THE LAGRANGE MULTIPLIER RULE FOR MULTIFUNCTIONS IN BANACH SPACES

XI YIN ZHENG† AND KUNG FU NG‡

Abstract. We study general constrained multiobjective optimization problems with objectives being closed multifunctions in Banach spaces. In terms of the coderivatives and normal cones, we provide generalized Lagrange multiplier rules as necessary optimality conditions of the above problems. In an Asplund space setting, sharper results are presented.

Key words. multifunction, normal cone, coderivative, Pareto solution

AMS subject classifications. 49J52, 90C29

DOI. 10.1137/060651860

1. Introduction. Let X be a Banach space and $f_i : X \to R \cup \{+\infty\}$ be proper lower semicontinuous functions ($i = 0, 1, \ldots, m$). Many authors (see [2, 3, 4, 16, 29, 30]) studied the following optimization problem with inequality and equality constraints:

\begin{equation}
\begin{aligned}
\min f_0(x), \\
f_i(x) &\leq 0, \quad i = 1, \ldots, n, \\
f_i(x) &= 0, \quad i = n + 1, \ldots, m, \\
x &\in \Omega.
\end{aligned}
\end{equation}

Under some restricted conditions (e.g., each f_i is locally Lipschitz), it is well known, as the Lagrange multiplier rule, that if \bar{x} is a local solution of (1.1), then there exists $\lambda_i \in R$ ($0 \leq i \leq m$) such that

\begin{equation}
\begin{aligned}
0 &\in \sum_{i=0}^{m} \partial(\lambda_i f_i)(\bar{x}) + N(\Omega, \bar{x}), \\
|\lambda_i| &= 1 \text{ and } \lambda_i \geq 0, \quad 0 \leq i \leq n,
\end{aligned}
\end{equation}

where $\partial(\lambda_i f_i)$ and $N(\Omega, \bar{x})$ denote the subdifferential and the normal cone (see section 2 for their definitions). Some authors established the so-called fuzzy Lagrange multiplier rule (see [3, 14, 20] and the references therein). The main aim of this paper is to establish the corresponding rules for multifunctions in Banach spaces.

Let X, Y_0, Y_1, \ldots, Y_m be Banach spaces, Ω be a closed subset of X, and $F_i : X \to 2^{Y_i}$ ($i = 0, 1, \ldots, m$) be closed multifunctions. Let $C_0 \subset Y_0$ be a closed convex cone
such that \(C_0 \neq C_0 \cap -C_0 \) (i.e., \(C_0 \) is not a linear subspace), which specifies a preorder \(\leq_{C_0} \) on \(Y_0 \) as follows: for \(y_1, y_2 \in Y_0 \),

\[
y_1 \leq_{C_0} y_2 \text{ if and only if } y_2 - y_1 \in C_0.
\]

For \(i = 1, \ldots, m \), let \(C_i \) be a closed convex cone in \(Y_i \). Consider the following constrained multiobjective optimization problem:

\[
(1.3) \quad \begin{array}{c}
C_0 - \min F_0(x), \\
F_i(x) \cap -C_i \neq \emptyset, \quad i = 1, \ldots, m, \\
x \in \Omega.
\end{array}
\]

Recall that \(\bar{a} \in A \) is said to be a Pareto efficient point if \(\bar{a} \leq_{C_0} a \) whenever \(a \in A \) and \(a \leq_{C_0} \bar{a} \), that is,

\[
A \cap (\bar{a} - C_0) \subset \bar{a} + C_0 \cap -C_0.
\]

We use \(E(A, C_0) \) to denote the set of all Pareto efficient points of \(A \). In the case when \(C_0 \) is pointed (i.e., \(C_0 \cap -C_0 = \{0\} \)),

\[
\bar{a} \in E(A, C_0) \iff A \cap (\bar{a} - C_0) = \{\bar{a}\}.
\]

For \(\bar{x} \in X \) and \(\bar{y} \in F_0(\bar{x}) \), we say that \((\bar{x}, \bar{y})\) is a local Pareto solution of the multiobjective optimization problem (1.3) if there exists a neighborhood \(U \) of \(\bar{x} \) such that

\[
\bar{y} \in E \left(F_0 \left[U \cap \Omega \cap \left(\bigcap_{i=1}^{m} F^{-1}_i(-C_i) \right) \right], C_0 \right).
\]

In the case when each \(F_i \) is single-valued, many authors have established sufficient or necessary optimality conditions for Pareto solutions and weak Pareto solutions under some restricted conditions; e.g., the ordering cone has a nonempty interior, the spaces are finite dimensional, and \(C_i = R_+^n \) (see [1, 5, 7, 9, 10, 11, 12, 22, 23, 24, 26, 27] and the references therein). In the set-valued setting, in terms of cotangent derivatives Götz and Jahn [8] provided the Lagrange multiplier rule for (1.3) under the convexity assumption. Ye and Zhu [25] and Mordukhovich, Treiman, and Zhu [19] gave some necessary optimality conditions for multiobjective optimization problems with respect to an abstract order in a Euclidean space or Asplund space setting. Recently, the authors [28] studied a unconstrained multiobjective problem with the objective being multifunctions in Banach spaces and, as generalizations of the Fermat rule, presented necessary optimization conditions. In this paper, in a general setting we provide the following fuzzy Lagrange multiplier rule for constrained multiobjective optimization problem (1.3).

Let \(X, Y_i \) be Banach spaces, \(\Omega \) be a closed subset of \(X \), and \(F_i : X \to 2^{Y_i} \) be a closed multifunction \((i = 0, 1, \ldots, m)\). Suppose that \((\bar{x}, \bar{y}_0)\) is a local Pareto solution of the constrained multiobjective optimization problem (1.3), and let \(\bar{y}_i \in F_i(\bar{x}) \cap -C_i \) \((i = 1, \ldots, m)\). Then one of the following two assertions holds.

(i) For any \(\varepsilon > 0 \) there exist \(x_i \in \bar{x} + \varepsilon B_X \), \(w \in \Omega \cap (\bar{x} + \varepsilon B_X) \), \(y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i}) \), and \(e_i^* \in C_i^+ \) such that

\[
\sum_{i=0}^{m} ||e_i^*|| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D^*_i F_i(x_i, y_i)(e_i^* + \varepsilon B_{Y_i^*}) + N_c(\Omega, w) + \varepsilon B_{X^*},
\]
where B_X denotes the closed unit ball of X, $C_i^+ := \{y^* \in Y_i^* : \langle y^*, c \rangle \geq 0 \ \forall c \in C_i\}$, $N_c(\cdot, \cdot)$ denotes the Clarke normal cone, and $D^*_c F_i(\cdot, \cdot)$ denotes the Mordukhovich coderivative with respect to the Clarke normal cone.

(ii) For any $\varepsilon > 0$ there exist $x_i \in \bar{x} + \varepsilon B_X$, $w \in \Omega \cap (\bar{x} + \varepsilon B_X)$, $y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i})$, $x_i^* \in D^*_c F_i(x_i, y_i)(\varepsilon B_{Y_i}^*)$, and $w^* \in N_{c_i}(\Omega, w) + \varepsilon B_{X^*}$ such that

$$
\|w^*\| + \sum_{i=0}^{m} \|x_i^*\| = 1 \quad \text{and} \quad \sum_{i=0}^{m} x_i^* = 0.
$$

Using this result, we give some exact Lagrange multiplier rules for (1.3). In the case when X, Y_i are Asplund spaces, these results are sharpened; in particular, we prove the following result (see section 2 for terms undefined).

Let (\bar{x}, \bar{y}_0) be a local Pareto solution of (1.3), and let $\bar{y}_i \in F_i(\bar{x}) \cap -C_i$. Suppose that each F_i is pseudo-Lipschitz around (\bar{x}, \bar{y}_i) and that each C_i is dually compact (e.g., C_i has a nonempty interior). Then there exists $c_i^* \in C_i^+$ such that

$$
\sum_{i=0}^{m} ||c_i^*|| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D^*_c F_i(\bar{x}, \bar{y}_i)(c_i^*) + N_{c_i}(\bar{x}),
$$

where $D^*_c F_i(\cdot, \cdot)$ denotes the Mordukhovich coderivative with respect to the limiting normal cone (see section 2 for its definition). Under the condition that X, Y_i are finite dimensional, we provide the following necessity optimality condition of constrained multiobjective optimization problem (1.3).

Let each F_i be a closed multifunction and each C_i be a closed convex cone. Suppose that (\bar{x}, \bar{y}_0) is a local Pareto solution of (1.3). Then, for any $\bar{y}_i \in F_i(\bar{x}) \cap -C_i$, one of the following assertions holds.

(a) There exists $c_i^* \in C_i^+$ such that (1.5) holds.

(b) There exist $x_i^* \in D^*_c F_i(\bar{x}, \bar{y}_i)(0)$ and $w^* \in N_{c_i}(\bar{x})$ such that (1.4) holds.

Let f_0, f_1, \ldots, f_m be as in (1.1). In the special case when $Y_i = R$, $C_i = \{0\}$ for $0 \leq i \leq m$, $F_i(x) = [f_i(x), +\infty)$ for $0 \leq i \leq n$, and $F_i(x) = f_i(x)$ for $n + 1 \leq i \leq m$. The above results can be applied to (1.1). In particular, under the assumption that X is an Asplund space and that f_0, f_1, \ldots, f_m are lower semicontinuous and f_{m+1}, \ldots, f_m are continuous, we prove that if \bar{x} is a local solution of (1.1), then one of the following assertions holds.

(i) For any $\varepsilon > 0$ there exist $\lambda_i \in R \setminus \{0\}$, $w \in (\bar{x} + \varepsilon B_X) \cap \Omega$, and $x_i \in \bar{x} + \varepsilon B_X$ with $|f_i(x_i) - f_i(\bar{x})| < \varepsilon$ such that $\lambda_i \geq 0$ for $0 \leq i \leq n$, $\sum_{i=0}^{m} |\lambda_i| = 1$, and

$$
0 \in \sum_{i=0}^{m} \hat{\partial}(\lambda_i f_i(x_i)) \cap MB_{X^*} + \hat{N}(\Omega, w) \cap MB_{X^*} + \varepsilon B_{X^*},
$$

where $M > 0$ is a constant independent of ε.

