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Quaternion-Based Dictionary Learning and
Saturation-Value Total Variation Regularization
for Color Image Restoration

Chaoyan Huang *“, Michael K. Ng

Abstract—Color image restoration is a critical task in imaging
sciences. Most variational methods regard the color image as a
Euclidean vector or the direct combination of three monochrome
images and completely ignore the inherent color structures within
channels. To better describe the relationship of color channels,
we represent the color image as the so-called pure quaternion
matrix. Note that the celebrated dictionary learning method has
attracted considerable attention for image recovery in the past
decade. Following this idea, we propose a novel quaternion-based
color image recovery method. This model combines the advantages
of dictionary learning and the total variation method for color
image restoration. The new strategy used in the proposed model
manages to handle the color image restoration problem in the
quaternion space. Moreover, the new proposed model can be easily
solved by the classical alternating direction method of multipliers
(ADMM) algorithm. Numerical results demonstrate clearly that
the performance of our proposed dictionary learning method is
better than some state-of-the-art color image dictionary learning
and total variation methods in terms of some criteria and visual
quality.

Index Terms—Dictionary learning, image restoration, pure

quaternion, total variation.
OLOR image restoration aims to recover a clean image
from the degraded observation. In the processing of gen-
erating, transmission, and storage, the color image will be un-
avoidably degraded by noise and blur. As images are essential
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in various fields such as biomedical imaging, microscopy, as-
tronomical imaging, and multimedia processing, it is critical to
restoring the sharp image from the degraded observation.

The color image processing is the extension of gray image
restoration. Since color image restoration is a typical ill-posed
problem, recovering the degraded image is rather challenging.
In the literature, there are many excellent methods for gray im-
age restoration. Rudin, Osher, and Fatemi [1] proposed the to-
tal variation (TV)-based method to handle the image denoising
problem. Later, the TV-based model was extended by many re-
searchers to tackle the image restoration problem, such as [2],
[3]. In [4], the reliable image recovery results were generated
by the dictionary learning (DL)-based method. Zeng et al. [5]
applied the DL-based method for image denoising and yielded
competitive results. The DL-based method, first introduced by
Olshausen and Field [6] and continued by Elad et al. [7]-[9],
has been applied to various tasks of image processing, such as
image restoration [10], [11], image inpainting [12], [13], image
recognition [14], [15], image compression [16], image classi-
fication [17], and object detection [18]. Recently, the machine
learning-based method has received significant attention in im-
age processing and has good results in image restoration. For
example, Jin et al. [19] proposed a flexible deep convolutional
neural networks (CNN) framework for image restoration. Mou
et al. [20] restored the image with the collaborative attention
network (COLA-Net). In [21], Papyan, Romano, and Elad built
a nice connection between CNN and DL, which provided a new
interpretation of CNN. Moreover, [22] also gave the theoretical
guarantees for convolutional sparse coding. However, the inte-
gration of the DL-based method with the most recent advanced
tools in image processing is still an open question.

As an important branch of image processing, DL aims at
searching for a suitable dictionary where the trained data has
sparse representation [23]-[26]. By minimizing the reconstruc-
tion error of the training data, the dictionary learning method
can take full advantage of the sample information [27], [28].
By giving the following assumption: an image patch ug € R™
is approximately sparse under some dictionary D € R™*¥; the
linear measurement go = ug + bg where by is the noise follow-
ing some statistical distributions; estimating the original image
patch ug as up ~ Da. Then we can get ug by solving

1

min|[afo,s.t.|go ~ Daf3 < c,
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where || -||o denotes the {p-norm which counts the num-
ber of non-zero elements; || - ||o represents the ¢ norm, i.e.,
llz|l2 = /2L 22 with x = {21, 72,...,7;,}; a represents the
sparse coefficient vector; and € > 0 is a parameter with respect
to the noise level. Once we have obtained the solution a of (1),
with the given dictionary D, the original image patch ug can be
estimated by ug = Da.

