1‖+ η), ∀n ∈ N.

(3.28)

Since κ, ζ, η and γ are positive constants it follows that d(x, x′) = 0 and so x = x′.
Remark 3.1. Assumption (A3) in Proposition 3.2 can be relaxed to the condition

that F (x) is C-bounded for each x ∈ dom F .
Lemma 3.3. Consider γ > 0 and F,H satisfying assumptions (A1)-(A4) with

the associated constants κ, ζ, η > 0. Let {xn}n∈N be a decreasing sequence of domF
with respect to �(F,γ,H) (� for short). Then {xn}n∈N converges to some ā ∈ domF ,
and

F (xn) ⊂ F (ā) + C, ∀n ∈ N. (3.29)

The same assertion is also true for -(F,γ,H) in place of �(F,γ,H).
Proof. As the last assertion follows easily from the first, we only need to prove the

results regarding �. First, we show that {xn}n∈N is Cauchy. Suppose not, without
loss of generality, we may assume that there exists ε > 0 such that

d(xn, xn+1) > ε, ∀n ∈ N. (3.30)

Since {xn}n∈N is decreasing, there are sequences {yn}n∈N, and {hn}n∈N ⊂ H such
that

yn ∈ F (xn), ∀n ∈ N, (3.31)
γd(xn, xn+1)hn ≤C yn − yn+1, ∀n ∈ N. (3.32)
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By (3.19), there exists a sequence {un}n∈N ⊂ Y such that

‖un‖ ≤ η and un ≤C yn. (3.33)

It follows from (3.32) that

y1 − un+1 ≥C y1 − yn+1 =
n∑
i=1

(yi − yi+1)

≥C
n∑
i=1

γd(xi, xi+1)hi

=
n∑
i=1

γαihi = γβn

(
n∑
i=1

αi
βn
hi

)
, ∀n ∈ N,

(3.34)

where αi := d(xi, xi+1) and βn :=
∑n
i=1 αi. Noting by (3.30) that βn > nε, and it

follows from (2.5), (3.33) together with the assumed (A1) that for any n ∈ N,

‖y1‖+ η ≥ ‖y1 − un+1‖

≥ ζ · γβn

∥∥∥∥∥
n∑
i=1

αi
βn
hi

∥∥∥∥∥ ≥ ζ · γnε
∥∥∥∥∥
n∑
i=1

αi
βn
hi

∥∥∥∥∥ ≥ ζ · γnε · κ. (3.35)

But this is impossible because κ, ζ, η and γ are positive constants while n is arbitrary.
Therefore {xn}n∈N is Cauchy and hence converges to some ā ∈M .

Moreover, note that for any fixed n ∈ N, {xk}k≥n also converges to ā; this together
with (3.2) and (3.6) implies that for any y ∈ F (xn), {(xk, y) : k ≥ n} is a sequence
in epi F and converges to (ā, y). Hence (ā, y) ∈ epi F thanks to the assumption that
epi F is closed. Therefore x̄ ∈ domF and y ∈ F (ā) + C for each y ∈ F (xn), that is,
(3.29) is true.

Next we present a set-valued version of Ekeland’s variational principle type.
Theorem 3.4. Suppose all the assumptions in Lemma 3.3 are satisfied. Then

domF has the domination property with respect to -(F,γ,H), namely, for each x0 ∈
domF , there is x̄ ∈ domF such that

x̄ -(F,γ,H) x0 and x̄ ∈Min(domF,-(F,γ,H)); (3.36)

in other words,

F (x0) ⊂ ∩γ′∈(0,γ) [F (x̄) + γ′d(x0, x̄)H + C] , (3.37)

and

F (x̄) * ∩γ′∈(0,γ) [F (x) + γ′d(x, x̄)H + C] , ∀x ∈ (domF )\{x̄}. (3.38)

Proof. We use - to denote -(F,γ,H) for simplicity. By Proposition 3.2, - is a
partial order on domF . Let {xn}n∈N be a decreasing sequence of domF with respect
to �. By Lemma 3.3, {xn}n∈N converges to some ā ∈ domF and (3.29) holds. By
Lemma 2.2, we need only to show that