(ii) For any $\varepsilon > 0$ there exist $w \in (\bar{x} + \varepsilon B_X) \cap \Omega$, $x_i \in \bar{x} + \varepsilon B_X$ with $|f_i(x_i) - f_i(\bar{x})| < \varepsilon$, $\varepsilon_i \in (-\varepsilon, \varepsilon)$, $w^* \in \hat{N}(\Omega, w) + \varepsilon B_{X^*}$, and $x_i^* \in \hat{\partial}(\varepsilon_i f_i(x_i))$ such that (1.4) holds and $\varepsilon_i > 0$ for $0 \leq i \leq n$.

2. Preliminaries. Throughout this section, we assume that Y is a Banach space. Let $f : Y \to R \cup \{+\infty\}$ be a proper lower semicontinuous function, and let $\text{epi}(f)$ denote the epigraph of f, that is,

$$
\text{epi}(f) := \{(y, t) \in Y \times R : f(y) \leq t\}.
$$
Let \(y \in \text{dom}(f) \), let \(h \in Y \), and let \(f^\circ(y,h) \) denote the generalized directional derivative given by Rockafellar (see [4]), that is,

\[
f^\circ(y,h) := \lim_{\varepsilon \to 0} \limsup_{z \in h + \varepsilon B_Y} \inf_{t \in C} \frac{f(z + tw) - f(z)}{t},
\]

where \(B_Y \) denotes the closed unit ball of \(Y \), and the expression \(z \overset{f}{\to} y \) means \(z \to y \) and \(f(z) \to f(y) \). It is known that \(f^\circ(y,h) \) reduces to Clarke’s directional derivative when \(f \) is locally Lipschitzian (see [4]). Let

\[
\partial_c f(y) := \{ y^* \in Y^* : \langle y^*, h \rangle \leq f^\circ(y,h) \quad \forall h \in Y \}.
\]

Let \(A \) be a closed subset of \(Y \), and let \(N_c(A,a) \) denote Clarke’s normal cone of \(A \) at \(a \), that is,

\[
N_c(A,a) := \begin{cases} \partial_c \delta_A(a), & a \in A, \\ \emptyset, & a \notin A, \end{cases}
\]

where \(\delta_A \) denotes the indicator function of \(A \): \(\delta_A(y) = 0 \) if \(y \in A \) and \(\delta_A(y) = +\infty \) otherwise. The following result (see [4, Corollary, p. 52]) presents an important necessity optimality condition in terms of Clarke’s subdifferential and normal cone for a nonsmooth constrained optimization problem.

Proposition 2.1. Let \(f : Y \to \mathbb{R} \) be a locally Lipschitz function and \(A \) be a closed subset of \(Y \). Suppose that \(f \) attains its minimum over \(A \) at \(a \in A \). Then \(0 \in \partial_c f(a) + N_c(A,a) \).

We also need the notion of Fréchet normal cones and that of limiting normal cones. For \(\varepsilon \geq 0 \), the set of \(\varepsilon \)-normals to \(A \) at \(a \) is defined by

\[
N_\varepsilon(A,a) := \left\{ y^* \in Y^* : \limsup_{y \overset{\varepsilon}{\to} a} \frac{\langle y^*, y - a \rangle}{\|y - a\|} \leq \varepsilon \right\},
\]

where \(y \overset{\varepsilon}{\to} a \) means that \(y \to a \) with \(y \in A \). The set \(N_0(A,a) \) is simply denoted by \(\hat{N}(A,a) \) and is called the Fréchet normal cone to \(A \) at \(a \). The limiting Fréchet normal cone to \(A \) at \(a \) is defined by

\[
N(A,a) := \{ y^* \in Y^* : \exists \varepsilon_n \to 0^+, \; y_n \overset{\varepsilon_n}{\to} a, \; y_n^* \overset{w}{\to} y^* \text{ with } y_n^* \in N_\varepsilon(A,a) \}.
\]

In the case when \(A \) is convex, it is well known that

\[
N_c(A,a) = N(A,a) = \hat{N}(A,a).
\]

Recall that the Fréchet subdifferential \(\hat{\partial} f(y) \) and the limiting subdifferential \(\partial f(y) \) of \(f \) at \(y \in \text{dom}(f) \) are defined by

\[
\hat{\partial} f(y) = \{ y^* : (y^*, -1) \in \hat{N}(\text{epi}(f), (y, f(y))) \}
\]

and

\[
\partial f(y) = \{ y^* \in Y^* : (y^*, -1) \in N(\text{epi}(f), (y, f(y))) \},
\]
respectively. It is known (see [18]) that
\[\partial f(y) := \left\{ y^* \in Y^* : \liminf_{v \to y} \frac{f(v) - f(y) - \langle y^*, v - y \rangle}{\|v - y\|} \geq 0 \right\}. \]

Let \(\hat{\partial} f(y) \) and \(\partial^\infty f(y) \) denote, respectively, the singular Fréchet subdifferential and the singular limiting subdifferential of \(f \) at \(y \), that is,
\[\hat{\partial} f(y) = \{ y^* : (y^*, 0) \in \hat{N}(\text{epi}(f), (y, f(y))) \} \]
and
\[\partial^\infty f(y) := \{ y^* \in Y^* : (y^*, 0) \in N(\text{epi}(f), (y, f(y))) \}. \]

Recall that a Banach space \(Y \) is called an Asplund space if every continuous convex function defined on an open convex subset \(D \) of \(Y \) is Fréchet differentiable at each point of a dense \(G_\delta \) subset of \(D \). It is well known that \(Y \) is an Asplund space if and only if every separable subspace of \(Y \) has a separable dual. The class of Asplund spaces is well investigated in geometric theory of Banach spaces; see [21] and the references therein. In the case when \(Y \) is an Asplund space, Mordukhovich and Shao [18] proved that
\[\partial f(y) = \limsup_{v \to y} \hat{\partial} f(v), \]

(2.1) \[N(A, a) := \{ y^* \in Y^* : \exists y_n \overset{A}{\to} a, y_n^* \overset{w^*}{\rightharpoonup} y^* \text{ with } y_n^* \in \hat{N}(A, y_n) \}, \]
and \(N_c(A, a) \) is the weak* closed convex hull of \(N(A, a) \).

In the Asplund space setting, in terms of the Fréchet subdifferential and Fréchet normal cone one has the following necessity optimality condition similar to Proposition 2.1.

Proposition 2.2. Let \(Y \) be an Asplund space and \(f : Y \to R \) a locally Lipschitz function, and let \(A \) be a closed subset of \(Y \). Suppose that \(f \) attains its minimum over \(A \) at \(a \in A \). Then for any \(\varepsilon > 0 \) there exist \(a_\varepsilon \in a + \varepsilon B_Y \) and \(u_\varepsilon \in A \cap (a + \varepsilon B_Y) \) such that
\[0 \in \hat{\partial} f(a_\varepsilon) + \hat{N}(A, u_\varepsilon) + \varepsilon B_{Y^*}. \]

Proposition 2.2 is due to Fabian [6] (also see [18] for the details).

For \(\Phi : X \to 2^Y \), a multiaction from another Banach space \(X \) to \(Y \), let \(\text{Gr}(\Phi) \) denote the graph of \(\Phi \), that is,
\[\text{Gr}(\Phi) := \{(x, y) \in X \times Y : y \in \Phi(x)\}. \]

We say that \(\Phi \) is closed if \(\text{Gr}(\Phi) \) is a closed subset of \(X \times Y \) and that \(\Phi \) is convex if \(\text{Gr}(\Phi) \) is a convex subset of \(X \times Y \). Recall (see [15, 17]) that \(\Phi \) is pseudo-Lipschitz at \((\bar{x}, \bar{y}) \in \text{Gr}(\Phi) \) if there exist a constant \(L > 0 \), a neighborhood \(U \) of \(\bar{x} \), and a neighborhood \(V \) of \(\bar{y} \) such that
\[\Phi(x_1) \cap V \subset \Phi(x_2) + \|x_1 - x_2\|L B_Y \quad \forall x_1, x_2 \in U. \]

For \(x \in X \) and \(y \in \Phi(x) \), let \(\hat{D} \Phi(x, y) \), \(D^* \Phi(x, y) \) and \(D^c \Phi(x, y) : Y^* \to 2^{X^*} \) denote the Mordukhovich coderivatives of \(\Phi \) at \((x, y)\) with respect to the Fréchet, limiting, and Clarke normal cones, respectively, that is,
\[\hat{D} \Phi(x, y)(y^*) := \{ x^* \in X^* : (x^*, -y^*) \in \hat{N}(\text{Gr}(\Phi), (x, y)) \} \quad \forall y^* \in Y^*, \]
(2.2) \[D^* \Phi(x, y)(y^*) := \{ x^* \in X^* : (x^*, -y^*) \in N(\text{Gr}(\Phi), (x, y)) \} \quad \forall y^* \in Y^*, \]
(2.3) \[D^c \Phi(x, y)(y^*) := \{ x^* \in X^* : (x^*, -y^*) \in \hat{N}(\text{Gr}(\Phi), (x, y)) \} \quad \forall y^* \in Y^*, \]
(2.4) \[D^c \Phi(x, y)(y^*) := \{ x^* \in X^* : (x^*, -y^*) \in N(\text{Gr}(\Phi), (x, y)) \} \quad \forall y^* \in Y^*. \]
and
\[D^*_c \Phi(x, y)(y^*) := \{ x^* \in X^* : (x^*, -y^*) \in N_c(\text{Gr}(\Phi), (x, y)) \} \quad \forall y^* \in Y^* \]

(see [17, 18]). We will need the following known result.

Proposition 2.3. Let \(\Phi : X \to 2^Y \) be a closed multifunction. Suppose that \(\Phi \) is pseudo-Lipschitz at \((\bar{x}, \bar{y})\) in \(\text{gr}(\Phi) \). Then there exist constants \(L, \delta > 0 \) such that
\[
\sup\{ \| x^* \| : x^* \in \hat{D}^*_c \Phi(x, y)(y^*) \} \leq L\| y^* \|
\]
for any \((x, y) \in \text{Gr}(\Phi) \cap (B(\bar{x}, \delta) \times B(\bar{y}, \delta)) \) and any \(y^* \in Y^* \).

Proposition 2.3 can be found in Mordukhovich [15]. Moreover, readers can find a simpler proof of Proposition 2.3 in Jourani and Thibault [11].

