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Abstract: Images are a convenient way for humans to obtain information and knowledge, but they are
often destroyed throughout the collection or distribution process. Therefore, image processing evolves
as the need arises, and color image processing is a broad and active field. A color image includes three
distinct but closely related channels (red, green, and blue (RGB)). Compared to directly expressing
color images as vectors or matrices, the quaternion representation offers an effective alternative.
There are several papers and works on this subject, as well as numerous definitions, hypotheses, and
methodologies. Our observations indicate that the quaternion representation method is effective,
and models and methods based on it have rapidly developed. Hence, the purpose of this paper is to
review and categorize past methods, as well as study their efficacy and computational examples. We
hope that this research will be helpful to academics interested in quaternion representation.

Keywords: quaternion; image processing; traditional methods; convolutional neural networks;
deep learning

MSC: 68U10; 94A08; 65K10

1. Introduction

Image processing is a fundamental task in data science, and color image processing is
particularly important because it contains more color information. Although many image
processing methods have been proposed, mainstream works still represent images in the form
of vectors and matrices. Despite these methods being able to achieve competitive results, in
recent years, methods based on quaternion representation have been widely used and proven
to yield better results [1–4], such as quaternion-based models for image segmentation [5],
restoration [6,7], watermarking [8], face recognition [9–11], classification [12–15], super-
resolution [16], etc.

With such a wide range of applications, one wonders what a quaternion is. In fact,
the quaternion was invented by Hamilton in 1843 [17]. Similar to a complex number
x = a + bi ∈ C (a, b ∈ R, i is the imaginary unit, and x ∈ C is a complex number), the
quaternion number can be denoted as ẋ = x0 + x1i + x2 j + x3k ∈ H (x0, x1, x2, x3 ∈ R, i, j, k
are imaginary units, and ẋ ∈ H is a quaternion number). The quaternion number ẋ can be
understood as an extension of complex numbers, where a and b in x are complex numbers.
For a more detailed explanation, please refer to the following reference:

a + bi = (x0 + x2 j) + (x1 − x3 j)i

= x0 + x2 j + x1i− x3 ji

= x0 + x1i + x2 j + x3k,

(1)

where a = x0 + x2 j, b = x1 − x3 j are complex numbers, and ji = −k, the detailed rule
of the quaternion number, will be introduced in Section 2. In color image processing,
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we usually represent a color image as a matrix or vector. However, in this case, the
color information between the color channels cannot be represented well due to a
color image having three channels, i.e., red, green, and blue (RGB). How to denote
a color image in a holistic way to avoid errors in handling color image processing
is a challenge. Note that, mathematically, a color pixel can be denoted as (ur, ug, ub).
Considering the quaternion number with three imaginary parts may be a better way to
represent the color image. Then we can represent a color pixel as a quaternion number,
i.e., u̇ = u0 + uri+ ug j+ ubk. Please see Figure 1 for a better understanding. As quaternions
have a real part u0 and imaginary parts (ur, ug, ub), the quaternion representation for color
pixels should be the pure quaternion u = uri + ug j + ubk. However, in basic tasks such as
image denoising or other tasks with simple methods, e.g., [18], we do not affect the real part
of the quaternion. Therefore, for better understanding, we use the quaternion representation
u = u0 + uri + ug j + ubk. In some works, such as singular value decomposition, the real
part of the quaternion is iterated to be nonzero; thus, a zero constraint is needed for the
real part.

Figure 1. Representation of the color pixel as a quaternion number. The yellow button is a pixel in
the image.

By representing color images holistically, the relationship between color channels
can be preserved, and artifacts in the results can be avoided. Based on this conclusion,
many models have been extended to the quaternion domain, including variation mod-
els [19,20], sparse representation-based models [21–24], and low-rank models [25–29].
Moreover, quaternion modules are widely used in deep convolutional neural networks
(CNNs). The original convolution kernels merge the color channels by summing up
the convolution results and outputting a single channel per kernel. However, with the
quaternion representation, the complicated interrelationship between color channels
and some important structural information can be well preserved. This can reduce
the degrees of freedom to the learning of convolution kernels and the number of neu-
ral parameters, thus decreasing the risk of over-fitting. Based on these hypotheses,
quaternion-based deep CNN (QCNN) and transformer (QTrans) models have been
proposed, e.g., the QCNN [30–36], QTrans [37–40], etc.

With the use of quaternion representation, it is possible to better preserve the informa-
tion and relationships between color channels, leading to more satisfactory results. This
paper provides an overview of recent quaternion-based traditional and deep learning
models with their applications in image processing, as well as the challenges that still need
to be addressed. To provide a comprehensive overview of all related work on quaternion
representation in color image processing, we searched literature databases, including jour-
nals, conferences, and book chapters in Web of Science. Since research is ongoing, without
loss of generality, we set the search time to 1 March 2023. A summary of our findings can
be seen in Figure 2, organized by task, method, and year.
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(a) (b)

(c) (d)

Figure 2. Number of publications on quaternion-based image processing models between 2011 and
1 March 2023. (a) Number of publications on quaternion-based models. (b) Number of publications
on quaternion-based CNN models. (c) Number of publications on different tasks. (d) Number of
publications on different methods.

There have already been several reviews of quaternion-based color image processing
methods. Barthelemy et al. [41] provided an overview of traditional models and algorithms
using quaternion sparse representation. In 2020, Garc’ıa-Retuerta et al. [1] discussed the
challenges in QCNN models and quaternion applications in neural networks. Similarly,
Parcollet et al. [2] provided a review of QCNN and its applications in various domains,
with a more detailed description of QCNN fundamentals. In 2021, Eduardo [3] surveyed
the quaternion applications from the aspect of quaternion algebra. One can learn geometric
algebra and the rotation property of the quaternion number for applications such as
kinematics, tracking, and the control of robotics. Moreover, some packages and links for the
mentioned applications can be found in [3]. Each of these surveys provides a comprehensive
review of quaternion-based models from different perspectives. However, none of them
includes a detailed review of color image processing with quaternion representation. In
contrast, we cover traditional, deep learning, and hybrid quaternion-based color image
processing models. The contributions of this work include:

• A detailed overview of color image processing with a quaternion representation;
• A comprehensive survey of the different algorithms along with their benefits and limitations;
• A summary of each algorithm in detail, including objectives, goals, and weaknesses,

and a discussion of recent challenges and their possible solutions.