ā - xn, ∀n ∈ N. (3.39)
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Let n ∈ N be fixed and consider any γ′ ∈ (0, γ). Since {xk}k≥n converges to ā, there
exists k′ ≥ n such that

d(xk′ , ā) ≤ γ − γ′

γ + γ′
d(xn, ā). (3.40)

Noting that xk′ - xn and γ+γ′

2 ∈ (0, γ), it follows that for any y ∈ F (xn), there exist
y′ ∈ F (xk′) and h′ ∈ H such that

γ + γ′

2
d(xn, xk′)h′ ≤C y − y′. (3.41)

By (3.29), there exists ȳ ∈ F (ā) such that

ȳ ≤C y′. (3.42)

And by (3.40), we have

d(xn, xk′) ≥ d(xn, ā)− d(xk′ , ā) ≥ 2γ′

γ + γ′
d(xn, ā). (3.43)

Hence, by (3.41), (3.42) and (3.43), we have

γ′d(xn, ā)h′ ≤C y − ȳ. (3.44)

Thus ā - xn by (3.3). So (3.39) holds and we complete the proof.
Remark 3.2. Ekeland’s variational principle (that we stated at the beginning)

can be deduced immediately from Theorem 3.4 and Example 3.2 (with n = 1 and
f1(x) = f(x)− infM f(·)) and the fact that

∩γ′∈(0,γ) [{f1(x̄)}+ γ′d(x0, x̄) + [0,+∞)] = {f1(x̄)}+ γd(x0, x̄) + [0,+∞) (3.45)

and

∩γ′∈(0,γ) [{f1(x)}+ γd(x, x̄) + [0,+∞)] = {f1(x)}+ γd(x, x̄) + [0,+∞). (3.46)

Next we discuss the domination property of domF with respect to �(F,γ,H). The
following theorem is similar to (but distinct from) Theorem 3.4. In fact Example
3.1 has shown that �(F,γ,H) and -(F,γ,H) are distinct, even when domF has the
domination property with respect to each of the two relations. Also there are examples
to show that Theorem 3.5 would not longer be valid if (i), (ii) and (iii) are dropped.

Recall that the positive polar of C is defined as

C+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀z ∈ C}.

Theorem 3.5. Suppose all the assumptions in Lemma 3.3 are satisfied, and that
(at least) one of the following assertions holds:

(i) There exist y∗0 ∈ S(C+) and ξ ∈ (0, 1) such that

H ⊂ {y ∈ Y : ξ‖y‖ ≤ 〈y∗0 , y〉}. (3.47)

(ii) H is bounded.
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(iii) Y is reflexive.
Then domF has the domination property with respect to �(F,γ,H), namely, for each
x0 ∈ domF , there is x̄ ∈ domF such that

x̄ �(F,γ,H) x0 and x̄ ∈Min(domF,�(F,γ,H)); (3.48)

in other words,

F (x0) ⊂ F (x̄) + γd(x0, x̄)H + C, (3.49)

and

F (x̄) * F (x) + γd(x, x̄)H + C, ∀x ∈ (domF )\{x̄}. (3.50)

Proof. We use � to denote �(F,γ,H) for simplicity. By Proposition 3.2, � is a
partial order on domF . Let {xn}n∈N be a decreasing sequence of domF with respect
to �. By Lemma 3.3, {xn}n∈N converges to some ā ∈ domF and (3.29) holds. Similar
to Theorem 3.4, we need only to show that

ā � xn, ∀n ∈ N. (3.51)

Let n0 ∈ N be fixed. Since {xn}n∈N converges to ā, there exists a subsequence
{zn}n∈N ⊂ {xn}n∈N such that

z1 = xn0 , (3.52)

and

zn+1 � zn and d(zn+1, ā) <
1

n+ 1
, ∀n ∈ N. (3.53)

For any fixed y1 ∈ F (z1), let {yn}n∈N ⊂ Y , {h′n}n∈N ⊂ H and {un}n∈N ⊂ Y such
that

yn ∈ F (zn), ∀n ∈ N, (3.54)
γd(zn, zn+1)h′n ≤C yn − yn+1, ∀n ∈ N, (3.55)