Let \(S_i : M_i \to 2^Y \) be multifunctions from metric spaces \(M_i \) with metrics \(d_i \). Recall (see [19]) that \(\bar{x} \) is called an extremal point of the system \((S_1, \ldots, S_n)\) at \((\bar{s}_1, \ldots, \bar{s}_n)\), provided that \(\bar{x} \in \bigcap_{i=1}^n S_i(\bar{s}_i) \) and there exists \(r > 0 \) such that for any \(\varepsilon > 0 \) there exists \((s_1, \ldots, s_n) \in M_1 \times \cdots \times M_n \) with
\[
d_i(s_i, \bar{s}_i) \leq \varepsilon, \quad d(\bar{x}, S_i(s_i)) \leq \varepsilon, \quad i = 1, \ldots, n, \text{ and } \bigcap_{i=1}^n S_i(s_i) \cap (\bar{x} + rB_Y) = \emptyset.
\]

Mordukhovich, Treiman, and Zhu [19] proved the following extended extremal principle.

Theorem MTZ. Let \(S_i : M_i \to 2^Y \) be multifunctions from metric spaces \((M_i, d_i)\) to an Asplund space \(Y \), \(i = 1, \ldots, n \). Assume that \(\bar{x} \) is an extremal point of the system \((S_1, \ldots, S_n)\) at \((\bar{s}_1, \ldots, \bar{s}_n)\), where each \(S_i \) is closed-valued around \(\bar{s}_i \). Then for any \(\sigma > 0 \) there exist \(s_i \in M_i \), \(x_i \in S_i(s_i) \), and \(x^*_i \in Y^* \), \(i = 1, \ldots, n \), such that
\[
d_i(s_i, \bar{s}_i) \leq \sigma, \quad \| x_i - \bar{x} \| \leq \sigma, \quad x^*_i \in \hat{N}(S_i(s_i), x_i) + \sigma B_Y, \quad \sum_{i=1}^n \| x^*_i \| = 1, \quad \text{and} \quad \sum_{i=1}^n x^*_i = 0.
\]

Next we provide a slight improvement of Theorem MTZ, which will be used in the proofs of the main results.

For a natural number \(n \) and subsets \(A_1, \ldots, A_n \) of \(Y \), we define the nonintersection index \(\gamma(A_1, \ldots, A_n) \) of \(A_1, \ldots, A_n \) as
\[
\gamma(A_1, \ldots, A_n) := \inf \left\{ \sum_{i=1}^{n-1} \| a_i - a_n \| : (a_1, \ldots, a_n) \in A_1 \times \cdots \times A_n \right\}.
\]

Lemma 2.1. Let \(Y \) be an Asplund space and \(A_1, \ldots, A_n \) be closed subsets of \(Y \) with \(\bigcap_{i=1}^n A_i = \emptyset \). Let \(a_i \in A_i \) \((i = 1, \ldots, n) \) and \(\varepsilon > 0 \) such that
\[
\sum_{i=1}^{n-1} \| a_i - a_n \| < \gamma(A_1, \ldots, A_n) + \varepsilon.
\]
Then for any \(\lambda > 0 \) there exist \(\tilde{a}_i \in A_i \) and \(a^*_i \in Y^* \) such that
\[
\sum_{i=1}^n \| a_i - \tilde{a}_i \| < \lambda, \quad a^*_i \in \hat{N}(A_i, \tilde{a}_i) + \frac{\varepsilon}{\lambda} B_Y, \quad \sum_{i=1}^n \| a^*_i \| = 1 \quad \text{and} \quad \sum_{i=1}^n a^*_i = 0.
\]
Proof. Let the product Y^n be equipped with the norm $\| (x_1, \ldots, x_n) \| = \sum_{i=1}^n \| x_i \|$ for any $x_i \in Y$ ($i = 1, \ldots, n$), and define $f : Y^n \to R \cup \{+\infty\}$ by

$$f(x_1, \ldots, x_n) := \sum_{i=1}^{n-1} \| x_i - x_n \| + \delta_{A_1 \times \cdots \times A_n}(x_1, \ldots, x_n) \quad \forall (x_1, \ldots, x_n) \in Y^n.$$

Then

$$\inf\{ f(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \in Y^n \} = \gamma(A_1, \ldots, A_n),$$

and so, by the assumption,

$$f(a_1, \ldots, a_n) < \inf\{ f(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \in Y^n \} + \varepsilon.$$

Take $\eta \in (0, \varepsilon)$ and $\beta \in (0, \lambda)$ such that

$$\eta \beta < \varepsilon$$

and

$$f(a_1, \ldots, a_n) < \inf\{ f(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \in Y^n \} + \eta.$$

Then, by the Ekeland variational principle, there exists $\tilde{x}_i \in A_i$ such that

$$\sum_{i=1}^n \| a_i - \tilde{x}_i \| \leq \beta$$

and

$$f(\tilde{x}_1, \ldots, \tilde{x}_n) \leq f(x_1, \ldots, x_n) + \frac{\eta}{\beta} \sum_{i=1}^n \| x_i - \tilde{x}_i \| \quad \forall (x_1, \ldots, x_n) \in Y^n.$$

This and the definition of f imply that $(\tilde{x}_1, \ldots, \tilde{x}_n) \in A_1 \times \cdots \times A_n$. It follows from $\cap_{i=1}^n A_i = \emptyset$ that

$$\sum_{i=1}^{n-1} \| \tilde{x}_i - \tilde{x}_n \| > 0.$$

We define a continuous convex function ψ by

$$\psi(x_1, \ldots, x_n) := \sum_{i=1}^{n-1} \| x_i - x_n \| + \frac{\eta}{\beta} \sum_{i=1}^n \| x_i - \tilde{x}_i \| \quad \forall (x_1, \ldots, x_n) \in Y^n.$$

It follows from (2.5) that ψ attains its minimum over $A_1 \times \cdots \times A_n$ at $(\tilde{x}_1, \ldots, \tilde{x}_n)$. By (2.6) and Proposition 2.2, there exist $\bar{x}_i \in Y$ and $\bar{a}_i \in A_i$ ($i = 1, \ldots, n$) such that

$$\sum_{i=1}^{n-1} \| \bar{x}_i - \bar{x}_n \| > 0, \quad \sum_{i=1}^n \| \bar{a}_i - \tilde{x}_i \| < \lambda - \beta$$

and

$$0 \in \partial \psi(\bar{x}_1, \ldots, \bar{x}_n) + \mathcal{N}(A_1 \times \cdots \times A_n, (\bar{a}_1, \ldots, \bar{a}_n)) + \left(\frac{\varepsilon}{\lambda} - \frac{\eta}{\beta} \right) B^n_{\psi}.$$

Theorem MTZ, there exists \(r > 0 \). This means that
\[
\phi(x_1, \ldots, x_n) := \sum_{i=1}^{n-1} \|x_i - x_n\| \quad \forall (x_1, \ldots, x_n) \in Y^n.
\]

Then
\[
\partial \psi(\bar{x}_1, \ldots, \bar{x}_n) \subset \partial \phi(\bar{x}_1, \ldots, \bar{x}_n) + \frac{\eta}{\beta} B(Y^n).
\]

This and (2.7) imply that
\[
0 \in \partial \phi(\bar{x}_1, \ldots, \bar{x}_n) + \hat{N}(A_1 \times \cdots \times A_n, (\bar{a}_1, \ldots, \bar{a}_n)) + \frac{\varepsilon}{\lambda} B(Y^n).
\]

We claim that
\[
(2.9) \quad \partial \phi(\bar{x}_1, \ldots, \bar{x}_n) \subset \left\{ (x_1^*, \ldots, x_n^*) \in (Y^*)^n : \sum_{i=1}^{n} x_i^* = 0 \text{ and } \sum_{i=1}^{n} \|x_i^*\| \geq 1 \right\}.
\]

Granting this and noting that
\[
\hat{N}(A_1 \times \cdots \times A_n, (\bar{a}_1, \ldots, \bar{a})) = \hat{N}(A_1, \bar{a}_1) \times \cdots \times \hat{N}(A_n, \bar{a}_n)
\]

is a cone, it follows from (2.8) that there exists \((a_1^*, \ldots, a_n^*) \in (Y^*)^n\) such that
\[
a_i^* \in \hat{N}(A_i, \bar{a}_i) + \frac{\varepsilon}{\lambda} B_{Y^*}, \sum_{i=1}^{n} \|a_i^*\| = 1, \text{ and } \sum_{i=1}^{n} a_i^* = 0.
\]

It remains to show that (2.9) holds. Let \((x_1^*, \ldots, x_n^*) \in \partial \phi(\bar{x}_1, \ldots, \bar{x}_n)\). It follows from the convexity of \(\phi\) that for any \(h \in Y\),
\[
\sum_{i=1}^{n} \langle x_i^*, h \rangle \leq \phi(\bar{x}_1 + h, \ldots, \bar{x}_n + h) - \phi(\bar{x}_1, \ldots, \bar{x}_n) = 0.
\]

This means that \(\sum_{i=1}^{n} x_i^* = 0\). On the other hand,
\[
-\sum_{i=1}^{n-1} \langle x_i^*, \bar{x}_i - \bar{x}_n \rangle = \sum_{i=1}^{n-1} \langle x_i^*, \bar{x}_i \rangle - \phi(0, \ldots, 0) - \phi(\bar{x}_1, \ldots, \bar{x}_n) = -\sum_{i=1}^{n-1} \|\bar{x}_i - \bar{x}_n\|.
\]

Since, as in (2.6), \(\sum_{i=1}^{n-1} \|\bar{x}_i - \bar{x}_n\| > 0\), it follows that \(\sum_{i=1}^{n} \|x_i^*\| \geq 1\). This completes the proof. \(\square\)

Remark. Lemma 2.1 recaptures Theorem MTZ. Indeed, by the assumption of Theorem MTZ, there exists \(r > 0 \) such that for any \(\sigma \in (0, \min\{\frac{\varepsilon}{2}, \frac{r^2}{2n}\}) \) there exists \((s_1, \ldots, s_n) \in M_1 \times \cdots \times M_n\) such that each \(S_i(s_i)\) is closed,
\[
d_i(s_i, \bar{s}_i) < \sigma, \quad d(\bar{x}, S_i(s_i)) < \frac{\sigma^2}{2n}, \quad i = 1, \ldots, n, \text{ and } \bigcap_{i=1}^{n} S_i(s_i) \cap (\bar{x} + rB_Y) = \emptyset.
\]

Hence, there exists \(u_i \in S_i(s_i)\) such that \(\|u_i - \bar{x}\| < \frac{\sigma^2}{2n}\). This implies that
\[
\sum_{i=1}^{n-1} \|u_i - u_n\| \leq \sum_{i=1}^{n-1}(\|u_i - \bar{x}\| + \|\bar{x} - u_n\|) < \sigma^2,
\]
and so
\[\sum_{i=1}^{n-1} \| u_i - u_n \| < \gamma(S_1(s_1) \cap (\bar{x} + rB_Y), \ldots, S_n(s_n) \cap (\bar{x} + rB_Y)) + \sigma^2. \]

Now with \(A_i = S_i(s_i) \cap (\bar{x} + rB_Y), \) \(a_i = u_i, \) \(\varepsilon = \sigma^2, \) and \(\lambda = \sigma, \) there exist \(\tilde{a}_i \in A_i \) and \(a_i^* \in Y^* \) satisfying the properties as stated in Lemma 2.1. Note that \(\tilde{a}_i \) lies in the interior of \(\bar{x} + rB_Y, \) and it follows that \(a_i^* \in \tilde{N}(S_i(s_i), \tilde{a}_i). \) Thus Theorem MTZ is seen to hold.