The main objective of this paper is to comprehensively analyze the potential applica-
tions of quaternion representation and provide an overview of recent research advance-
ments. The rest of the paper is organized as follows: Section 2 provides a review of the
basic theory of quaternion and its related definitions. In Section 3, we discuss the successful
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implementation of traditional variation models. Section 4 reviews the variants used to
connect quaternion ideas within neural networks, with a focus on the significant break-
throughs. Promising research directions and their associated challenges are discussed in
Section 5. Finally, the paper concludes in Section 6.

2. Basic Theory

In this section, we first present the fundamental of color image processing, then
provide a brief introduction of quaternion and some related definitions.

2.1. Color Image Processing Model

Color image processing is generally an extension of gray image processing. Since the
image will be corrupted by noise and blur, the general image degradation model is

f = Au + b, (2)

where f is the observation, u is the desired image, b is additive noise, and A is a linear
operator. For the image deblurring task, A is the blur operator related to the blur kernel;
for the image denoising task, A is the identical operator; for the image super-resolution
task, A is the downsampling operator; for medical image reconstruction, A is the sampling
operator; and for image inpainting, A is a projection operator. There are many methods
that can restore the desired image u from f . One classical method is the total variation (TV)
model [42–44]:

u = arg min
u

λ

2
‖Au− f ‖2

2 + ‖∇u‖1, (3)

where λ > 0 is a trade-off parameter and ∇ is the gradient operator. ‖∇u‖1 is the TV term
defined by

(∇u)j,k =
(
(∇u)x

j,k, (∇u)y
j,k

)
with

(∇u)x
j,k =

{
uj+1,k − uj,k if j < n,
0 if j = n,

(∇u)y
j,k =

{
uj,k+1 − uj,k if k < n,
0 if k = n,

for j, k = 1, . . . , n. Here, uj,k refers to the (jn + k) th entry of the vector u (it is the (j, k)th
pixel location of the image). The discrete TV of u is defined by

‖∇u‖1 := ∑
1≤j,k≤n

∣∣∣(∇u)j,k

∣∣∣
2
= ∑

1≤j,k≤n

√∣∣∣(∇u)x
j,k

∣∣∣2 + ∣∣∣(∇u)y
j,k

∣∣∣2
and | · |2 is the Euclidean norm in R2.

We can obtain the solution to model (3) with many algorithms; the classical one is the
alternating direction method of multipliers (ADMM) [45,46]. By introducing the auxiliary
variable p, (3) can be reformulated as

u =arg min
u

λ

2
‖Au− f ‖2

2 + ‖p‖1,

s.t. p = ∇u.
(4)

The augmented Lagrangian function is given by attaching multiplier ξ

L(u, p; ξ) =
λ

2
‖Au− f ‖2

2 + ‖p‖1 +
β

2
‖p−∇u‖2

2 + 〈ξ, p−∇u〉, (5)
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where β is the penalty parameter for linear constraints to be satisfied. From Algorithm 1,
the final solution uk+1 can be obtained. If we extend the whole algorithm and model into
the quaternion system, at the very least, the norm, gradient, multiple, and division should
be defined. In Section 2.2, we will provide these definitions in quaternion by referring to
the quaternion theory.

Algorithm 1 ADMM for solving (3)

Initialization Let u0 = f , ξ = 0 be the initial input data
for k = 0→ K do

Update pk+1 with

pk+1 =arg min
p
‖p‖1 +

β

2
‖p−∇uk‖2

2 + 〈ξk, p−∇uk〉

=arg min
p
‖p‖1 +

β

2
‖p−∇uk +

ξk

β
‖2

2

=max
(
‖∇uk − ξk

β
‖2 −

1
β

, 0
) ∇uk − ξk

β

‖∇uk − ξk

β ‖2

Update uk+1 with

uk+1 =arg min
u

λ

2
‖Au− f ‖2

2 +
β

2
‖pk+1 −∇u‖2

2 + 〈ξk, pk+1 −∇u〉

=
λA∗ f + β∇∗(pk+1 + ξk

β )

λA∗A + β∇∇∗

Update ξk+1 with ξk+1 = ξk − β(pk+1 −∇uk+1)
k = k + 1.

end for
return uk+1

Owing to the powerful feature representation capabilities of deep learning, deep
convolutional neural network (CNN)-based image processing methods have been devel-
oped and have shown remarkable performance [47–49]. The CNN learns by discovering
intricate structures in training data, which are mainly composed of convolution layers,
pooling layers, and fully connected layers. The convolution layer extracts features from
high-dimensional data by using a set of convolution kernels. After obtaining these features,
they are used for classification by first proceeding to the feature section in the pooling layer,
dividing the features into disjoint regions, and taking the mean (or maximum) feature
activation over these regions to obtain the pooled convolved features. The fully connected
layer is then used for classification. For color images, there are also some quaternion-based
CNN (QCNN) models that are considered better than real-valued CNNs in color preserva-
tion and parameter reduction [40,50–52]. The basic model in the quaternion system will be
introduced in Section 2.3.

2.2. Quaternion

Quaternion was proposed by Hamilton in 1843 [17]. As mentioned before, the quater-
nion number system is an extension of complex numbers. A quaternion number ẋ is usually
represented as a linear combination of a real part and three imaginary parts, i.e.,

ẋ = x0 + x1i + x2 j + x3k, (6)
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where x0 is the real part and x1, x2, x3 are the imaginary parts of the quaternion number ẋ,
i, j, k are the fundamental quaternion units that satisfy

i2 = j2 = k2 = ijk = −1

and
ij = k, jk = i, ki = j, ik = −j, kj = −i, ji = −k.

The quaternion unit rules infer that multiplication is not commutative. The Hamilton
product of two quaternions, ẋ = x0 + x1i + x2 j + x3k and ẏ = y0 + y1i + y2 j + y3k, is

ẋẏ =x0y0 − x1y1 − x2y2 − x3y3

+(x0y1 + x1y0 + x2y3 − x3y2)i

+(x0y2 − x1y3 + x2y0 + x3y1)j

+(x0y3 + x1y2 − x2y1 + x3y0)k.