The choice of the dictionary D has a significant influence
on the performance of the image restoration. The dictionary D
can be either given or learned from observed images [29], [30].
For the predetermined dictionary, such as curvelets, wavelets,
and discrete cosine transforms (DCT), their computational per-
formances are always faster than the learned ones. However,
the predetermined dictionary is not adapted to the degraded
images [4]. A trained dictionary containing the prior informa-
tion can better fit the images and significantly improve recovery
quality [31], [32]. Among the learned dictionaries, Ma, Yu, and
Zeng [33] learned the dictionary from the corresponding de-
graded image and led to competitive performance in impulse
noise removal. Chen et al. [34] learned a compact dictionary
from original contaminated samples for face recognition. In [35],
the authors applied a set of image patches to train a dictionary for
spectral computed tomography (CT) material decomposition.
In [36], the dictionary is trained using image patches for image
denoising under mixed noise. The methods above have good re-
sults in their tasks. However, the dictionary can contain more
prior information. Inspired by the deep learning-based method,
we train the dictionary by using a set of color images.

Considering the color information of an image is indispens-
able, and color images have wide applications in our lives. Many
researchers turned to tackle color image restoration. However,
most of them simply apply the techniques of the gray image to
color image restoration. The dictionary learning model can well
handle the gray image in [7] but generate color distribution when
denoising the color image in [9]. Therefore, simply applying the
gray image-based method to the color image seems not suitable.
Pei and Cheng [37] claimed that there are inner-relationships be-
tween the red, green, and blue (RGB) channels of color images.
They represented the color image with a quaternion matrix and
had better results than those used in the gray image. Recently,
many works paid a lot of attention to quaternion representation.
Li, Zhou, and Zhang [38] used the quaternion non-local total
variation regularizer for color image denoising. Their results
are better than the real-valued non-local total variation-based
methods. In [39] and [40], the authors extended the low-rank
matrix approximation into the quaternion domain and achieved
better color image denoising results than the real-valued low
rank-based methods. Xu et al. [41] applied the DL with quater-
nion for color image denoising, inpainting, and super-resolution.
They achieved good results by representing color images with
the quaternion matrix. A quaternion has three imaginary parts
and one real part. We consider that representing a color image
with three imaginary parts is better than simply regarding the
color image as a union of three independent channels.

Although the dictionary method achieves good results, there
is still room for improvement, i.e., they cannot preserve image
edges well [33]. Moreover, the simple patch-based approach will
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Fig. 1. The comparison of different restoration methods with visual results
and PSNR/SSIM values. (a) Original image; (b) The zoomed part of Img8; (c)
The zoomed part of the degraded image with Gaussian blur (15,1) and Gaussian
noise level o = 12.75; The zoomed part of images reconstructed by: (d) the
dictionary learning method; (e) the SV-TV method; (f) our method.

introduce artifacts in the deblurring problem [42], [43]. Since the
TV regularizer has attractive properties, i.e., convex and better
sharp edge preservation [44]-[46], the TV-¢; model has been
widely applied to image deblurring and denoising tasks [47],
[48]. Recently, Jia, Ng, and Wang [49] proposed a TV model
in HSV color space, named SV-TV, which can remove blur and
noise effectively. Their study offers some important insights into
our research. A brief review of the SV-TV regularizer is given
in Section II.B.

In this paper, we propose a new color image restoration
method with quaternion-based dictionary learning and SV-
TV regularizers. As aforementioned, dictionary learning with
quaternion representation can better preserve the inherent struc-
ture of the color image. Moreover, the total variation regularizer
in HSV color space has better performance. Many excellent ap-
proaches have considered color image restoration with the TV-
based method, non-local means-based method, or the DL-based
method. However, the combination of both TV and quaternion-
based DL has not been addressed in color image restoration.
Moreover, due to the complexity, the quaternion-based tech-
niques have rarely been applied in color image restoration. In
this paper, we first apply the quaternion-based dictionary learn-
ing method with the SV-TV regularizer to deblur and denoise an
image simultaneously. Inspired by the machine learning-based
method, we train the dictionary with a large dataset. The trained
dictionary can be seen as a prior. Furthermore, we do not need
to train the dictionary corresponding to the input image, which
saves the restoration time dramatically compared with those dic-
tionary learning-based methods. Notably, the proposed combi-
nation model can be regarded as a general and flexible frame-
work. Indeed, whenever necessary, one can also adopt other ad-
vanced regularizers or blocks to generate better results. In this
paper, we focus on image restoration by combining dictionary
learning and SV-TV regularizers for efficiency. Fig. 1 shows the
comparison of different restoration methods. It is clear that the
DL-based method generates great artifacts in Fig. 1(d). For the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 28,2023 at 08:05:02 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: QUATERNION-BASED DL AND SATURATION-VALUE TV REGULARIZATION FOR COLOR IMAGE RESTORATION