Similar to the proof of Lemma 2.1 but applying Proposition 2.1 in place of Proposition 2.2, we have the following result applicable to the case when \(Y \) is a general Banach space.

Lemma 2.2. Let \(Y \) be a Banach space and \(A_1, \ldots, A_n \) be closed subsets of \(Y \) with \(\bigcap_{i=1}^{n} A_i = \emptyset. \) Let \(a_i \in A_i \) (\(i = 1, \ldots, n \)) and \(\varepsilon > 0 \) such that
\[\sum_{i=1}^{n-1} \| a_i - a_n \| \leq \gamma(A_1, \ldots, A_n) + \varepsilon. \]

Then for any \(\lambda > 0 \) there exist \(\tilde{a}_i \in A_i \) and \(a_i^* \in Y^* \) such that
\[\sum_{i=1}^{n} \| a_i - \tilde{a}_i \| < \lambda, \quad a_i^* \in N_c(A_i, \tilde{a}_i) + \frac{\varepsilon}{\lambda} B_{Y^*}, \]
\[\sum_{i=1}^{n} \| a_i^* \| = 1 \quad \text{and} \quad \sum_{i=1}^{n} a_i^* = 0. \]

3. Fuzzy Lagrange multiplier rules

In this section, we always assume that \(X, Y_i \) are Banach spaces (unless stated otherwise), that \(C_i \subset Y_i \) is a closed convex cone, and that each multifunction \(F_i : X \rightarrow 2^{Y_i} \) is closed. Further we assume that the ordering cone \(C_0 \) in \(Y_0 \) is nontrivial (i.e., \(C_0 \) is not a linear subspace). For convenience we define the norm on the product \(X \times \prod_{i=0}^{m} Y_i \) by
\[\| (x, y_0, y_1, \ldots, y_m) \| = \| x \| + \sum_{i=0}^{m} \| y_i \|. \]

In this section we present three fuzzy Lagrange multiplier rules. The first one works on general Banach spaces, while the last two work on Asplund spaces dealing, respectively, with the set-valued and the numeral-valued functions.

Theorem 3.1. Let \((\bar{x}, \bar{y}_0) \) be a local Pareto solution of the constrained multiobjective optimization problem \((1.3) \) and \(\bar{y}_i \) be a point in \(F_i(\bar{x}) \cap -C_i \) (\(i = 1, \ldots, m \)). Then one of the following assertions holds.

(i) For any \(\varepsilon > 0 \) there exist \(x_i \in \bar{x} + \varepsilon B_X, \) \(w \in \Omega \cap (\bar{x} + \varepsilon B_X), \) \(y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i}), \) and \(c_i^* \in C_i^+ \) such that
\[\sum_{i=0}^{m} \| c_i^* \| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D^*_i F_i(x_i, y_i)(c_i^* + \varepsilon B_{Y_i}) \cap M B_{X^*} + N_c(\Omega, w) \cap M B_{X^*} + \varepsilon B_{X^*}, \]
where \(M > 0 \) is a constant independent of \(\varepsilon. \)
(ii) For any \(\varepsilon > 0 \) there exist \(x_i \in \bar{x} + \varepsilon B_X \), \(w \in \Omega \cap (\bar{x} + \varepsilon B_X), y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_Y) \), \(x_i^* \in D^*_c F_i(x_i,y_i)(\varepsilon B_Y^*), \) and \(w^* \in N_c(\Omega, w) + \varepsilon B_X \) such that

\[
\|w^*\| + \sum_{i=0}^{m} \|x_i^*\| = 1 \quad \text{and} \quad w^* + \sum_{i=0}^{m} x_i^* = 0.
\]

Proof. By the assumption there exists \(\delta > 0 \) such that

\[
(3.1) \quad \bar{y}_0 \in E \left(F_0 \left((\bar{x} + \delta B_X) \cap \Omega \cap \left(\bigcap_{i=1}^{m} F_i^{-1}(-C_i) \right) \right), C_0 \right).
\]

Since the ordering cone \(C_0 \) is not a subspace of \(Y_0 \), there exists \(c_0 \in C_0 \) with \(\|c_0\| = 1 \) such that

\[
(3.2) \quad c_0 \not\in -C_0.
\]

For any natural number \(k \), let \(s_k := \frac{1}{(m+2)k^2} \), and consider the following sets in the product space \(X \times \prod_{j=0}^{m} Y_j \):

\[
A_i := \left\{ (x, y_0, y_1, \ldots, y_m) \in X \times \prod_{j=0}^{m} Y_j : (x, y_i) \in \text{Gr}(F_i) \right\}, \quad i = 0, 1, \ldots, m,
\]

and

\[
A_{m+1} := ((\bar{x} + \delta B_X) \cap \Omega) \times (\bar{y}_0 - s_k c_0 - C_0) \times \prod_{i=1}^{m} (\bar{y}_i - C_i).
\]

Then \(\bigcap_{i=0}^{m+1} A_i = \emptyset \). Indeed, if this is not the case, then there exist \(x' \in X \) and \(y'_i \in F_i(x') (i = 0, 1, \ldots, m) \) such that

\[
x' \in (\bar{x} + \delta B_X) \cap \Omega, \quad y'_0 \leq C_0, \quad y'_0 - s_k c_0, \quad \text{and} \quad y'_i \in \bar{y}_i - C_i(\subset -C_i), \quad i = 1, \ldots, m.
\]

Hence, \(x' \in (\bar{x} + \delta B_X) \cap \Omega \cap (\bigcap_{i=1}^{m} F_i^{-1}(-C_i)) \), and so

\[
y'_0 \in F_0 \left((\bar{x} + \delta B_X) \cap \Omega \cap \left(\bigcap_{i=1}^{m} F_i^{-1}(-C_i) \right) \right).
\]

It follows from (3.1) that \(\bar{y}_0 \leq C_0 \) \(y'_0 \), and so \(\bar{y}_0 \leq C_0, \bar{y}_0 - s_k c_0 \). This implies that \(c_0 \in -C_0 \), contradicting (3.2). Let

\[
a_0 = a_1 = \cdots = a_m = (\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_m) \quad \text{and} \quad a_{m+1} = (\bar{x}, \bar{y}_0 - s_k c_0, \bar{y}_1, \ldots, \bar{y}_m).
\]

Then

\[
\sum_{i=0}^{m} \|a_i - a_{m+1}\| = (m + 1)s_k < \frac{1}{k^2} \leq \gamma(A_0, A_1, \ldots, A_{m+1}) + \frac{1}{k^2}.
\]

By Lemma 2.2 (applied to the family \(\{A_0, A_1, \ldots, A_{m+1}\} \) and the constants \(\varepsilon = \frac{1}{k^2}, \lambda = \frac{1}{k} \)), there exist

\[
\tilde{a}_i(k) := (x_i(k), y_{i,0}(k), y_{i,1}(k), \ldots, y_{i,m}(k)) \in X \times \prod_{j=0}^{m} Y_j
\]
and
\[
(x_i^*(k), y_{i,0}^*(k), y_{i,1}^*(k), \ldots, y_{i,m}^*(k)) \in X^* \times \prod_{j=0}^{m} Y_j^*
\]
(i = 0, 1, \ldots, m + 1) such that
\[
(3.3) \quad \sum_{i=0}^{m+1} \| \tilde{a}_i(k) - a_i \| = \sum_{i=0}^{m} \left(\| x_i(k) - \bar{x} \| + \sum_{j=0}^{m} \| y_{i,j}(k) - \bar{y}_j \| \right) + \| x_{m+1}(k) - \bar{x} \| + \| y_{m+1,0}(k) - (\bar{y}_0 - s_k c_0) \| + \sum_{j=1}^{m} \| y_{m+1,j}(k) - \bar{y}_j \| < \frac{1}{k},
\]

\[
(3.4) \quad (x_i^*(k), y_{i,0}^*(k), \ldots, y_{i,m}^*(k)) \in N_c(A_{i}, \tilde{a}_i(k)) + \frac{1}{k} \left(B_{X^*} \times \prod_{j=0}^{m} B_{Y_j^*} \right),
\]

\[
(3.5) \quad \sum_{i=0}^{m+1} \max \{ \| x_i^*(k) \|, \ \max \{ \| y_{i,j}^*(k) \| : j = 0, 1, \ldots, m \} \} = 1,
\]

and
\[
(3.6) \quad \sum_{i=0}^{m+1} (x_i^*(k), y_{i,0}^*(k), y_{i,1}^*(k), \ldots, y_{i,m}^*(k)) = 0.
\]

By the definitions of A_{m+1} and $\tilde{a}_{m+1}(k)$, we see that $N_c(A_{m+1}, \tilde{a}_{m+1}(k))$ is equal to the following product:
\[
N_c((\bar{x} + s \delta B_X) \cap \Omega, x_{m+1}(k)) \times N_c(\bar{y}_0 - s_k c_0 - C_0, y_{m+1,0}(k)) \times \prod_{j=1}^{m} N_c(\bar{y}_j - C_j, y_{m+1,j}(k)).
\]

By well-known relations
\[
N_c(\bar{y}_0 - s_k c_0 - C_0, y_{m+1,0}(k)) \subset C_0^+ \quad \text{and} \quad N_c(\bar{y}_j - C_j, y_{m+1,j}(k)) \subset C_j^+ \ (1 \leq j \leq m),
\]
it follows that
\[
N_c(A_{m+1}, \tilde{a}_{m+1}(k)) \subset N_c((\bar{x} + s \delta B_X) \cap \Omega, x_{m+1}(k)) \times \prod_{j=0}^{m} C_j^+.
\]