‖un‖ ≤ η and un ≤C yn, ∀n ∈ N. (3.56)

It follows that

y1 − un+1 ≥C y1 − yn+1

≥C
n∑
i=1

[γd(zi, zi+1)h′i] = γβn

[
n∑
i=1

αi
βn
h′i

]
= γβnh

′′
n, ∀n ∈ N,

(3.57)

where αi := d(zi, zi+1), βn :=
∑n
i=1 αi and h′′n :=

∑n
i=1

αi

βn
h′i ∈ H. Using (2.5)

together with the properties of η, ζ and κ given in (A1)-(A4), we get

‖y1‖+ η ≥ ζ · γβn‖h′′n‖ ≥ ζ · γβn · κ, ∀n ∈ N. (3.58)

This implies that {βn}n∈N is bounded and hence converges to a finite limit, say d0,
that is, d0 =

∑+∞
j=1 d(zj , zj+1) < +∞. Since βn =

∑n
j=1 d(zj , zj+1) ≥ d(z1, ā) −

d(zn+1, ā) > d(z1, ā)− 1
n+1 for all n ∈ N, it follow from (3.57) that, for each n,

y1 − γ
[
d(z1, ā)− 1

n+ 1

]
h′′n ≥C y1 − γβnh′′n ≥C yn+1, (3.59)
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that is,

y1 − γ
[
d(z1, ā)− 1

n+ 1

]
h′′n ∈ yn+1 + C, ∀n ∈ N. (3.60)

Since yn+1 ∈ F (zn+1) ⊂ F (ā) + C (by (3.54) and (3.29) applied to zn+1 in place of
xn), it follows (3.60) that

y1 − γ
[
d(z1, ā)− 1

n+ 1

]
h′′n ∈ F (ā) + C (3.61)

and so (
ā, y1 − γ

[
d(z1, ā)− 1

n+ 1

]
h′′n

)
∈ epi F, ∀n ∈ N. (3.62)

We now split the proof into the following three cases.
(i) There exists y∗0 ∈ S(C+) and ξ ∈ (0, 1) such that (3.47) holds. It follows

from (3.56), (3.57) and (3.47) that

‖y1‖+ η ≥ 〈y∗0 , y1 − un+1〉 ≥ 〈y∗0 , γ
n∑
i=1

αih
′
i〉 ≥ γξ

n∑
i=1

αi‖h′i‖, (3.63)

for all n. This implies that
∑+∞
i=1 αi‖h′i‖ is a convergent series. Moreover, for

all m,n ∈ N with m < n, we have

h′′n − h′′m =
m∑
i=1

αih
′
i

(
1
βn
− 1
βm

)
+

n∑
i=m+1

αih
′
i

βn
.

Hence

‖h′′n − h′′m‖ ≤
βn − βm
βn · βm

(
m∑
i=1

αi‖h′i‖

)
+

1
βn

(
n∑

i=m+1

αi‖h′i‖

)

≤ βn − βm
βn · βm

(γξ)−1(‖y1‖+ η) +
1
βn

(
n∑

i=m+1

αi‖h′i‖

)
.

(3.64)

Since βm, βn converge to d0 and
∑n
i=m+1 αi‖h′i‖ converges to 0 when m→∞,

the sequence {h′′n} is Cauchy. Let h0 := limn→∞ h′′n; then h0 ∈ H, by (3.62)
we get

(ā, y1 − γd(z1, ā)h0) ∈ epi F. (3.65)

Since y1 is arbitrary in F (z1) and z1 = x, this implies that (3.51) holds (see
(3.5)).

(ii) H is bounded, namely supH ‖ · ‖ < +∞. For any v ∈ H + C, there exist
v1 ∈ H such that v1 ≤C v. Then, by (2.5), we have

‖v‖ ≥ ‖v1‖ · ζ ≥ κ · ζ,

and so

inf
H+C

‖ · ‖ ≥ κ · ζ > 0. (3.66)
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This implies that cl(H + C) (which is a closed convex set) does not contain
0. By the separation theorem, there exists y∗0 ∈ Y ∗ with ‖y∗0‖ = 1 such that

inf
cl(H+C)

〈y∗0 , ·〉 > 0. (3.67)