SV-TV method, we find that some noises remained in Fig. 1(e).
Our approach combines these two regularizers for color image
restoration and generates a great result in Fig. 1(f). Hence, the
image that we recovered has the highest numerical result and
visual quality.

Indeed, the sparse representation prior is pretty good at recov-
ering the local features in the image, and the TV term helps sta-
bilize the restored results. Combining pure quaternion-based DL
and TV regularizers, we propose a new color image restoration
method. The main contributions of our method are as follows:

e Unlike the traditional color image processing, which re-
gards the color image as the vector or the combination of
monochrome images and completely ignores the inherent
color structures, we represent a color image with the pure
quaternion. Both denoising and deblurring are conducted
to recover a color image. Due to the special calculation
rules, the inner relationship among the multiple channels
can be well preserved.

® We propose a new image restoration method combining
quaternion-based DL and SV-TV regularizers to recover
the degraded color images and achieve more competitive
color image restoration results than existing methods.

e For the numerical implementation, we train a dictionary
with a large dataset and then fix the trained dictionary.
Based on this strategy, there is no need to train a new
corresponding dictionary for each image. Meanwhile, our
pre-learned dictionary can also fit the degraded images in
the processing of image restoration.

Additionally, the proposed method can be used in many
real applications, including multimedia computing [50], image
restoration [51], [52], video enhancement [53].

The paper is organized as follows. Section Il reviews the basic
concept of the quaternion, the SV-TV regularization, and the
classical alternating direction method of multipliers (ADMM)
algorithm. The proposed method is displayed in Section III, and
experimental results are in Section I'V. Finally, the conclusions
follow in Section V.

II. QUATERNION AND SV-TV REGULARIZATION
A. Quaternion

The quaternion matrix is proven to be a better representation
for color image restoration than the real-valued matrix [54]. The
quaternion was first introduced by Hamilton [55]. Assume that
H is a quaternion space, let u(x,y) € H be a quaternion, then

u(l'vy) = Uo(l',y) + ul(xa y)l + UQ(l',y)j =+ ’U,3(£L’,y)k,

where ug(z,y) € R is the real part, ui(z,y), ua(z,y),
uz(z,y) € R are the imaginary parts, and i, j, k are three fun-
damental quaternion units satisfying the following quaternion
rules

iZ=j2=k*=ijk=—1,
ij = —ji=k,jk = —kj=i,ki = —ik = j.

Similar to complex space, if the real part ug(z,y) = 0, then
u(x,y) is called a pure quaternion. As the color image has three
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Fig. 2. Color image with quaternion representation.

channels (R, G, B), we can represent a color image with the
imaginary parts of the quaternion, i.e., denoting the color image
as the pure quaternion

U.(LU, y) = ’U’T(‘r’y)i + ug(q:,y)j + ub($>y)k7

here (x,y) refers to the pixel location of a color image u, and
ur(z,9), ug(x,y), up(z, y) are the RGB channels, respectively.
Fig. 2 shows how the quaternion represents the color image.