(7)

Physically, ẋẏ is rotation ẋ followed by rotation ẏ. The multiple of ẋẏ can also be written as

ẋẏ =


x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0




y0
y1
y2
y3

. (8)

The dot product of ẋ and ẏ is

〈ẋ, ẏ〉 = x0y0 + x1y1 + x2y2 + x3y3. (9)

The conjugate of a quaternion number ẋ is ẋ∗ = x0 − x1i− x2 j− x3k, the modulus is |ẋ| =√
ẋ(ẋ)∗ =

√
x2

0 + x2
1 + x2

2 + x2
3 (one can check by Equation (8)), the inverse is ẋ−1 = ẋ∗

|ẋ|2 ,
and the inverse of ẋ and ẏ is

(ẋẏ)−1 =
(ẋẏ)∗

|ẋẏ|2 =
ẏ∗ ẋ∗

|ẏ|2|ẋ|2 =
ẏ∗

|ẏ|2
ẋ∗

|ẋ|2 = ẏ−1 ẋ−1. (10)

If |ẋ| = 1, we call ẋ a unit quaternion number. If <(ẋ) = x0 = 0, we call ẋ a pure quaternion
number, where <(·) denotes the real part of a quaternion number. The required rules of
quaternion matrix derivatives for image processing are listed in Table 1. We refer the reader
to [53] for details. With the derivative rules of the quaternion function, we can solve the
quaternion-based model directly. Suppose the nuclear norm model was extended to the
quaternion domain as

min
u̇

λ

2
‖Ȧu̇− ḟ ‖2

2 + ‖u̇‖?, (11)

where u̇ is the desired image, Ȧ is the linear operator, f is the observation, and ‖u̇‖?
is the nuclear norm of u̇, which sums the singular values of u̇. Before solving (11), we
give the definition of the quaternion singular value decomposition (SVD) as follows. Let
Ṡ ∈ Hm×n, then there exist two unitary quaternion matrices U̇ ∈ Hm×m and V̇ ∈ Hn×n,
such that U̇ṠV̇∗ = Σ, where Σ = diag(σ1, σ2, · · · , σs), σi ≥ 0 are the singular values of Ṡ
and s = min(m, n).

Let ṗ = u̇, with the ADMM algorithm; one can obtain the augmented Lagrangian
function, which is similar to (5)

L(u̇, ṗ; ξ̇) =
λ

2
‖Ȧu̇− ḟ ‖2

2 + ‖ ṗ‖? +
β

2
‖ ṗ− u̇‖2

2 + 〈ξ̇, ṗ− u̇〉. (12)
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Then we have 
u̇k+1 = min

u̇
λ
2 ‖Ȧu̇− ḟ ‖2

2 +
β
2 ‖u̇− ( ṗk + ξ̇k

β )‖
2
2,

ṗk+1 = min
ṗ
‖ ṗ‖? + β

2 ‖ ṗ− (u̇k+1 − ξ̇k

β )‖
2
2,

ξ̇k+1 = ξ̇k − β( ṗk+1 − u̇k+1).

(13)

Table 1. Derivatives of the functions of type f (q̇).

f (q̇) Dq̇ f Note

q̇ 1 q̇ ∈ H

µ̇q̇ µ̇ ∀µ̇ ∈ H

q̇ν̇ <(ν̇) ∀ν̇ ∈ H, <(ν̇) denotes the real
part of ν̇

µ̇q̇ν̇ + τ̇ µ̇<(ν̇) ∀µ̇, ν̇, τ̇ ∈ H

q̇∗ − 1
2

q̇∗ denotes the conjugation of
q̇

µ̇q̇∗ − 1
2 µ̇ ∀µ̇ ∈ H

q̇∗ ν̇ − 1
2 ν̇∗ ∀ν̇ ∈ H

µ̇q̇∗ ν̇ + τ̇ − 1
2 µ̇ν̇∗ ∀µ̇, ν̇, τ̇ ∈ H

q̇−1 −q̇−1<(q̇−1) q̇−1 denotes the reciprocal of q̇

(q̇∗)−1 1
2|q̇|2 –

(µ̇q̇ν̇ + τ̇)2 ġµ̇<(ν̇) + µ̇<(ν̇ġ) ġ = µ̇q̇ν̇ + τ̇

(µ̇q̇∗ ν̇ + τ̇)2 − 1
2 ġµ̇ν̇∗ − 1

2 µ̇(ν̇ġ)∗ ġ = µ̇q̇∗ ν̇ + τ̇

|µ̇q̇ν̇ + τ̇| ġ∗

2|ġ| µ̇<(ν̇)−
1

4|ġ| ν̇
∗(µ̇∗ġ)∗ ġ = µ̇q̇ν̇ + τ̇

|µ̇q̇∗ ν̇ + τ̇| ġ
2|ġ| ν̇

∗<(µ̇∗)− 1
4|ġ| µ̇(ν̇ġ∗)∗ ġ = µ̇q̇∗ ν̇ + τ̇

|µ̇q̇ν̇ + τ̇|2 ġ∗µ̇<(ν̇)− 1
2 ν̇∗(µ̇∗ġ)∗ ġ = µ̇q̇ν̇ + τ̇

|µ̇q̇∗ ν̇ + τ̇|2 ġν̇∗<(µ̇∗)− 1
2 µ̇(ν̇ġ∗)∗ ġ = µ̇q̇∗ ν̇ + τ̇

According to Table 1, we have the optimization condition

λ

2

(
(Ȧu̇− ḟ )∗ Ȧ− 1

2
((Ȧ∗(Ȧu̇− ḟ ))∗)

)
+

β

4

(
u̇− ( ṗk +

ξ̇k

β
)∗
)

=
λ

2

(
(Ȧu̇− ḟ )∗ Ȧ− 1

2
((Ȧu̇− ḟ )∗ Ȧ)

)
+

β

4

(
u̇− ( ṗk +

ξ̇k

β
)∗
)

=
λ

4

(
(Ȧu̇− ḟ )∗ Ȧ

)
+

β

4

(
u̇− ( ṗk +

ξ̇k

β
)∗
)
= 0,

(14)

thus, the solution is

u̇k+1 =
λȦ∗ ḟ + β( ṗk + ξ̇k

β )

λȦ∗ Ȧ + β
. (15)

For ṗ-subproblem, the QSVD can directly give the closed-form solution. If the regular-
izer is the TV term, we first rewrite the ṗ-subproblem as

min
ṗ
‖ ṗ‖1 +

β

2
‖ ṗ−∇u̇k +

ξ̇k

β
‖2

2. (16)
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Let ṗi be the i-th element of ṗ, then we have

E = ‖ ṗi‖1 +
β

2
‖ ṗi − (∇u̇k

i −
ξ̇k

i
β
)‖2

2, (17)

and

∂E
∂ ṗi

= λ
ṗi − (∇u̇k

i −
ξ̇k

i
β )

4
+

¯̇pi
4| ṗi|

. (18)

Let ∂E
∂ ṗi

= 0 and∇u̇k
i −

ξ̇k
i

β = ẏi, then
¯̇pi
| ṗi |

=
¯̇yi
|ẏi |

. By discussing |ẏi| > λ or ≤ λ, we have

ṗi =
ẏi
|ẏi|
·max(|ẏi| − λ, 0). (19)

The visual performance of the quaternion-based method is given in Figures 3 and 4. We
use the codes https://github.com/Huang-chao-yan/QWNNM (accessed on 11 December
2020) of [54]. We add the average blur with blur kernel 9 and Gaussian noise with noise level
σ = 20 in Figure 3, and the Gaussian blur with blur kernel [25,1.6] and Gaussian noise with
noise level 20 in Figure 4. The results show that color spots are still visible in the output of the
real-valued weighted nuclear norm minimization (WNNM)-based method proposed in [55].
The quaternion-based WNNM [54] can better preserve the detailed structure of the image.