Thus y∗0 ∈ S(C+) and

inf
H
〈y∗0 , ·〉 > 0 (3.68)

Hence one can pick ξ ∈ (0, 1) such that

ξ <
infH〈y∗0 , ·〉
supH ‖ · ‖

. (3.69)

Now it is easy to verify (3.47). This shows that (ii) is a special case of (i).
(iii) Y is reflexive. By (3.59) and (3.56) we note that, for all n,

γ

[
d(z1, ā)− 1

n+ 1

]
h′′n ≤C y1 − yn+1 ≤C y1 − un+1. (3.70)

Using (2.5), we have

ζ · γ
[
d(z1, ā)− 1

n+ 1

]
‖h′′n‖ ≤ ‖y1 − un+1‖ ≤ ‖y1‖+ η. (3.71)

Thus {h′′n} is bounded and so has a weak-cluster point h̄0 in the closed convex
set H (thanks to the reflexivity assumption) We claim that

(ā, y1 − γd(z1, ā)h̄0) ∈ epi F (3.72)

(that is, (3.65) holds with h0 replaced by h̄0 and so one completes the
proof as that in (i)). To establish the claim, we take any n1 ∈ N and
let H1 := co({h′′n}n>n1). Then cl(H1) is a weak closed convex set and
hence h̄0 = w∗- limn→+∞ h′′n ∈ cl(H1). Therefore there exist n2 > n1 and
λn1+1, · · · , λn2 ≥ 0 such that

∑n2
i=n1+1 λi = 1 and

‖h̄0 − h̄1‖ < 1, (3.73)

where h̄1 :=
∑n2
i=n1+1 λih

′′
i ∈ H1 ⊂ H. By (3.60) we note that for any

n ∈ n1 + 1, n2,

y1 − γ
[
d(z1, ā)− 1

n1 + 1

]
h′′n ≥C y1 − γ

[
d(z1, ā)− 1

n+ 1

]
h′′n

≥C yn+1 ≥C yn2+1,

(3.74)

and hence

y1 − γ
[
d(z1, ā)− 1

n1 + 1

]
h̄1 ∈ yn2+1 + C ⊂ F (zn2+1) + C. (3.75)

Inductively, we construct sequences {nk}k∈N and {h̄k}k∈N such that

1 ≤ n1 < n2 < · · · , (3.76)

‖h̄0 − h̄k‖ <
1
k
, ∀k ∈ N, (3.77)
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and

y1 − γ
[
d(z1, ā)− 1

nk + 1

]
h̄k ∈ F (zn(k+1)+1) + C, ∀k ∈ N. (3.78)

Therefore
(
zn(k+1)+1, y1 − γ

[
d(z1, ā)− 1

nk+1

]
h̄k

)
∈ epi F for all k ∈ N and{(

zn(k+1)+1, y1 − γ
[
d(z1, ā)− 1

nk+1

]
h̄k

)}
k∈N

converges to (ā, y1−γd(z1, ā)h̄0).

Thus (3.72) holds since epi F is closed.

Remark 3.3.
(a) The idea of using partial order in the Ekeland’s Variational Principle re-

lated results has been used by many authors including Ekeland [14] himself,
Bishop-Phelps [6], Brondsted-Rockafellar [8], Dancs-Hegedus-Medvegyev [11],
Turinici [35], and Hamel-Tammer [18].

(b) Most of the extensions (see [3, Theorem 1],[4, Theorem 3.4], [9, Chpater
4] [16, Theorem 3.1 & 3.2], [18, Theorem 4.1 & 4.2], [38, Theorem 4.1
& 4.2]) and references therein) of the Ekeland principle take the follow-
ing form: Under some suitable conditions, for any γ > 0, ξ ∈ C\{0},
(x0, y0) ∈ graphF ⊂M × Y , there exists (x̄, ȳ) ∈ graphF such that

y0 ∈ ȳ + γd(x0, x̄)ξ + C, ȳ ∈Min(F (x̄),≤C),
ȳ /∈ y + γd(x̄, x)ξ + C, ∀(x, y) ∈ graphF, (x, y) 6= (x̄, ȳ).