We do the above for every natural number k, and by (3.3) we assume without loss of generality that $\bar{x} + s \delta B_X$ is a neighborhood of $x_{m+1}(k)$, and so $N_c((\bar{x} + s \delta B_X) \cap \Omega, x_{m+1}(k)) = N_c(\Omega, x_{m+1}(k))$. Hence,
\[
N_c(A_{m+1}, \tilde{a}_{m+1}(k)) \subset N_c(\Omega, x_{m+1}(k)) \times \prod_{j=0}^{m} C_j^+.
\]

This and (3.4) imply that there exists $(c_0^*(k), c_1^*(k), \ldots, c_m^*(k)) \in \prod_{j=0}^{m} C_j^+$ such that
\[
(3.7) \quad x_{m+1}^*(k) \in N_c(\Omega, x_{m+1}(k)) + \frac{1}{k} B_{X^*}.
\]
and

(3.8) \[\|y^*_m +_{j=1} - c^*_j(k)\| \leq \frac{1}{k}, \quad j = 0, 1, \ldots, m. \]

Moreover, for 0 \leq i \leq m, we have by the definition of \(A_i \) and \(\tilde{a}_i(k) \) that

(3.9) \[
N_c(A_i, \tilde{a}_i(k))
\]

\[= \{(x^*, y^*_0, \ldots, y^*_m): (x^*, y^*_i) \in N_c(Gr(F_i), (x_i(k), y_i,i(k))) \text{ and } y^*_j = 0 \quad \forall j \neq i\}. \]

This and (3.4) imply that for 0 \leq i \leq m,

(3.10) \[
x^*_i(k) \in D^*F_i(x_i(k), y_i,i(k)) \left(-y^*_{i,i}(k) + \frac{1}{k} B_{Y^*} \right) + \frac{1}{k} B_{X^*}
\]

and

(3.11) \[\|y^*_{i,j}(k)\| \leq \frac{1}{k}, \quad 0 \leq j \leq m \text{ and } j \neq i. \]

By (3.6), (3.8), and (3.11), one has

(3.12) \[
-y^*_{i,i}(k) = y^*_{m+1,i}(k) + \sum_{l=0, l \neq i}^m y^*_{l,i}(k) \in c^*_i(k) + \frac{m + 1}{k} B_{Y^*}, \quad i = 0, 1, \ldots, m.
\]

This and (3.10) imply that for i = 0, 1, \ldots, m,

(3.13) \[
x^*_i(k) \in D^*F_i(x_i(k), y_i,i(k)) \left(c^*_i(k) + \frac{m + 1}{k} B_{Y^*} \right) + \frac{1}{k} B_{X^*}
\]

In the case when \(\{\sum_{j=0}^m \|c^*_j(k)\|\} \) does not converge to 0, without loss of generality we assume that there exists \(r > 0 \) such that \(\sum_{j=0}^m \|c^*_j(k)\| > r \) for all \(k \) (passing to subsequences if necessary). It follows from (3.13), (3.7), and (3.6) that

\[
\frac{x^*_i(k)}{\sum_{j=0}^m \|c^*_j(k)\|} \in D^*F_i(x_i(k), y_i,i(k)) \left(\frac{c^*_i(k)}{\sum_{j=0}^m \|c^*_j(k)\|} + \frac{m + 2}{rk} B_{Y^*} \right) + \frac{1}{rk} B_{X^*}, \quad 0 \leq i \leq m,
\]

\[
\frac{x^*_m+1}{\sum_{j=0}^m \|c^*_j(k)\|} \in N_c(\Omega, x_{m+1}(k)) + \frac{1}{rk} B_{X^*} \quad \text{and} \quad \sum_{i=0}^{m+1} \frac{x^*_i(k)}{\sum_{j=0}^m \|c^*_j(k)\|} = 0.
\]

By virtue of (3.3) and (3.5) and by considering large enough \(k \), it follows that (i) holds with \(M = \frac{w+2}{r} \).

Next we consider the case when \(t_k := \sum_{j=0}^m \|c^*_j(k)\| \rightarrow 0. \) In this case, (3.8) implies that

\[y^*_{m+1,j}(k) \rightarrow 0 \quad \text{for } j = 0, 1, \ldots, m. \]

It follows from (3.11), (3.12), and (3.5) that \(\sum_{i=0}^{m+1} \|x^*_i(k)\| \rightarrow 1. \) Thus, by (3.13), (3.7), and (3.6), there exist

\[x^*_i(k) \in D^*F_i(x_i(k), y_i,i(k)) \left(c^*_i(k) + \frac{m + 2}{k} B_{Y^*} \right) \quad \text{for } i = 0, 1, \ldots, m. \]
and
\[\hat{x}_{m+1}^* (k) \in N_c(\Omega, x_{m+1}(k)) + \frac{m + 2}{k} B_{X^*}, \]
such that
\[r_k := \sum_{i=0}^{m+1} \| \hat{x}_i^*(k) \| \to 1 \quad \text{and} \quad \sum_{i=0}^{m+1} \hat{x}_i^*(k) = 0. \]
Therefore, for all \(k \) large enough,
\[\frac{\hat{x}_m^*(k)}{r_k} \in D^*_c F_i(x_i(k), y_i(k)) \left(\left(\frac{c_i^*(k)}{r_k} + \frac{m + 2}{kr_k} \right) B_{Y^*} \right), \]
\[\frac{\hat{x}_{m+1}^*(k)}{r_k} \in N_c(\Omega, x_{m+1}(k)) + \frac{m + 2}{kr_k} B_{X^*}, \]
\[\sum_{i=0}^{m+1} \left\| \frac{\hat{x}_i^*(k)}{r_k} \right\| = 1 \quad \text{and} \quad \sum_{i=0}^{m+1} \frac{\hat{x}_i^*(k)}{r_k} = 0. \]
Noting that \(r_k \to 1 \) and \(\| c_i^*(k) \| \leq t_k \to 0 \), this implies that (ii) holds, and the proof is completed. \(\Box \)

In the special case when \(F_i(x) = 0 \) for all \(x \in X \) and \(i = 1, \ldots, m \), (1.3) reduces to the following problem:
\begin{align}
(3.14) & \quad C_0 - \min F_0(x), \\
& \quad x \in \Omega,
\end{align}
and \(D^*_c F_i(x, 0)(y_i^*) = 0 \) for all \((x, y_i^*) \in X \times Y_i^* \) and \(i = 1, \ldots, m \). Thus, the following corollary is an immediate consequence of Theorem 3.1 and recaptures [28, Theorem 3.1] by putting our \(\Omega = X \).

Corollary 3.1. Let \((\bar{x}, \bar{y})\) be a local Pareto solution of the constrained multiobjective optimization problem (3.14). Then one of the following two assertions holds.

(i) For any \(\varepsilon > 0 \) there exist \(u \in \bar{x} + \varepsilon B_X \), \(w \in \Omega \cap (\bar{x} + \varepsilon B_X) \), \(y \in F_0(u) \cap (\bar{y} + \varepsilon B_Y) \), and \(c^* \in C^* \) with \(\| c^* \| = 1 \) such that
\[0 \in D^*_c F_0(u, y)(c^* + \varepsilon B_{Y^*}) \cap MB_{X^*} + N_c(\Omega, w) \cap MB_{X^*} + \varepsilon B_{X^*}, \]
where \(M > 0 \) is a constant independent of \(\varepsilon \).

(ii) For any \(\varepsilon > 0 \) there exist \(u \in \bar{x} + \varepsilon B_X \), \(w \in \Omega \cap (\bar{x} + \varepsilon B_X) \), \(y \in F_0(u) \cap (\bar{y} + \varepsilon B_Y) \), and \(x^* \in X^* \) with \(\| x^* \| = 1 \) such that
\[x^* \in D^*_c F_0(u, y)(\varepsilon B_{Y^*}) \cap (-N_c(\Omega, w) + \varepsilon B_{X^*}). \]

When \(X \) and each \(Y_i \) are Asplund spaces, Theorem 3.1 can be strengthened to the following theorem, Theorem 3.2, in which \(D^*_c \) and \(N_c(x, \cdot) \) are replaced, respectively, by the Fréchet coderivative \(\tilde{D}^* \) and the Fréchet normal cone \(\tilde{N}(\Omega, \cdot) \) (recall that \(\tilde{N}(A, a) \subset N(A, a) \) and \(N_c(A, a) \) is the weak* closed convex hull of \(N(A, a) \)). The proof is the same as the proof of Theorem 3.1, but use Lemma 2.1 in place of Lemma 2.2.

Theorem 3.2. Let \((\bar{x}, \bar{y}_i)\) be a local Pareto solution of the constrained multiobjective optimization problem (1.3) and \(\bar{y}_i \) be a point in \(F_i(\bar{x}) \cap -C_i \) \((i = 1, \ldots, m) \).
Suppose that X and Y_i ($i = 0, 1, \ldots, m$) are Asplund spaces. Then one of the following assertions holds.

(i) For any $\varepsilon > 0$ there exist $x_i \in \bar{x} + \varepsilon B_X$, $w \in \Omega \cap (\bar{x} + \varepsilon B_X)$, $y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i})$, and $c_i^* \in C_i^+$ such that

$$
\sum_{i=0}^{m} \|c_i^*\| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} \bar{D}^* F_i(x_i, y_i)(c_i^* + \varepsilon B_{Y_i}) \cap MB_X \cap \bar{N}(\Omega, w) \cap MB_X + \varepsilon B_X,
$$

where $M > 0$ is a constant independent of ε.

(ii) For any $\varepsilon > 0$ there exist $x_i \in \bar{x} + \varepsilon B_X$, $w \in \Omega \cap (\bar{x} + \varepsilon B_X)$, $y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i})$, $x_i^* \in \bar{D}^* F_i(x_i, y_i)(\varepsilon B_{Y_i})$, and $w^* \in \bar{N}(\Omega, w) + \varepsilon B_X$ such that

$$
\|w^*\| + \sum_{i=0}^{m} \|x_i^*\| = 1 \quad \text{and} \quad w^* + \sum_{i=0}^{m} x_i^* = 0.
$$

Next we prove that (ii) in Theorem 3.2 cannot happen when each F_i is pseudo-Lipschitz at (\bar{x}, \bar{y}_i).