(a) (b) (c) (d)

Figure 3. Image deblurring results. From left to right: original image; input image with average
blur kernel H = fspecial (’average’,9) and Gaussian noise with noise level σ = 20; output of real-
value-based, low-rank, and total variation regularizers [55]; output of quaternion-based low-rank
regularizer [54]. (a) Original. (b) Input. (c) Output of [55]. (d) Output of [54].

(a) (b) (c) (d)

Figure 4. Image deblurring results. From left to right: original image; input image with Gaussian
blur kernel H = fspecial(’Gaussian’,25,1.6) and Gaussian noise with noise level σ = 20; output of
real-value-based, low-rank, and total variation regularizers [55]; output of quaternion-based low-rank
regularizer [54]. (a) Original. (b) Input. (c) Output of [55]. (d) Output of [54].

2.3. Quaternion Modules

The convolution process is defined in a real-valued space by convolving a filter matrix
with a vector. In QCNN, a quaternion filter matrix and quaternion vector are convoluted.
We denote the quaternion weight filter matrix as ẇ = w0 + w1i + w2 j + w3k and quaternion

https://github.com/Huang-chao-yan/QWNNM
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input as u̇ = u0 + u1i + u2 j + u3k; then the quaternion convolution is defined as the
Hamilton product

ẇ⊗ u̇ =(w0u0 − w1u1 − w2u2 − w3u3)

+(w0u1 + w1u0 + w2u3 − w3u2)i

+(w0u2 − w1u3 + w2u0 + w3u1)j

+(w0u2 + w1u2 − w2u1 + w3u0)k.

(20)

In CNN, the fully connected layer is defined as f = φ(wu + b). In QCNN, the
quaternion fully connected layer is usually defined as

ḟ = φ(ẇu̇ + ḃ), (21)

where ḃ is the bias and φ(·) is any activation function. Suppose that with the rectified linear
unit (ReLU) activation function, the final result is

f = ReLU(z0) + ReLU(z1)i + ReLU(z2)j + ReLU(z3)k (22)

with z = z0 + z1i + z2 j + z3k = ẇu̇ + ḃ. Due to the linear combination property, the
conditionality of ẇ is 1/4|w|; then, QCNNs can be built with 1/4 of the parameters required
by their real-valued counterparts. In this case, the design of a quaternion-based activation
function and other general quaternion modules may help to further improve the QCNN
models. Overall, the benefits of QCNNs can be summarized as follows:

• Reduced network size: QCNNs can represent weights using fewer parameters than
traditional CNNs, thereby reducing the overall size of the network.

• Improved performance: QCNNs outperform traditional CNNs on numerous tasks,
particularly those involving 3D data, such as video analysis and computer vision.

• Efficient computation: Quaternion operations can be efficiently implemented using
GPUs, resulting in fast training and inference times.

3. Traditional Methods

Based on the aforementioned quaternion rules and definitions, the quaternion repre-
sentation is widely applied in color image processing. In this section, we will provide an
overview of the main contributions in six aspects. Firstly, TV-based methods are discussed in
Section 3.1; secondly, low-rank-based and sparse-based models are reviewed in Section 3.2;
thirdly, moment-based models are introduced in Section 3.3; fourthly, decomposition-based
models are presented in Section 3.4; fifthly, transformation-based models are reviewed in
Section 3.5; finally, other significant models are summarized in Section 3.6.

3.1. TV-Based Models

As mentioned in Section 2.1, the total variation (TV)-based model is defined by Equa-
tion (3). Due to the model’s effectiveness, many works have improved it, such as non-local
TV and TVp models. There are also references for quaternion-based image processing. For
example, Liu et al. [56] extended the fractional order TV with lp norm to the quaternion
domain for image super-resolution. The non-local TV was extended to the quaternion
domain with unit transformation for image denoising [57]. Jia et al. [58] applied quater-
nion representation in the HSV color space and proposed a saturation value-TV (SV-TV)
model for image denoising and deblurring. Voronin et al. [59] proposed an automated
segmentation analysis based on the modified Chan and Vese method using the quaternion
anisotropic TV algorithm under Merced data (https://vision.ucmerced.edu/datasets/,
accessed on 1 March 2023). Wu et al. [18] extended the l1/l2 regularizer to the quaternion
domain for image segmentation under the Weizmann (https://www.wisdom.weizmann.
ac.il/vision/Seg_Evaluation_DB/dl.html, accessed on 1 March 2023) and Berkeley (https:
//www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/, accessed
on 1 March 2023) datasets. Their works extended the original TV-based model into the

https://vision.ucmerced.edu/datasets/
https://www.wisdom.weizmann.ac.il/ vision/Seg_Evaluation_DB/dl.html
https://www.wisdom.weizmann.ac.il/ vision/Seg_Evaluation_DB/dl.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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quaternion domain, and some works explored the theoretical properties of their proposed
quaternion models. Furthermore, the experimental results illustrated the superiority of the
quaternion representation. By representing color images as a whole, the color information
between color channels can be well-preserved.

3.2. Low-Rank-Based and Sparse-Based Models

The basic low-rank minimization problem is

min
u
‖u− f ‖2

2,

s.t. rank(u) ≤ r,
(23)

where rank(u) is the rank of matrix u and r is a positive number. The above constriction was
reformulated to other rank functions to better represent the low-rank properties, such as the
Schatten-γ norm, nuclear norm, logarithm, Laplace, and Geman function. In the quaternion
representation, Chen, Xiao, and Zhou [60] extended the low-rank regularizer-based model
(Laplace, Geman, weighted Schatten-γ) into the quaternion domain, showing that the
quaternion representation with low-rank is better than real-valued low-rank methods in
color image in painting and denoising. In [54,61], the weighted nuclear norm was extended
to the quaternion domain for image denoising and deblurring. Other low-rank versions of
the quaternion representation can be found in [62,63].