(3.79)

A novelty of our approach here is to replace the singleton {ξ} but allowing ξ
in (3.79) to be selected from a set H satisfying (A1) and (A2). Thus, instead
of approaches of earlier authors asserting relations between elements of the
values of the set-valued function F , our extension (reported in Theorem 3.4
and Theorem 3.5) of the Ekeland principle are directly expressed in terms of
values (as entities) of F . The idea of replacing a singleton by a set or a suit-
able set-valued function has very recently been used by Bednarczuk-Zagrodny
[5] and Gutiérrez-Jiménez-Novo [15] in their extended Ekeland’s variational
principles for vector-valued (single-valued) functions. Our discussion on the
issue of error bounds in the next section will further shed light on using a
set H instead of a singleton in our extensions of the Ekeland’s variational
principle.
The notion of considering relations between values of F has also been used by
Kuroiwa [21, 22] when he studied set-valued optimization problems and their
dual problems.

(c) The assumption (A2) plays an important role in Theorem 3.5 especially for
(3.51) and also it ensures that �(F,γ,H) and -(F,γ,H) defined in Definition 3.1
are anti-symmetric.

4. Error Bounds of Systems. In this section we consider a Banach space
X and study the inequality system (1.3) defined by proper lsc functions from X to
(−∞,+∞]. To avoid the triviality, we always assume that

D := ∩ni=1domfi 6= ∅. (4.1)

Let S be the solution set (defined in (1.5)). For each x ∈ X, Let I>(x) denote the set
of ”infeasibility indices” for x while I≥(x) denotes that of ”boundary indices”; they
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are respectively defined by

I>(x) := {i ∈ 1, n : fi(x) > 0},
I≥(x) := {i ∈ 1, n : fi(x) ≥ 0}. (4.2)

Let γ > 0, and we say that u ∈ X\S has the γ-descent property if there exists
û ∈ X\{u} satisfying the following properties

I>(û) ⊂ I>(u), (4.3)
fi(û) ≤ fi(u), ∀i ∈ I>(u), (4.4)

γd(u, û) ≤
∑

i∈I>(u)

(fi(u)+ − fi(û)+) . (4.5)

By (4.3) and (4.4) it is clear that

fi(û)+ ≤ fi(u)+, ∀i ∈ 1, n (4.6)

(both sides are zero if i /∈ I>(u)). This together with (4.5) implies that

γd(u, û) ≤
n∑
i=1

(fi(u)+ − fi(û)+) . (4.7)

Example 4.1. Let f be be a proper function from X to (−∞,+∞]. For x ∈ X
with f(x) ∈ R and v ∈ X, recall that (cf. [28]) upper Dini-directional derivative of f
at x in direction v is defined by

d̄+f(x)(v) := lim sup
t→0+

f(x+ tv)− f(x)
t

. (4.8)

Let γ > 0 and u ∈ X\S. If there exists v ∈ X with ‖v‖ = 1 such that

d̄+fi(u)(v) exists and finite for each i ∈ 1, n, (4.9)

d̄+fi(u)(v) < 0, ∀i ∈ I≥(u), (4.10)∑
i∈I>(u)

d̄+fi(u)(v) ≤ −γ. (4.11)

Then u has the γ′-descent property for any γ′ ∈ (0, γ). To see this, let γ′ ∈ (0, γ) be
fixed. By (4.11) and (4.10) (applied to the indices i in I>(u)), there exists a series of
positive numbers {γ′i : i ∈ I>(u)} such that

d̄+fi(u)(v) < −γ′i, ∀i ∈ I>(u), (4.12)

and ∑
i∈I>(x)

γ′i = γ′. (4.13)

For each i ∈ 1, n, we select ti > 0 in the following way:
(a) If fi(u) > 0, then by (4.12), there exists ti > 0 such that

0 < fi(u+ tv) < fi(u)− γ′it, ∀t ∈ (0, ti]. (4.14)
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(b) If fi(u) = 0 then, by (4.10), there exists ti > 0 such that

fi(u+ tv) < 0, ∀t ∈ (0, ti]. (4.15)

(c) If fi(u) < 0 then, by (4.9), there exists ti > 0 such that

fi(u+ tv) < 0, ∀t ∈ (0, ti]. (4.16)