Corollary 3.2. Let (\bar{x}, \bar{y}_0) be a local Pareto solution of the constrained multi-objective optimization problem (1.3) and \bar{y}_i be a point in $F_i(\bar{x}) \cap -C_i$ ($i = 1, \ldots, m$). Suppose that X and Y_i ($i = 0, 1, \ldots, m$) are Asplund spaces and that each F_i is pseudo-Lipschitz at (\bar{x}, \bar{y}_i). Then for any $\varepsilon > 0$ there exist $x_i \in \bar{x} + \varepsilon B_X$, $w \in \Omega \cap (\bar{x} + \varepsilon B_X)$, $y_i \in F_i(x_i) \cap (\bar{y}_i + \varepsilon B_{Y_i})$, and $c_i^* \in C_i^+$ such that

$$
\sum_{i=0}^{m} \|c_i^*\| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} \bar{D}^* F_i(x_i, y_i)(c_i^* + \varepsilon B_{Y_i}) \cap MB_X \cap \bar{N}(\Omega, w) \cap MB_X + \varepsilon B_X,
$$

where $M > 0$ is a constant independent of ε.

Proof. Since each F_i is pseudo-Lipschitz at (\bar{x}, \bar{y}_i), Proposition 2.3 implies that there exist constants $L, \delta > 0$ such that for any $(x, y) \in Gr(F_i) \cap (B(\bar{x}, \delta) \times B(\bar{y}, \delta))$ and $y_i^* \in Y^*$,

$$
\sup\{\|x^*\| : x^* \in \bar{D}^* F_i(x, y_i)(y_i^*)\} \leq L\|y_i^*\|.
$$

We need only show that (i) of Theorem 3.2 holds. If this is not the case, Theorem 3.2 implies that there exist

(i) $x_i \in B(\bar{x}, \delta)$, $w \in \Omega \cap B(\bar{x}, \delta)$, $y_i \in F_i(x_i) \cap B(\bar{y}_i, \delta)$,

(ii) $x_i^* \in \bar{D}^* F_i(x_i, y_i) \left(\frac{B_{Y_i}}{4(m+1) L}\right)$ and $w^* \in \bar{N}(\Omega, w) + B_X$,

such that

$$
\|w^*\| + \sum_{i=0}^{m} \|x_i^*\| = 1 \quad \text{and} \quad w^* + \sum_{i=0}^{m} x_i^* = 0.
$$

By (3.15), (3.16), and (3.17), one has

$$
\left\|\sum_{i=0}^{m} x_i^*\right\| \leq \sum_{i=0}^{m} \|x_i^*\| \leq \frac{1}{4},
$$

contradicting (3.18). This completes the proof. □
Lemma 2.2]) that if \(|x^*| \) and \(\delta \) that one of the assertions (i) and (ii) in Theorem 3.2 holds. It suffices to show that (i) in a local Pareto solution of (1.3), and \(\bar{t} \in \partial(\bar{\lambda}f)(\bar{x}) \).

\[x^*_k \in \partial(\bar{\lambda}_k f)(x_k), \quad (x_k, f(x_k)) \to (\bar{x}, f(\bar{x})), \quad \bar{\lambda}_k \downarrow 0, \quad \text{and} \quad \|x^*_k - x^*\| \to 0. \]

Let \(g : X \to R \) be a continuous function and \(G(x) = \{g(x)\} \) for all \(x \in X \). The following assertions are known (see [14, Lemma 2.3]).

\[\begin{align*}
(a) & \quad \lambda \neq 0 \quad \text{and} \quad x^* \in \Delta^* F(\bar{x}, r)(\lambda) \iff \lambda > 0, \quad r = f(\bar{x}), \quad \text{and} \quad x^* \in \partial(\lambda f)(\bar{x}). \\
(b) & \quad \text{For any} \quad x^* \in \Delta^* F(\bar{x}, r)(0) \quad \text{there exist sequences} \quad \{x_k\}, \quad \{x^*_k\}, \quad \text{and} \quad \{\lambda_k\} \quad \text{such that} \\
& x^*_k \in \Delta(\lambda_k f)(x_k), \quad (x_k, f(x_k)) \to (\bar{x}, f(\bar{x})), \quad \lambda_k \downarrow 0, \quad \text{and} \quad \|x^*_k - x^*\| \to 0.
\end{align*} \]

As an application of Theorem 3.2, now we can establish fuzzy necessary optimality conditions for scalar-objective optimization problem (1.1).

Theorem 3.3. Let \(X \) be an Asplund space and \(\Omega \) be a closed subset of \(X \). Let \(f_0, f_1, \ldots, f_n : X \to R \cup \{+\infty\} \) be proper lower semicontinuous and \(f_{n+1}, \ldots, f_m : X \to R \) be continuous. Suppose that \(\bar{x} \) is a local solution of (1.1). Then one of the following assertions holds.

(i) For any \(\epsilon > 0 \) there exist \(\lambda_i \in R \setminus \{0\}, \quad w \in (\bar{x} + \epsilon B_X) \cap \Omega, \quad x_i \in \bar{x} + \epsilon B_X \) with \(|f_i(x_i) - f_i(\bar{x})| < \epsilon \) such that \(\lambda_i > 0 \) for \(0 \leq i \leq n, \sum_{i=0}^{m} |\lambda_i| = 1, \) and

\[0 \in \sum_{i=0}^{m} \Delta(\lambda_i f_i)(x_i) \cap MB_{X^*} + \hat{N}(\Omega, w) \cap MB_{X^*} + \epsilon B_{X^*}, \]

where \(M > 0 \) is a constant independent of \(\epsilon \).

(ii) For any \(\epsilon > 0 \) there exist \(w \in (\bar{x} + \epsilon B_X) \cap \Omega, \quad x_i \in \bar{x} + \epsilon B_X \) with \(|f_i(x_i) - f_i(\bar{x})| < \epsilon, \quad \epsilon_i \in (-\epsilon, \epsilon) \setminus \{0\}, \quad w^* \in \hat{N}(\Omega, w) + \epsilon B_{X^*}, \) and \(x^*_i \in \partial(\epsilon_i f_i)(x_i) \) such that \(\epsilon_i > 0 \) for \(0 \leq i \leq n, \)

\[\|w^*\| + \sum_{i=0}^{m} \|x^*_i\| = 1 \quad \text{and} \quad w^* + \sum_{i=0}^{m} x^*_i = 0. \]

Proof. Let \(\epsilon \) be an arbitrary positive number. By the lower semicontinuity assumption, there exists \(\delta \in (0, \frac{1}{2}) \) such that

\[f_i(\bar{x}) - \epsilon < f_i(x) \quad \text{for any} \quad x \in \bar{x} + \delta B_X \quad \text{and} \quad i = 0, 1, \ldots, n. \]

Let \(Y_0 = Y_1 = \cdots = Y_m = R \). Let \(C_i = R^+, \quad F_i(x) = \{f_i(x), +\infty\} \) for \(i = 0, 1, \ldots, n \) and \(C_i = \{0\}, \quad F_i(x) = \{f_i(x)\} \) for \(i = n + 1, \ldots, m \). Then, each \(F_i \) is closed, \((\bar{x}, \bar{y}_0) \) is a local Pareto solution of (1.3), and \(\bar{y}_i := f_i(\bar{x}) \in F_i(\bar{x}) \cap C_i \) for \(i = 1, \ldots, m \). Hence, one of the assertions (i) and (ii) in Theorem 3.2 holds. It suffices to show that (i) in Theorem 3.2\(\implies\)(i) and (ii) in Theorem 3.2\(\implies\)(ii). As the arguments are similar, we shall prove only that the implication (i) in Theorem 3.2\(\implies\)(i). Suppose that (i) in Theorem 3.2 holds. Let \(\sigma \in (0, \min\{\frac{\epsilon}{4}, \delta\}) \), and take (a) into account. Then there
exist \(w \in (\bar{x} + \sigma B_X) \cap \Omega \), \((u_i, r_i) \in (\bar{x} + \sigma B_X) \times (f_i(\bar{x}) - \sigma, f_i(\bar{x}) + \sigma) \), and \(s_i \in R \) such that
\[
 r_i \geq f_i(u_i) \text{ for } 0 \leq i \leq n, \quad r_i = f_i(u_i) \text{ for } n + 1 \leq i \leq m,
\]
\[(3.20) \quad s_i \geq 0 \text{ for } i = 0, 1, \ldots, n, \quad \sum_{i=0}^{m} |s_i| \geq 1 - \sigma,
\]
and
\[(3.21) \quad 0 \in \sum_{i=0}^{m} \hat{\partial} F_i(u_i, r_i)(s_i) \cap KB_{X^*} + \hat{N}(\Omega, w) \cap KB_{X^*} + \sigma B_{X^*},
\]
where \(K > 0 \) is a constant. By (3.19), one has
\[(3.22) \quad f_i(\bar{x}) - \varepsilon < f(u_i) \leq r_i < f_i(\bar{x}) + \sigma < f_i(\bar{x}) + \varepsilon \text{ for } i = 0, 1, \ldots, n.
\]
Take \(u^*_i \in \hat{\partial} F_i(u_i, r_i)(s_i) \cap KB_{X^*} \) (by (3.21)) such that
\[(3.23) \quad -\sum_{i=0}^{m} u^*_i \in \hat{N}(\Omega, w) \cap KB_{X^*} + \sigma B_{X^*}.
\]
Let \(I_0 := \{0 \leq i \leq m : s_i = 0\} \). It follows from (a) and (a') that
\[(3.24) \quad u^*_i \in \hat{\partial} (s_i f_i)(u_i) \cap KB_{X^*} \text{ for any } i \in \{0, 1, \ldots, m\} \setminus I_0.
\]
For any \(i \in \{0, 1, \ldots, n\} \cap I_0 \), (3.22) and (3.24) imply that there exist \(\tilde{u}_i \in u_i + \sigma B_X \) with \(|f_i(\tilde{u}_i) - f_i(u_i)| < \varepsilon - |f_i(u_i) - f_i(\bar{x})|, t_i > 0 \), and \(x^*_i \in \hat{\partial} (t_i f_i)(\tilde{u}_i) \) such that
\[(3.25) \quad \|\tilde{u}_i - \bar{x}\| \leq \|\tilde{u}_i - u_i\| + \|u_i - \bar{x}\| \leq 2\sigma < \varepsilon, \quad |f_i(\tilde{u}_i) - f_i(\bar{x})| < \varepsilon
\]
and
\[(3.26) \quad u^*_i \in \hat{\partial} (t_i f_i)(\tilde{u}_i) \cap \left(K + \frac{1}{m}\right) B_{X^*} + \frac{\sigma}{m} B_{X^*}.
\]
Moreover, for any \(j \in \{n + 1, \ldots, m\} \cap I_0 \), (3.24') implies that there exist \(\tilde{u}_j \in u_j + \sigma B_X \) with \(|f_j(\tilde{u}_j) - f_j(u_j)| < \sigma, t_j \in R \setminus \{0\} \), and \(x^*_j \in \hat{\partial} (t_j f_j)(\tilde{u}_j) \) such that \(|x^*_j - u^*_j| < \sigma \). Hence, for any \(j \in \{n + 1, \ldots, m\} \cap I_0 \),
\[(3.27) \quad \|\tilde{u}_j - \bar{x}\| < 2\sigma < \varepsilon, \quad |f_j(\tilde{u}_j) - f_j(\bar{x})| < 2\sigma < \varepsilon
\]
and
\[(3.28) \quad u^*_j \in \hat{\partial} (t_j f_j)(\tilde{u}_j) \cap \left(K + \frac{1}{m}\right) B_{X^*} + \frac{\sigma}{m} B_{X^*}.
\]
Let \(\eta := \sum_{i=0}^{m} |s_i| + \sum_{i \in I_0} |t_i|, \lambda_i := \frac{\sigma}{m} \) if \(i \in \{0, 1, \ldots, m\} \setminus I_0 \), and \(\lambda_i := \frac{1}{m} \) if \(i \in I_0 \), and let \(x_i := u_i \) if \(i \in \{0, 1, \ldots, m\} \setminus I_0 \) and \(x_i := \tilde{u}_i \) if \(i \in I_0 \). Then
\[
 \eta \geq 1 - \sigma > \frac{1}{2}, \quad \lambda_i > 0 \quad \text{for } 0 \leq i \leq n, \quad \sum_{i=0}^{m} |\lambda_i| = 1,
\]
and dividing (3.23), (3.24), (3.26), and (3.28) by \(\eta \), it follows that
\[
 0 \in \sum_{i=0}^{m} \hat{\partial} (\lambda_i f_i)(u_i) \cap \left(2K + \frac{2}{m}\right) B_{X^*} + \hat{N}(\Omega, w) \cap 2KB_{X^*} + \varepsilon B_{X^*}.
\]
It follows from (3.25) and (3.27) that (i) holds with \(M = 2K + \frac{2}{m} \). The proof is completed. \(\square \)
4. Lagrange multiplier rules. In this section, we provide some exact Lagrange multiplier rules for the constrained multiobjective optimization problem (1.3). We will need the following notions. Recall (see [28]) that a closed convex cone C in X is partially sequentially normally compact if there exists a compact subset K of X such that
\begin{equation}
C^+ \subset \{x^* \in X^* : \|x^*\| \leq \max\{\langle x^*, x \rangle : x \in K\}\}.
\end{equation}
This condition is trivially satisfied if X is finite dimensional (because one can then take $K = B_X$). Note that if C has a nonempty interior, then there exists $c_0 \in C$ such that
\begin{equation}
C^+ \subset \{x^* \in X^* : \|x^*\| \leq \langle x^*, c_0 \rangle\}.
\end{equation}
Thus,
\[\text{int}(C) \neq \emptyset \implies C \text{ is dually compact}.\]
It is known that if C is dually compact, then
\begin{equation}
c_n^* \in C^+ \text{ and } c_n^* \rightharpoonup 0 \implies c_n^* \rightarrow 0.
\end{equation}
The concept C being dually compact is closely related to the locally compact concept introduced in Loewen [12] (see [28, Proposition 3.1] for the details).