Let D be the dictionary matrix and α be a sparse coefficient matrix. The core sparse rep-
resentation problem involves finding the sparsest α that satisfies u = Dα. Mathematically,
the sparse decomposition problem becomes

min
α
‖α‖0,

s.t. ‖u− Dα‖2
2 ≤ ε2,

(24)

where ‖α‖0 = #{i : αi 6= 0, i = 1, 2, · · · , k} is the l0 norm of α and counts the non-
zero number of α. Here, k denotes the number of elements. Based on this equation, the
sparse representation theory was developed by Elad et al. [64] for learned dictionaries.
To preserve color information, Yu et al. [65] proposed a quaternion online dictionary-
learning model for image super-resolution. Reference [66] extended the collaborative
representation-based classification (CRC) and sparse representation-based classification
(SRC) to the quaternion domain for face recognition. Xu et al. [67] proposed a quaternion
sparse representation with the dictionary learning algorithm K-QSVD (generalized k-
means clustering for quaternion singular value decomposition) and QOMP (quaternion
orthogonal matching pursuit) for color image reconstruction, denoising, inpainting, and
super-resolution. Following this work, Wu et al. [68] improved the sparse representation by
combining the TV regularizer for image denoising. Meanwhile, the TV term was replaced
by a more efficient regularizer, SV-TV, in [69]. They also improved the sparse prior by
training the dictionary with the DIV2K dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K
/, accessed on 1 March 2023). Moreover, Liu et al. [70] combined the quaternion-based total
variation and sparse dictionary learning for super-resolution in the Infrared LTIR dataset
(http://www.cvl.isy.liu.se/research/datasets/ltir/version1.0/, accessed on 1 March. 2023)
and IRData (http://www.dgp.toronto.edu/nmorris/data/IRData/, accessed on 1 March
2023). Furthermore, the block sparse representation was extended into the quaternion
domain for face recognition in [71]. A sparse quaternion Welsch estimator was introduced
to measure the quaternion residual error [72]; the estimator in the quaternion domain can
largely suppress the impact of large data corruption and outliers.

On the other hand, principal component analysis (PCA) is another popular technique
used for sparse and low-rank minimization problems, which can analyze large datasets
containing a large number of dimensions. In the PCA theory, the observed image f is
generated as f = u + s, where u is the target low-rank matrix and s is a sparse matrix that

https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
http://www.cvl.isy.liu.se/research/datasets/ltir/version1.0/
http://www.dgp.toronto.edu/ nmorris/data/IRData/


Mathematics 2023, 11, 2056 11 of 21

usually acts as the corruption datum. Under the above assumption, one can recover u
by solving

min
u,s
‖u‖? + λ‖s‖1,

s.t. u + s = f ,
(25)

where ‖ · ‖? is the nuclear norm, ‖ · ‖1 is the l1 norm, and λ is a positive parameter.
Equation (25) was extended to the quaternion domain in [73] for image inpainting with
a theoretical guarantee. Shi and Funt [74] extended the PCA to the quaternion domain
and then derived a low-dimensional basis for color texture segmentation. Their model
demonstrated the advantage of representing and analyzing an image as a single entity. Due
to the competitive performance of quaternion-based PCA and the theoretical guarantee,
there are many related works [75]. For example, Wang et al. [76] proposed a robust sub-
space learning method with PCA for face recognition under the Georgia Tech face dataset
(https://computervisiononline.com/dataset/1105138700, accessed on 1 March 2023) and
the color FERET (https://www.nist.gov/itl/iad/imagegroup/color-feret-database, ac-
cessed on 1 March 2023) dataset. Sun et al. [77] suggested modified two-dimensional
principal component analysis (2DPCA) and bidirectional principal component analysis
(BDPCA) methods based on the quaternion matrix to recognize and reconstruct face im-
ages. Jia et al. [78] presented the quaternion-based two-dimensional principal component
analysis (2DPCA) for face recognition.

3.3. Moment-Based Models

Owing to their image descriptions and invariance properties, moments are scalar quan-
tities widely used in image processing. Various types of moment functions have been con-
structed, such as orthogonal moments, Zernike moments, exponent moments, and Cheby-
shev–Fourier moments. Due to the effectiveness of moment-based models, they have
been extended to the quaternion domain as well [79]. For example, Wang et al. [80] pro-
posed a robust watermarking model with local quaternion exponent moments. In [81],
the Chebyshev moment was extended to the quaternion domain by designing a quater-
nion radial-substituted Chebyshev moment. Moreover, the quaternion-weighted spheri-
cal Bessel–Fourier moment (QSBFM) was proposed in [82] and the application of color
image reconstruction and object recognition in the CVG-UGR dataset (http://decsai.ugr
.es/cvg/dbimagenes/index.php, accessed on 1 March 2023), Amsterdam Library (https:
//ccia.ugr.es/cvg/dbimagenes/index.php, accessed on 1 March 2023), and Columbia Library
(https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php, accessed on 1 March
2023) illustrated the effectiveness of the quaternion representation. In [83], the discrete orthog-
onal moment was applied to neural networks for color face recognition. Other moment-based
models, such as the quaternion Fourier–Mellin moment [84] and the quaternion radial mo-
ment [85], demonstrated the competitiveness of quaternion-based models. However, the
computational costs of quaternion moments are high. Deriving a fast quaternion moment
algorithm may be a significant challenge.