Having specified ti > 0 for all i ∈ 1, n, let t̂ := min{ti : i ∈ 1, n} and û := u+ t̂v. We
note that the following equivalence holds for all i:

fi(û) > 0⇐⇒ fi(u) > 0,

that is I>(û) = I>(u)( (4.3) holds). Further, by (4.13) and (4.14), we have (4.4) and

γ′d(u, û) ≤
∑

i∈I>(u)

(fi(u)+ − fi(û)+) . (4.17)

Therefore u has the γ′-descent property.
The following result was established (based on a result of Hamel [17, Theorem

2(ii)]) in [28] for the special case when n = 1 and W = ∅.
Theorem 4.1. Let X, f1, f2, · · · , fn, D and S be as at the beginning of this sec-

tion. Suppose that there exist positive constants τ1, γ and a subset W of X satisfying
the following two conditions:

(i)

d(w, S) ≤ τ1
n∑
i=1

fi(w)+, ∀w ∈W. (4.18)

(ii) Each u ∈ X\(W ∪ S) has the γ-descend property (with the corresponding
û 6= u).

Then the inequality system (1.3) has an error bound τ := max{γ−1, τ1}.
Proof. Let x0 be an arbitrary element of X. We have to show that the following

inequality

d(x0, S) ≤ τ
n∑
i=1

fi(x0)+. (4.19)

We suppose without loss of generality that x0 ∈ D\(W ∪S). We shall apply Theorem
3.5 with the following data: Y = Rn with the partial order defined by C := Rn+ and
the l1-norm. Clearly, if y ∈ Rn+\{0} and λ ≥ 0 then

λ ≤ ‖y‖1 ⇐⇒ λ
y

‖y‖1
≤Rn

+
y. (4.20)

Let H := Rn+ ∩ {y : ‖y‖1 = 1}. Thus

d(0, H) = 1, coneH = Rn+ and ](coneH,−Rn+) = 1. (4.21)

Let F : D → Y be defined by F (x) = (f1(x)+, f2(x)+, · · · , fn(x)+) for x ∈ D. Thus
epi F is closed (thanks to the assumption that each fi is lsc). Together with (4.21),
we see that (A1)-(A4) are satisfied by the data. Hence Proposition 3.2 and Theorem
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3.5 are applicable with �:=�(F,γ,H). In particular, there exists u ∈ D satisfying
u � x0 and z � u for all z ∈ D\{u} (that is u is a minimum element of D). Thus, by
definitions, there exists h1 ∈ H such that

γd(x0, u)h1 ≤Rn
+
F (x0)− F (u), (4.22)

and so

γd(x0, u) = ‖γd(x0, u)h1‖1 ≤ ‖F (x0)− F (u)‖1. (4.23)

We claim that u ∈W∪S. If not, then, by assumption (ii), u has the γ-descent property
with the corresponding û 6= u: (4.3)-(4.7) hold. Clearly, (4.7) can be rewritten as
γd(u, û) ≤ ‖F (u)−F (û)‖1, and it follows from (4.20) that γd(u, û)h2 ≤ F (u)−F (û),
where h2 := F (u)−F (û)

‖F (u)−F (û)‖1 . This implies that û � u, contradicting the minimality of
u. This shows that u ∈W ∪ S. If u ∈ S then F (u) = 0 and (4.23) entails that

γd(x0, S) ≤ ‖F (x0)‖1 =
n∑
i=1

fi(x0)+. (4.24)

and so (4.19) holds in this case. It remains to consider the case when u ∈W . Then, by
(4.18), one has τ−1

1 d(u, S) ≤ ‖F (u)‖1 and it follows from (4.20) that, for h3 = F (u)
‖F (u)‖1 ,

τ−1
1 d(u, S)h3 ≤Rn

+
F (u). (4.25)

This and (4.22) imply that

min{γ, τ−1
1 }[d(x0, u)h1 + d(u, S)h3] ≤Rn

+
F (x0). (4.26)

and so min{γ, τ−1
1 }[d(x0, u) + d(u, S)] ≤ ‖F (x0)‖1. Thus (4.19) is seen to be true.
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