B. SV-TV Regularization

Rudin, Osher, and Fatemi first proposed the TV regulariza-
tion [1] for gray image restoration, which can preserve the edge
of images. The TV term can suppress artifacts generated by the
patch-based methods [56]. Given an observed image g, the TV
model can be written as

) 1
u:argdel??HVUHl—f'§||g—H*u||%7 2

where u is the latent image, H is a given blur operator, * is the
convolutional operation, 7 is the positive parameter that balance
the different terms, 3||g — H % ul|3 is the fidelity term,

m n

IVal =303 /(daw?, + (@),

i=1 j=1

is the TV regularization term, here two discrete differential op-
erators are introduced as

{ (dTuglj = u(Z7]) - u(Z - ]-aj)a

ij = u(i,j) —u(i,j—1).

The SV-TV regularization is introduced by Jia et al. [49],
which is the extension of TV regularization. The SV-TV can be
expressed as

1
minnsv-TV(u)+5\\g—H*u\|§, 3)
where
svrv(w =303 (i +
i=1 j=1

sofi@ul @) @
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here o > 0 is the weight of the value component. The norm | - |,
and | - |, are defined as

1
|(dzu)ijls = glIC(dIU)ilelz,

3

1
[(dyu)isls = §|\C(dyu)f||2,

1
[(dau)ijlo = ﬁ“dxur)ij + (daug)ij + (daus)il,
1
[(dya)ijlo = %Kdyur)ij + (dyug)ij + (dyus)ijl, )
2 -1 -1
where C= -1 2 —1/| . We refer the interested readers
-1 -1 2

to [49] for a more comprehensive review of the SV-TV regu-
larizer. Our proposed model applies the SV-TV regularizer to
denote the piecewise-constant image part, such that the artifacts
accompanied with the patch-based method can be removed.

C. ADMM Algorithm

The alternating direction method of multipliers (ADMM) al-
gorithm [57]-[59] aims to solve the problem with the following
form

mwin f(z)+ h(Bx). (6)

Here, f(x) and h(Bx) are two convex functions, B is a constant.
Let z = Bz, the augmented Lagrangian of (6) is

L(r, 22y) = f(x) + h(z) + (o, Be = 2) + 2| B — 2],

where y is called the Lagrange multiplier and 9 is the penalty
parameter. The ADMM algorithm consists of the iterations as
follows

)
T = argn}gnf(x) +{y,Bx —z) + §||Bx — z||§,

5
z = argminh(z) + (y, Bx — z) + §HB$ — 2|3,
y=y+0(Bzx—z2).

By alternating updates z and z subproblems and the Lagrange
multiplier y, the optimal solution = with guaranteed convergence
is obtained. One can have a detailed comprehending in [60],
the Matlab examples and related works can be found in https:
//stanford.edu/boyd/papers/admm_distr_stats.html.

III. OUR METHOD

In this section, we first give the proposed method. Then pro-
vide the strategy of training the dictionary. The numerical algo-
rithm of the proposed model is also presented. Finally, we give
the computation complexity of the proposed algorithm.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

TABLE I
NOTATIONS USED THROUGH THE PAPER

ug the image patch
D the dictionary
bo the Gaussian noise
a the sparse coefficient vector
i the sparse coefficient for the patch located at (4, j)
A the set of a;;
€ the parameter with respect to noise level
H and R the quaternion space and the real space
uo(z,y) the real part of a quaternion function
w(z,y) the imaginary part of a quaternion function, t = 1,2,3
up(z,y) the RGB part of an image, k =r, g,b
ij.k the fundamental quaternion units
u(z,y) the quaternion function
u the latent image
g the observed image
n, a, A the positive parameter that balance the different term
-1l the ¢;-norm, t =0, 1,2
v the gradient operator
| Vuly the TV term
* the convolutional operation
H the blur operator
(dgu)s; discrete differential operator of x orientation in location (i, j)
(dyu);; discrete differential operator of y orientation in location (4, )
[-]s and |- |, the s-norm and the v-norm
P, Py and P{  orthogonal matrices and the conjugate transpose of Pg
J the singular value matrix of C
q the linear transformation of u
qr three components of q, t = 1,2, 3
Pij the positive weight for patch at location (i, j)
ij the extract operator in location (4, j)
ﬁ, g, ]3 a;j the corresponding linear transformation with P
w, wi auxiliary variables in ADMM algorithm, ¢ = 1,2, 3
T T Lagrangian multipliers ¢t = 1,2,3
Ié] the penalty parameter