3.4. Decomposition-Based Models

For color image processing, one effective method is to regard the color image as a
matrix. With the help of the matrix analysis, the desired image can be solved. The QR
decomposition was used to handle the linear least squares problem. The QR decomposition
is a matrix factorization technique that decomposes an m× n matrix A into the product
of two matrices: an orthogonal matrix Q and an upper triangular matrix R. The QR
decomposition of A is given by

A = QR (26)

where Q is an m×m orthogonal matrix (i.e., QTQ = I) and R is an m× n upper triangular
matrix. For color image processing, QR decomposition is also widely used. Later, the
quaternion QR decomposition was extended for better handling of color images, where the
matrices in (26) are in the quaternion domain. The main difference between quaternion QR

https://computervisiononline.com/dataset/1105138700
https://www.nist.gov/itl/iad/imagegroup/color-feret-database
http://decsai.ugr.es/cvg/dbimagenes/index.php
http://decsai.ugr.es/cvg/dbimagenes/index.php
https://ccia.ugr.es/cvg/dbimagenes/index.php
https://ccia.ugr.es/cvg/dbimagenes/index.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php


Mathematics 2023, 11, 2056 12 of 21

decomposition and real-valued QR decomposition is that quaternion QR decomposition
factorizes a quaternionic matrix into the product of an orthogonal quaternion matrix and an
upper triangular quaternion matrix. Generally, the quaternion QR decomposition is more
computationally expensive than the real-valued QR decomposition due to the additional
complexity introduced by working with quaternion numbers. However, the quaternion QR
decomposition has applications in color image processing and is usually better than the
real-valued QR decomposition. In [86], the QR decomposition in the quaternion domain
was applied in watermarking. The blind watermarking in the quaternion domain with QR
decomposition was proposed in [87]. Similarly, the Schur decomposition and singular value
decomposition (SVD) are also extended to quaternion [88–90]. In particular, He et al. [91]
applied the matrix decomposition for quaternion in the control system and for watermark-
ing. A face recognition method using wavelet decomposition and quaternion correlation
filters was proposed in [92]. Kumar et al. [93] proposed a medical image super-resolution
model with quaternion wavelet transform (QWT) and SVD. Miao et al. [94] proposed a
quaternion higher-order SVD method for image fusion and denoising, and demonstrated
its effectiveness on the MFFW (https://www.researchgate.net/profile/Xu-Shuang-3/pu
blication/350965471_MFFW/data/607d2a6d881fa114b411103c/MFFW.zip, accessed on
1 March 2023) and Lytro (http://clim.inria.fr/IllumDatasetLF/index.html, accessed on
1 March 2023) datasets.

3.5. Transformation-Based Models

One of the classical quaternion representations is the quaternion unit transform [95].
A unit vector ṗ is defined as

ṗ = cos θ +
1√
3

µ sin θ

= cos θ +
1√
3
[(sin θ)i + (sin θ)j + (sin θ)k]

(27)

where µ = i + j + k is the pure imaginary axis. Then the unit transform for a color image
u̇ = uri + ug j + ubk is defined as

ṫ = ṗu̇ ṗ∗

=

[
cos θ +

1√
3

sin θ(i + j + k)
]
(uri + ug j + ubk)

[
cos θ − 1√

3
sin θ(i + j + k)

]
= cos 2θ(uri + ug j + ubk) +

2
3

µ sin2 θ(ur + ug + ub)

+
1√
3

sin 2θ[(ub − ug)i + (ur − ub)j + (ug − ur)k]

= YRGB + Y∆ + YI ,

(28)

where YRGB = cos 2θ(uri + ug j + ubk) represents the RGB space component, YI =
2
3 µ sin2 θ(ur +

ug + ub) is the intensity, and Y∆ = 1√
3

sin 2θ[(ub − ug)i + (ur − ub)j + (ug − ur)k] denotes the
color difference. With the quaternion unit transformation (28), many excellent image processing
works have been proposed. Geng, Hu, and Xiao [96] proposed a quaternion-switching filter for
impulse noise reduction. They employed the color difference to detect whether the center pixel in
a filtering window is noisy or not. Later, a two-stage method with the quaternion unit transform
was proposed for removing impulse noise [97]. In 2019, Li, Zhou, and Zhang [57] extended the
classical non-local total variation to the quaternion domain with the unit transform for color
image denoising. A similar representation was also applied in [98] for color image enhancement.

With the quaternion Fourier transform (QFT), Bas, Bihan, and Chassery [99] presented
an image watermarking scheme. Later, a blind color image watermarking method based on
the quaternion Fourier transform and least squares support vector machine was proposed
in [100]. An image watermarking approach based on quaternion discrete Fourier transform

https://www.researchgate.net/profile/Xu-Shuang-3/publication/350965471_MFFW/data/607d2a6d881fa114b411103c/MFFW.zip
https://www.researchgate.net/profile/Xu-Shuang-3/publication/350965471_MFFW/data/607d2a6d881fa114b411103c/MFFW.zip
http://clim.inria.fr/IllumDatasetLF/index.html
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and an improved uniform log-polar mapping was introduced in [101]. Combining the
superpixel image segmentation and QWT, Niu et al. [102] proposed a novel image wa-
termarking approach. Grigoryan and Agaian [103] proposed an image restoration model
with the Wiener filter and quaternion Fourier transform, which can handle denoising and
deblurring tasks. Wang et al. [104] applied the QWT for a no-reference stereoscopic
image quality assessment. Other transforms, such as the quaternion polar harmonic trans-
form [105] and discrete wavelet transform [106], were also extended to the quaternion
domain with better performance.

3.6. Other Models

Instead of the above models, there are other standard works in the quaternion domain.
For example, the quaternion Gabor filter (QGF) [107,108] was introduced to extract the local
orientation information. Later, Li et al. [109] improved a multiscale QGF to describe texture
attributes. Zou et al. [110] utilized the linear regression classification and collaborative
representation in the quaternion domain for face recognition on SCface (https://www.scfa
ce.org/, accessed on 1 March 2023), AR (https://www2.ece.ohio-state.edu/aleix/ARdataba
se.html, accessed on 1 March 2023), and Caltech (https://www.vision.caltech.edu/dataset
s/caltech_10k_webfaces/, accessed on 1 March 2023) datasets. Liu et al. [111] proposed a
quaternion-based maximum margin criterion (QMMC) algorithm for face recognition.

4. Deep Learning

Deep convolutional neural networks (CNNs) have shown great potential in computer
vision. Quaternion-based convolutional neural networks (QCNNs) have also shown great
potential. In [112], the authors proposed a quaternion-based approach for unsupervised
feature learning that enables the joint encoding of intensity and color information. Later,
they introduced unsupervised learning of quaternion feature filters and feature encod-
ing [113]. Combining the traditional PCA theory, Zeng et al. [114] proposed a quaternion
PCA network (QPCANet) for color image classification. In [50], the basic modules, such
as the convolution layer and fully connected layer, were designed in the quaternion do-
main, which helped establish fully-quaternion convolutional neural networks. Later, a
quaternion weight initialization scheme and algorithms for quaternion batch normalization
were introduced [115]. Yin et al. [116] derived quaternion batch normalization and pooling
operations, and incorporated the attention mechanism to boost the performance of QCNNs.