Following Mordukhovich [15] and Mordukhovich and Shao [17], we say that a multifunction Φ from X to another Banach space Y is partially sequentially normally compact at $(x, y) \in \text{Gr}(\Phi)$ if for any (generalized) sequence $\{(x_n, y_n, x_n^*, y_n^*)\}$ satisfying
\begin{equation}
x_n^* \in D^*\Phi(x_n, y_n)(y_n^*), \quad (x_n, y_n) \rightharpoonup (x, y), \quad \|y_n^*\| \rightarrow 0, \quad \text{and} \quad x_n^* \rightharpoonup 0
\end{equation}
one has $\|x_n^*\| \rightarrow 0$.

Clearly, Φ is automatically partially sequentially normally compact at each point of $\text{Gr}(\Phi)$ if X is finite dimensional. Moreover, Proposition 2.3 implies that Φ is partially sequentially normally compact at $(x, y) \in \text{Gr}(\Phi)$ if Φ is pseudo-Lipschitz at (x, y).

In the remainder of this paper, we make the following blanket assumptions.

Assumption 4.1. Each F_i is a closed multifunction.

Assumption 4.2. $(\bar{x}, \bar{y}_i) \in \text{Gr}(F_0)$ is a local Pareto solution of the constrained multiobjective optimization problem (1.3) and $\bar{y}_i \in F_i(\bar{x}) \cap -C_i \ (1 \leq i \leq m)$.

We first consider the case when X, Y_i are Asplund spaces (thus, in particular (2.1) is valid in these spaces).

Theorem 4.1. Let Assumptions 4.1 and 4.2 hold and X, Y_i be Asplund spaces. Suppose that each C_i is dually compact and that each F_i is partially sequentially normally compact at (\bar{x}, \bar{y}_i). Then one of the following assertions holds.

(i) There exists $c_i^* \in C_i^+$ such that
\begin{equation}
\sum_{i=0}^{m} \|c_i^*\| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D^*F_i(\bar{x}, \bar{y}_i)(c_i^*) + N(\Omega, \bar{x}).
\end{equation}

(ii) There exists $x_i^* \in D^*F_i(\bar{x}, \bar{y}_i)(0)$ and $w^* \in N(\Omega, \bar{x})$ such that
\begin{equation}
\|w^*\| + \sum_{i=0}^{m} \|x_i^*\| = 1 \quad \text{and} \quad w^* + \sum_{i=0}^{m} x_i^* = 0.
\end{equation}
Proof. Since X, Y are Asplund spaces, Assumptions 4.1 and 4.2 imply that one of the assertions (i) and (ii) in Theorem 3.2 holds. Suppose that the assertion (i) in Theorem 3.2 holds. Then, for any natural number k there exist

\begin{equation}
(x_i(k), y_i(k)) \in \text{Gr}(F_i) \cap \left(\left(\bar{x} + \frac{1}{k} B_X \right) \times \left(\bar{y}_i + \frac{1}{k} B_{Y_i} \right) \right),
\end{equation}

\begin{equation}
w(k) \in \left(\bar{x} + \frac{1}{k} B_X \right) \cap \Omega \text{ and } c_i^*(k) \in C_i^+
\end{equation}

such that

\begin{equation}
\sum_{i=0}^{m} \|c_i^*(k)\| = 1
\end{equation}

and

\begin{equation}
0 \in \sum_{i=0}^{m} \hat{D}^* F_i(x_i(k), y_i(k)) \left(c_i^*(k) + \frac{1}{k} B_{Y_i^*} \right) \cap MB_X^* + \hat{N}(\Omega, w(k)) \cap MB_{X^*} + \frac{1}{k} B_{X^*},
\end{equation}

where $M > 0$ is a constant independent of k. Hence there exist bounded sequences $\{x_i^*(k)\}$ and $\{x^*(k)\}$ such that

\begin{equation}
x_i^*(k) \in \hat{D}^* F_i(x_i(k), y_i(k)) \left(c_i^*(k) + \frac{1}{k} B_{Y_i^*} \right),
\end{equation}

\begin{equation}
x^*(k) \in \hat{N}(\Omega, w(k)) \text{ and } x^*(k) + \sum_{i=0}^{m} x_i^*(k) \to 0.
\end{equation}

Since a bounded set in a dual space is relatively weak* compact, without loss of generality we can assume that

\begin{equation}
x_i^*(k) \rightharpoonup x_i^* \text{ and } c_i^*(k) \rightharpoonup c_i^* (i = 0, 1, \ldots, m).
\end{equation}

It follows from (2.1), (4.3), and (4.4) that

\begin{equation}
0 \in \sum_{i=0}^{m} D^* F_i(\bar{x}, \bar{y}_i)(c_i^*) + N(\Omega, \bar{x}).
\end{equation}

Noting that $\sum_{i=0}^{m} \|c_i^*\| \neq 0$ by (4.2) and (4.5), this implies that (i) is true.

Next suppose that assertion (ii) in Theorem 3.2 holds. Then for any natural number k there exist

\begin{equation}
(x_i(k), y_i(k)) \in \text{Gr}(F_i) \cap \left(\left(\bar{x} + \frac{1}{k} B_X \right) \times \left(\bar{y}_i + \frac{1}{k} B_{Y_i} \right) \right), w(k) \in \left(\bar{x} + \frac{1}{k} B_X \right) \cap \Omega,
\end{equation}

\begin{equation}x_i^*(k) \in \hat{D}^* F_i(x_i(k), y_i(k)) \left(\frac{1}{k} B_{Y_i^*} \right) \text{ and } x^*(k) \in \hat{N}(\Omega, w(k))
\end{equation}

such that

\begin{equation}\|x^*(k)\| + \sum_{i=0}^{m} \|x_i^*(k)\| \to 1 \text{ and } x^*(k) + \sum_{i=0}^{m} x_i^*(k) \to 0.
\end{equation}
Without loss of generality we assume that
\[x^*(k) \rightharpoonup x^* \text{ and } x^*_i(k) \rightharpoonup x^*_i \quad (i = 0, 1, \ldots, m), \]
and hence it follows from (2.1) that
\[x^*_i \in D^*F_i(\bar{x}, \bar{y}_i)(0), \quad x^* \in N(\Omega, \bar{x}), \quad \text{and} \quad x^* + \sum_{i=0}^{m} x^*_i = 0. \]

Further \(\|x^*\| + \sum_{i=0}^{m} \|x^*_i\| \neq 0 \) by (4.9) and thanks to the assumption that each \(F_i \) is partially sequentially normally compact at \((\bar{x}, \bar{y}_i) \). Thus (ii) holds, and the proof is completed.

As already noted, every closed multifunction between two finite dimensional spaces is partially sequentially normally compact at each point in its graph, and every closed convex cone in a finite dimensional space is dually compact. Thus, the following corollary is a consequence of Theorem 4.1.