A. Proposed Scheme

Given an observed image g and the blur operator H, the pro-
posed model is given as

min Allg — H % ul|3 4+ 7SV-TV(u)
a;j,u

+> pislaillo + Y IDay; — Rijull3, (7

2%} 2%}

where A and 7 are two positive parameters, u is the ideal latent
image. The second term SV-TV (u) is the regularizer proposed
in the HSV color space. The last two terms are the dictionary
learning model, where p;; is the positive patch-specific weight,
the binary matrix R;; extracts the local patch in an image, D is
a pre-learned dictionary, and a;; is the sparse coefficient vector.
The set of a;; is denoted as A.. Fig. 3 summarized our approach
with the pre-learned dictionary. Table I gives a list of notations
used in this paper.

B. Learning the Dictionary With K-QSVD Algorithm

The last two terms in (7) are corresponding to the above-
mentioned sparsity assumption (1) (for some dictionary). In the
dictionary learning part, the training images are collected from
the training set of the DIV2K Dataset [61]. We download 800
training images and crop them into small patches of size 8 x 8.
We then learned a dictionary from these image patches with the
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input image

quaternion representation

Fig. 3.

generalized k-means clustering for quaternion singular value de-
composition (K-QSVD) algorithm' [41]. The learned dictionary
D is with the size of 64 x 256 x 4. It takes 291.75 seconds in
Matlab R2020a under macOS Catalina 10.15.4 with a 1.40 GHz
CPU and 8 GB memory. The number of nonzero entries in a;; is
called the sparsity level of a;;. In this paper, the sparsity level is
set to be 5, which is the default value in the K-QSVD algorithm.
After the dictionary is learned, we fix it for all image restoration.
Fig. 3 contains the processing of dictionary training.

C. Numerical Algorithm of the Proposed Model (7)

To better solve the proposed model, we first perform a lin-

3773
coefficients a;;
QOomMP —H | ... H—V DA !—l
else _J
ADMM algorithm
restored image
The flowchart of our method.
a;; = a;;. The objective function (7) is reformulated as
Iin MH % q - g||5 + nSV-TV(q)
+Y pijlaigllo + Y IDa; — Ryqll3,  (10)
i.j i,7
where
m n
SVTV(a) = 3 > (ay/(doas)?, + (dyas)?
i=1 j=1
(11)

ear transformation. Since the component of SV-TV (4) satis-
fies the (5). Given the orthogonal decomposition of C, i.e.,
C= PgJ Py, where Py, is the orthogonal matrix and

. 1 -1
3 00 B 2 0
_ _ |2 1 =2
J—030’P0_?€?6?6’ ()
000l GGV
following (8), by doing the linear transformation of u, we have
q1 (xay)_ ur(x,y)
a= |y | =Pu=P lu(z,y)|, ©)
qg(x,y)_ ub($7 )
here
1 -1
I
LI 11 17
VBT VBT VB

and I is the identity matrix. With the fixed P, by doing the
linear transformation, we set H = PHPT, g =Pg, D =PD,

IThe code of the K-QSVD algorithm can be found in [Online]. Available:
https://lichengunc.github.io/.

Following previous works [41], [49], we can establish the
optimization scheme based on the ADMM approach [57]-[59].
According to 1I-C, by introducing auxiliary variables wf, w7,
Lagrangian multipliers 7* and 7/ (t = 1,2,3), and a penalty
parameter 3 > 0, we have the augmented Lagrangian of the
proposed model as follows

~ x Y. x Y
Lﬁ(aijvq’wtthth 7Tt)

m n
Yy (qu*q—gz T il llo + D&y — Rijall2
i=1 j=1

()12 + 1w 2 + [(wh)ig 2 + (w82

3
Fay Il + 1)) ) + 3 (rF (wF - )
t=1
Yy Y d ﬁ x d 2
L (w — dya) + w7 - daa)yl}
2w yqtmnz) (12)

Then the solution is derived by alternatively solving the follow-
ing three subproblems.
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® 3;;-subproblem

min Y > (pi|[a; 0 + |Day — Rijal3),  (13)
A )

following (1), given an observed image g, the corre-
sponding coefficient vectors a;; can be obtained. We ap-
ply the quaternion orthogonal matching pursuit (QOMP)
algorithm? to get a;;.