The classification and forensics results of the Uncompressed Colour Image Database
(UCID) (https://qualinet.github.io/databases/image/uncompressed_colour_image_dat
abase_ucid/, accessed on 1 March 2023) illustrates the efficiency of a quaternion-based
network. A similar idea was shown in [117]. By independently learning both internal and
external relations, and with fewer parameters than a real-valued convolutional encoder–
decoder, Reference [118] investigated the impact of the Hamilton product on a color image
reconstruction task. The results on the Kodak dataset (https://r0k.us/graphics/kodak/,
accessed on 1 March 2023) showed that the quaternion convolutional encoder–decoder can
perfectly reconstruct unseen color information. Jin et al. [119] incorporated deformable
quaternion Gabor filters into the convolutional neural network and applied the proposed
model in facial expression recognition on Oulu-CASIA https://www.v7labs.com/open-da
tasets/oulu-casia, accessed on 1 March 2023), MMI (https://mmifacedb.eu/, accessed on
1 March 2023) and SFEW (https://cs.anu.edu.au/few/AFEW.html, accessed on 1 March
2023) datasets. At the same time, Zhou et al. [120] proposed a deep CNN with a Gabor
attention module for facial expression recognition. Later, quaternion representations
were added to attention networks for classification [38]. More specifically, axial-attention
modules were supplemented with quaternion input representations to improve image
classification accuracy in the ImageNet300k dataset (https://deepai.org/machine-learnin
g-glossary-and-terms/imagenet, accessed on 1 March 2023). Considering different types of
noise, Cao et al. [121] proposed a convolutional attention-denoising network to remove
random-valued impulse noise. Classical real-valued CNN models were also extended to the

https://www.scface.org/
https://www.scface.org/
https://www2.ece.ohio-state.edu/aleix/ARdatabase.html
https://www2.ece.ohio-state.edu/aleix/ARdatabase.html
https://www.vision.caltech.edu/datasets/caltech_10k_webfaces/
https://www.vision.caltech.edu/datasets/caltech_10k_webfaces/
https://qualinet.github.io/databases/image/uncompressed_colour_image_database_ucid/
https://qualinet.github.io/databases/image/uncompressed_colour_image_database_ucid/
https://r0k.us/graphics/kodak/
https://www.v7labs.com/open-datasets/oulu-casia
https://www.v7labs.com/open-datasets/oulu-casia
https://mmifacedb.eu/
https://cs.anu.edu.au/few/AFEW.html
https://deepai.org/machine-learning-glossary-and-terms/imagenet
https://deepai.org/machine-learning-glossary-and-terms/imagenet
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quaternion domain. For example, EdgeNet [122] was modified by proposing an end-to-end
trainable quaternion-based super-resolution network (QSRNet) [123]. The experiment on
image super-resolution demonstrates that the local and global interrelationships between
the channels can be better maintained with fewer parameters.

In [124], a quaternion residual unit was employed to capture the interdependencies in
a multidimensional input in the DCASE19 (https://zenodo.org/record/2589280#.ZBLAu
OxBzJx, accessed on 1 March 2023) and DCASE20 (https://zenodo.org/record/3670167#
.ZBLAEOxBzJw, accessed on 1 March 2023) datasets. As a result, quaternion encoding can
increase accuracy with fewer parameters. Frants et al. [125] proposed a quaternion-based
multi-stage multiscale neural network with a self-attention module for rain streak removal.
They replaced all convolutional layers with the quaternion convolution layer and replaced
the ReLU activation layer with its quaternion split version. Later, they proposed a single-
image dehazing model based on quaternion neural networks [126]. EI et al. [83] added
quaternion discrete orthogonal moments to the deep neural network to extract compact
and pertinent features. Their recognition performance on datasets, such as Faces94 (ht
tps://cmp.felk.cvut.cz/spacelib/faces/faces94.html, accessed on 1 March 2023), Faces95
(https://cmp.felk.cvut.cz/spacelib/faces/faces95.html, accessed on 1 March 2023), Faces96
(https://cmp.felk.cvut.cz/spacelib/faces/faces96.html, accessed on 1 March 2023), Grimace
(https://cmp.felk.cvut.cz/spacelib/faces/grimace.html, accessed on 1 March 2023), Georgia
Tech Face (https://computervisiononline.com/dataset/1105138700, accessed on 1 March
2023), and FEI (https://fei.edu.br/cet/facedatabase.html, accessed on 1 March 2023) showed
the superior performance of the quaternion-based deep neural network. Zhou et al. [127]
designed a non-iterative quaternion routing algorithm to integrate quaternion-valued capsule
networks. Xu et al. [128] proposed a plug-and-play model for image denoising and inpainting
by combing the FFDNet [129] and low-rank (Laplace) function in the quaternion domain.
In order to solve the proposed hybrid non-convex model, the ADMM and difference of the
convex algorithm (DCA) were used. Moreover, the generative adversarial networks were
extended to quaternion in [130].

5. Discussion

The aforementioned quaternion-based methods are classical and representative, and
some typical methods are listed in Table 2. Overall, quaternion-based algorithms can be
more memory-efficient than traditional methods, which is important when dealing with
large datasets. In some cases, quaternion-based methods can provide more accurate results
than traditional methods, especially for problems that require rotation-invariant features.
Although the quaternion-based models show better performance, there are disadvantages.
First of all, the previous description shows that most quaternion-based methods directly
extend real-valued methods to the quaternion domain. A model that can better reflect
the advantages of the quaternion should be proposed, such as the unit transform-based
model, in which an image can be divided into two parts according to the properties of the
quaternion. Secondly, the quaternion representation denotes the color image as an entirety,
which can keep the interrelationships between color channels and reduce the parameters in
CNN-based models. However, this could slow the computation and make it more costly,
which could limit their use in real-time applications. An accelerated algorithm should be
proposed to optimize the quaternion-based methods. Thirdly, while quaternions are well-
suited for representing three dimensions, they may not be as useful in higher dimensions.

https://zenodo.org/record/2589280#.ZBLAuOxBzJx
https://zenodo.org/record/2589280#.ZBLAuOxBzJx
https://zenodo.org/record/3670167#.ZBLAEOxBzJw
https://zenodo.org/record/3670167#.ZBLAEOxBzJw
https://cmp.felk.cvut.cz/ spacelib/faces/faces94.html
https://cmp.felk.cvut.cz/ spacelib/faces/faces94.html
https://cmp.felk.cvut.cz/ spacelib/faces/faces95.html
https://cmp.felk.cvut.cz/ spacelib/faces/faces96.html
https://cmp.felk.cvut.cz/ spacelib/faces/grimace.html
https://computervisiononline.com/dataset/1105138700
https://fei.edu.br/ cet/facedatabase.html
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Table 2. Typical quaternion-based image processing models. The model structure, model prior, the
used algorithm, testing data, and tasks are listed.