COROLLARY 4.1. Let Assumptions 4.1 and 4.2 hold, and suppose that \(X, Y_i \) are finite dimensional. Then one of (i) and (ii) in Theorem 4.1 holds.

In the case when each \(F_i \) is pseudo-Lipschitz, we have the following sharp Lagrange multiplier rule.

THEOREM 4.2. Let Assumptions 4.1 and 4.2 hold and \(X, Y_i \) be Asplund spaces. Suppose that each \(C_i \) is dually compact and that each \(F_i \) is pseudo-Lipschitz at \((\bar{x}, \bar{y}_i) \). Then there exists \(c^*_i \in C^+_i \) such that

\[
\sum_{i=0}^{m} \|c^*_i\| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D^*F_i(\bar{x}, \bar{y}_i)(c^*_i) + N(\Omega, \bar{x}).
\]

Proof. By Corollary 3.2, for any natural number \(k \) there exist \(x_i(k) \in \bar{x} + \frac{1}{k}B_X, \) \(w(k) \in \Omega \cap (\bar{x} + \frac{1}{k}B_X), \) \(y_i(k) \in F_i(x_i(k)) \cap (\bar{y}_i + \frac{1}{k}B_Y), \) and \(c^*_i(k) \in C^+_i \) such that

\[
\sum_{i=0}^{m} \|c^*_i(k)\| = 1
\]

and

\[
0 \in \sum_{i=0}^{m} D^*F_i(x_i(k), y_i(k)) \left(c^*_i(k) + \frac{1}{k}B_{Y_i^*} \right) \cap MB_{X^*} + \hat{N}(\Omega, w(k)) \cap MB_{X^*} + \frac{1}{k}B_{X^*},
\]

where \(M > 0 \) is a constant independent of \(k \). Hence there exist

\[
x^*_i(k) \in D^*F_i(x_i(k), y_i(k)) \left(c^*_i(k) + \frac{1}{k}B_{Y_i^*} \right) \quad \text{and} \quad x^*(k) \in \hat{N}(\Omega, w(k))
\]
such that

\[
\max\{\|x^*(k)\|, \max\{\|x^*_i(k)\| : 0 \leq i \leq m\}\} \leq M \quad \text{and} \quad x^*(k) + \sum_{i=0}^{m} x^*_i(k) \to 0.
\]

Without loss of generality, we can assume that

\[
x^*(k) \rightharpoonup x^*, \quad x^*_i(k) \rightharpoonup x^*_i, \quad \text{and} \quad c^*_i(k) \rightharpoonup c^*_i \quad \text{for} \quad i = 0, 1, \ldots, m.
\]

Hence,

\[
x^* \in N(\Omega, \bar{x}), \quad x^*_i \in D^*F_i(\bar{x}, \bar{y}_i)(c^*_i) \quad (i = 0, 1, \ldots, m), \quad \text{and} \quad x^* + \sum_{i=0}^{m} x^*_i = 0,
\]
and so

\[(4.13) \quad 0 \in \sum_{i=0}^{m} D^{*}F_{i}(\bar{x}, \bar{y}_{i})(\bar{c}^{*}_{i}) + N(\Omega, \bar{x}). \]

Since each \(C_{i} \) is dually compact, (4.11), (4.12), and (4.2) imply that \(\sum_{i=0}^{m} ||c^{*}_{i}|| \neq 0 \).

It follows from (4.13) that (4.10) holds with \(c^{*}_{i} = \sum_{j=0}^{m} ||c^{*}_{i}||. \) The proof is completed. \(\square \)

Let \(\bar{x} \) be a local solution of single-objective optimization problem (1.1), and suppose that each \(f_{i} \) is locally Lipschitz at \(\bar{x} \). Let \(F_{i} \) and \(C_{i} \) be as in the proof of Theorem 3.3. Then \(\bar{x} \) is a local Pareto solution of (1.3), and each \(F_{i} \) is pseudo-Lipschitz at \((\bar{x}, f_{i}(\bar{x}))\). It is routine to verify that

\[D^{*}F_{i}(\bar{x}, f_{i}(\bar{x}))(s) = \partial(sf_{i})(\bar{x}) \quad \text{for} \quad 0 \leq i \leq n, \quad s \geq 0, \]

and

\[D^{*}F_{i}(\bar{x}, f_{i}(\bar{x}))(t) = \partial(tf_{i})(\bar{x}) \quad \text{for} \quad n + 1 \leq i \leq m, \quad t \in R. \]

Thus, (4.10) reduces to (1.2).

In the remainder of this section, we consider the case when \(X, Y_{i} \) are general Banach spaces. In this case we need the notion of the normal closedness.

We say that \(\Omega \) is normally closed at \(x \in \Omega \) if for (generalized) sequences

\[x_{n} \to x, \quad x^{*}_{n} \in N_{c}(\Omega, x_{n}), \quad x^{*}_{n} \rightharpoonup x^{*} \implies x^{*} \in N_{c}(\Omega, x) \]

(see [4, Corollary, p. 58]).

It is known that \(\Omega \) is normally closed at each point of \(\Omega \) if \(\Omega \) is convex. Moreover, if \(\Omega \) is epi-Lipschitz around \(x \in \Omega \), then \(\Omega \) is normally closed at \(x \). We say that a closed multifunction \(\Phi : X \to 2^{Y} \) is normally closed at \((x, y) \in Gr(\Phi) \) if \(Gr(\Phi) \) is normally closed at \((x, y) \) (see [28]).

Mimicking a corresponding notion introduced in [17], we say that \(\Phi : X \to 2^{Y} \) is partially sequentially normally compact at \((x, y) \in Gr(\Phi) \) in the Clarke sense if for any (generalized) sequence \(\{(x_{n}, y_{n}, x^{*}_{n}, y^{*}_{n})\} \) satisfying

\[x^{*}_{n} \in D_{c}^{*}\Phi(x_{n}, y_{n})(y^{*}_{n}), \quad (x_{n}, y_{n}) \to (x, y), \quad ||y^{*}_{n}|| \to 0, \quad \text{and} \quad x^{*}_{n} \rightharpoonup 0 \]

one has \(||x^{*}_{n}|| \to 0 \).

The following result can be proved in the same way as for Theorem 4.1 (but apply Theorem 3.2 in place of Theorem 3.1).

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold, and suppose that each \(C_{i} \) is dually compact. Suppose that each \(F_{i} \) is partially sequentially normally compact at \((\bar{x}, \bar{y}_{i}) \) in the Clarke sense and that \(\Omega \) and \(F_{i} \) are normally closed at \(\bar{x} \) and \((\bar{x}, \bar{y}_{i}) \), respectively. Then one of the following assertions holds.

(i) There exist \(c^{*}_{i} \in C_{i}^{+} \) such that

\[\sum_{i=0}^{m} ||c^{*}_{i}|| = 1 \quad \text{and} \quad 0 \in \sum_{i=0}^{m} D_{c}^{*}F_{i}(\bar{x}, \bar{y}_{i})(c^{*}_{i}) + N_{c}(\Omega, \bar{x}). \]

(ii) There exist \(x^{*}_{i} \in D_{c}^{*}F_{i}(\bar{x}, \bar{y}_{i})(0) \) and \(w^{*} \in N_{c}(\Omega, \bar{x}) \) such that

\[||w^{*}|| + \sum_{i=0}^{m} ||x^{*}_{i}|| = 1 \quad \text{and} \quad w^{*} + \sum_{i=0}^{m} x^{*}_{i} = 0. \]
As in many classical situations, one can also provide a sufficient condition for \((\bar{x}, \bar{y}_0)\) to be a Pareto solution of (1.3), provided that a suitable convexity assumption is made.

Proposition 4.1. Let each \(F_i\) be a closed convex multifunction and \(\Omega\) be a closed convex subset of \(X\). Let \(\bar{y}_0 \in F_0(\bar{x})\) and \(\bar{y}_i \in F_i(\bar{x}) \cap -C_i\) for \(i = 1, \ldots, m\). Assume that there exists \(c^*_i \in C^+_i\) such that

\[
\langle c^*_0, c \rangle > 0 \quad \forall c \in C_0 \setminus \{0\}, \quad \sum_{i=1}^{m} \langle c^*_i, \bar{y}_i \rangle = 0
\]

and

\[
0 \in \sum_{i=0}^{m} D^*F_i(\bar{x}, \bar{y}_i)(c^*_i) + N(\Omega, \bar{x}).
\]

Then \((\bar{x}, \bar{y}_0)\) is a Pareto solution of the constrained multiobjective optimization problem (1.3).

Proof. By (4.15) there exists \(x^*_i \in X^*\) such that

\[
x^*_i \in D^*F_i(\bar{x}, \bar{y}_i)(c^*_i) \quad \text{and} \quad -\sum_{i=0}^{m} x^*_i \in N(\Omega, \bar{x}).
\]

It follows from the convexity of \(F_i\) and \(\Omega\) that

\[
\langle x^*_i, x \rangle - \langle c^*_i, y_i \rangle \leq \langle x^*_i, \bar{x} \rangle - \langle c^*_i, \bar{y}_i \rangle \quad \forall (x, y_i) \in \text{Gr}(F_i) \quad \text{and} \quad i = 0, 1, \ldots, m
\]

and

\[
\left\langle -\sum_{i=0}^{m} x^*_i, x \right\rangle \leq \left\langle -\sum_{i=0}^{m} x^*_i, \bar{x} \right\rangle \quad \forall x \in \Omega.
\]

Summing up (4.16) over all \(i\) and making use of (4.17) and (4.14) we have

\[
\langle c^*_0, \bar{y}_0 \rangle \leq \sum_{i=0}^{m} \langle c^*_i, y_i \rangle \quad \text{for any} \quad x \in \Omega, \quad y_i \in F_i(x), \quad \text{and} \quad i = 0, 1, \ldots, m.
\]

Since \(c^*_i \in C^+_i\), it follows that

\[
\langle c^*_0, \bar{y}_0 \rangle \leq \langle c^*_0, y_0 \rangle \quad \forall y_0 \in F_0 \left(\Omega \cap \bigcap_{i=1}^{m} F_i^{-1}(-C_i) \right).
\]

This and the inequality in (4.14) imply that \(\bar{y}_0 \in E \left(F_0 \left(\Omega \cap \bigcap_{i=1}^{m} F_i^{-1}(-C_i) \right), C_0 \right)\). The proof is completed. \(\square\)

Acknowledgment. We thank the referee for his helpful comments and for [6, 11, 12].
REFERENCES