® q-subproblem

m n
mgn AMH*q— g3+ Z Z IDa;; — Rijqll3
i=1j=1

M

+ > (7, (wi —dear)iy) + (7, (W) — dyar)ij)

1

H
I

(wi —dyar)i;13),
(14)

+ S IWE = deae)isl3 +

SIS

8
2|

then the g-subproblem has a close form solution
a7l TS =
q= _ ~2)\.H g+22i7jRijDaij + =
22HTH +23, R Rij + (Al d, + dgdy()ls)
where E = Z?Zl(dez +7/d, + B(dIwy + dgwf))
e w and wy-subproblem (¢t = 1,2, 3)
It is a typical problem that can be solved by the soft shrink-

age algorithm [62]. According to the soft shrinkage algo-
rithm, we have the solution of w¥ and w? as follows

n di —wi/B
w? = max(s; — —,0)——-—,
1 ( 1 ﬂ ) 51
Yy y
v _ _ 0 ydi-wi/B
wi = max(s; B’O) 5 )
. n 45 —w3/8
wi = max(s; — —,0)——2—,
2 ( 1 ﬂ ) 51
R
W2 max( 1 — ’0)(12—“72”7
S1
N na . di —wi/j
wi = max(sy — —,0)—2>——21",
3 ( 2 6 ) So
R
WY = max(sy — @,o)w, (16)
5 52
where
2 w¥ w
51= Z(dw - =)+ (dy — — )2
24 g
x Y
82 = \/(da: - &)2 + (dy - &)2
B B a7

e 7 and 7/-subproblem (t = 1,2,3)

2The code of the QOMP algorithm can be found in [Online]. Available: https:
/Nichengunc.github.io/.
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Algorithm 1: Our algorithm for image Restoration.

Initialization Represent color image with quaternion
matrix. Given the pre-learned dictionary D and the
orthogonal matrix P. Set u = g. Choose parameters
A, 1, a, 5. Set the maximum iteration 7.

fort =1toT do

Update a;; with (13);

Update q using (15);

Update w¥ and w using (16);
Update 7;* and 7 using (18);
t=t+1

end for

returnu = P !q.

Fig. 4. Ground-truth images.
28.15 : : . ‘ : :

28.1+

28.05 -

PSNR(dB)
2

27.95

2791

L I
10 20 30 40 50 60 70 80 20 100

27.85 : : -
0

iteration

Fig. 5. PSNR values of results recovered from Img6 with
‘degraded=fspecial(‘Gaussian,’ 15,1)+noise’ by the proposed method.

The Lagrange multipliers are updated as follows.

=T Bwi - dy), T = Bw! - d,).

(18)

By iterating a;;, q, w¥, and w}-subproblems and Lagrange

multipliers 7* and 7 (¢t = 1,2, 3) with Eqgs. (13)-(17), the op-

timal solution q is obtained. Since P is an orthogonal matrix,

we can get the solution u from (9). Our optimization scheme is
summarized in Algorithm 1.

D. Computation Complexity

The computation complexity also plays an important role in
determining the final performance of the proposed framework.
Suppose that we have M samples with dimension m x n x 3
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Fig. 6. Restoration results of Img6 with different parameters.

corresponding to color patches. The dictionary size is m X n X
3 x K, where K is the number of atoms. The sparsity constraint
is 3L for the sparse code of each color channel. As a result,
according to [41], the complexity of the QOMP algorithm is
O(LM (Hxmx1)3) "the complexity of the K-QSVD algorithm
is O(LM (¥1)3) The iteration of the proposed method in
Algorithm 1 is T'. In every iteration, we need to update a;; with
the QOMP algorithm. Overall, the complexity of our method as
a whole is O(T LM (1xmxn)3),

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our quaternion-based dic-
tionary learning and total variation method, we present the nu-
merical and visual results in this section. We compare the pro-
posed method with TV-based models (DTV [63], SV-TV [49]),
DL-based methods (GSR [64], INSR [65]), sharpening opera-
tor combined with framelet model (SOCF [66]), and the classic
image processing method (BM3D [67]) for image restoration®.