Method Model Structure Prior Algorithm Testing Data Task

20
18

–2
01

1

QGmF [107] – Gabor Filter + hypercomplex
exponential basis functions

Closed Form Solution Common Used Denoising/Inpainting/
Segmentation

Xu et al. [67] Sparse Dictionary KQSVD/QOMP Animal Images Reconstruction
/Denoising/Inpainting/Super-
resolution

Zou et al. [66] Sparse CRC + Sparse RC ADMM AR/Caltech/SCface/
FERET/LFW

Face Recognition

Kumar et al. [93] Low-rank QWT + QSVD – Biomedical Images Super-resolution
QPCANet [114] Deep Network Principal Component Analysis

Network
Deep Learning Caltech-101/Georgia

Tech face/UC Merced
Land Use

Classification

QCNN [50] Deep Network Quaternion Representation Deep Learning COCO/Oxford flower102 Classification/Denoising

20
19

QNLTV [57] Non-local Non-local Total Variation Splitting Bargeman Common Used Denoising
LRQA [60] Low-rank Laplace/Geman/Weighted

Schatten-γ
Difference of Convex Common Used Denoising/Inpainting

QWNNM [61] Low-rank Nuclear Norm QSVD Berkeley Denoising
QPHTs [105] – Chaotic System+Polar Har-

monic Transform
- Whole Brain Atlas Watermarking

QMC [73] Low-rank Nuclear Norm/`1 Norm ADMM Berkeley Inpainting
HOGS4 [70] Sparse Total Variation+High-order

Overlapping Group Sparse
ADMM Infrared LTIR/IRData Super-resolution

QSBFM [82] Orthogonal Moment Weighted Spherical
Bessel–Fourier Moment

QSBFM CVG-UGR/Amsterdam
Library/Columbia
Library

Reconstruction /Recognition

QCROC [110] Linear Regression Clas-
sification

Linear Regression Classifica-
tion+Collaborative Represen-
tation

Collaborative Repre-
sentation Optimized
Classification

SCface/AR/Caltech Recognition

Yin et al. [116] Deep Network QCNN+Attention Mechanism Deep Learning UCID Classification/Forensics

20
20

Li et al. [86] – Discrete Fourier Trans-
form+QR decomposition

Wavelet
Transform+Just-
noticeable Difference

Common Used Watermarking

Voronin et al. [59] – Modified Chan and Vese
Method

Anisotropic Gradient
Calculation

Merced Segmentation

F-2D-QPCA [76] Low-rank+Sparse F-norm Principal Component
Analysis

Georgia Tech
Face/FERET

Face Recognition

DQG-CNN [119] Deep Network Deformable Gabor Filter Deep Learning Oulu-
CASIA/MMI/SFEW

Facial Expression Recognition

Zhou et al. [120] Deep Network Gabor Attention Deep Learning Oulu-
CASIA/MMI/SFEW

Facial Expression Recognition

20
21

QBSR [71] Sparse Block Sparse Representation ADMM AR/SCface Recognition
Huang et al. [69] Sparse Dictionary+Total Variation ADMM DIV2K Denoising/Deblurring
Shahadat et al. [38] Deep Network Axial-attention Modules Deep Learning ImageNet300k Classification
RQSVR [72] Sparse Welsch Estimator HQS/ADMM AR/SCface Reconstruction/Recognition
He et al. [91] Low-rank Matrix Decomposition PSVD Common Used Watermarking

20
22

QSRNet [123] Deep Network Edge-Net Deep Learning DIV2K/Flickr2K
/Set5/Set14/BSD100
/Urban100/UEC100

Super-resolution

Yang et al. [62] Low-rank Logarithmic Norm FISTA/ADMM Common Used/Berkeley Inpainting
Wu et al. [18] Total Variation l1/l2-norm spADMM Weizmann/Berkeley Segmentation
QSAM-Net [125] Deep Network QCNN+Self Attention Deep Learning LOL Rain Streak Removal
QDOMNN [83] Deep Network Discrete Orthogonal Moments Deep Learning Faces94/Faces95

/Faces96/Grimace
/Georgia Tech Face/FEI

Recognition

20
23

RQNet [124] Deep Network Residual CNN Deep Learning DCASE19/DCASE20 Classification
QHOSVD [94] Low-rank Higher-order SVD Matrix Decomposition Lytro/MFFW Image Fusion/Denoising
DLRQP [128] Plug-and-play FFDNet/Laplace ADMM/DCA Common Used Denoising/Inpainting

6. Conclusions

In this paper, we reviewed classical and representative quaternion-based methods
in image processing according to their model types. We divided these models into two
types: traditional and deep learning. Specifically, we introduced TV-based, low-rank-
based, sparse-based, moment-based, decomposition-based, transformation-based, and deep
learning-based models. We believe that this survey can help academics better understand
quaternion-based models and further advance this topic.

Furthermore, quaternion representation has several potential future research direc-
tions in color image processing. Firstly, developing new color spaces based on quaternion
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representation could improve the accuracy and efficiency of color image processing algo-
rithms. For instance, a quaternion-based color space may better capture the spatial and
chromatic information in an image compared to traditional color spaces. Secondly, data
augmentation techniques, such as rotation and scaling, are commonly used in deep learning
to increase the size of training datasets. Using quaternion representations to perform these
transformations could improve the robustness and generalization of models trained on
color image datasets. Thirdly, QCNNs can use quaternion representations to learn features
from color images more effectively than traditional CNNs. Future research could explore
the performance of QCNNs by designing the quaternion modules.
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R real space
C complex space
H quaternion space
a real/complex number
ȧ quaternion number
A real/complex matrix
Ȧ quaternion matrix
Q quaternion
TV total variation
QNLTV quaternion non-local total variation
SV-TV saturation-value total variation
LRQR low-rank quaternion approximation
QWNNM quaternion weighted nuclear norm minimization
QFT quaternion Fourier transform
QWT quaternion wavelet transform
CNN convolutional neural network
QCNN quaternion-based convolutional neural network
QTrans quaternion-based transformer model
ADMM alternating direction method of multipliers
FISTA fast iterative shrinkage thresholding algorithm
DCA difference of convex algorithm
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