3The code of SV-TV [49] and SOCF [66] were provided by the corresponding
authors; the code of DTV [63] was downloaded from [Online]. Available: https:
/Isites.google.com/site/thunsukeono/publications; the code of GSR [64] was
downloaded from [Online]. Available: https://github.com/jianzhangcs/GSR; the
code of INSR [65] was downloaded from [Online]. Available: https://github.
com/WanglifuCV/INSR_Deblur-SR; the code of BM3D [67] was downloaded
from [Online]. Available: https://webpages.tuni.fi/foi/GCF-BM3D/.
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Fig. 7. The average S-CIELAB errors between the ground-truth images and

the restored results.
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Fig. 8. Parameters analysis. PSNR results of Img6 with ‘degraded=fspecial
(‘Gaussian,’15,1)+noise’ by the proposed method.
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PSNR AND SSIM VALUES OF COLOR IMAGE RESTORATION WITH GAUSSIAN KERNEL (15,1) AND NOISE LEVEL 0 = 12.75

TABLE II
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Images\Methods | Degraded SOCF [66] BM3D [67] DTV [63] SV-TV [49] GSR [64] INSR [65] Ours

PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Img1 25.70 0.8489 | 30.56 0.9556 | 32.76 0.9788 | 32.17 0.9480 | 32.24 0.9461 | 32.62 0.9662 | 31.93 0.9068 | 33.17 0.9826
Img2 27.37 0.8655 | 29.20 0.9583 | 35.02 0.9927 | 34.41 0.9519 | 34.39 0.9492 | 34.31 0.9802 | 34.99 0.9875 | 35.87 0.9929
Img3 25.54 0.7683 | 29.03 0.9084 | 30.19 0.9368 | 31.84 0.9492 | 31.23 0.9461 | 31.78 0.9325 | 31.82 0.9300 | 32.05 0.9357
Img4 23.54 0.6445 | 25.19 0.8094 | 25.63 0.8934 | 25.46 0.8996 | 26.12 0.8345 | 25.08 0.7963 | 25.36 0.7718 | 26.24 0.8996
Img5 22.96 0.7030 | 24.19 0.8282 | 24.01 0.8365 | 24.77 0.8790 | 24.87 0.8602 | 24.12 0.7932 | 24.86 0.8324 | 25.09 0.8872
Img6 2438 0.7076 | 26.50 0.8094 | 26.95 0.8758 | 26.55 0.8519 | 26.62 0.8563 | 26.92 0.8914 | 27.23 0.9025 | 28.11 0.8932
Img7 25.05 0.6266 | 28.19 0.8439 | 28.28 0.8453 | 28.55 0.9100 | 28.78 0.9302 | 29.04 0.8619 | 29.11 0.8632 | 29.99 0.9193
Img8 23.81 0.8043 | 25.66 0.8883 | 25.83 0.8902 | 26.29 0.9243 | 26.19 0.9106 | 25.56 0.8696 | 25.52 0.8239 | 26.82 0.9329
Img9 24.71 0.7764 | 27.37 0.9050 | 27.96 0.9249 | 28.05 0.9363 | 28.33 0.8994 | 28.95 0.9324 | 28.97 0.9217 | 28.94 0.9370
Img10 24.57 0.7761 | 26.98 0.8857 | 27.78 0.8976 | 26.49 0.8820 | 26.67 0.9210 | 28.03 0.9025 | 28.18 0.9339 | 28.77 0.9551
Imgl1 24.52 0.6752 | 26.94 0.8329 | 27.60 0.8355 | 26.53 0.9111 | 26.84 0.9228 | 26.65 0.8767 | 26.77 0.7613 | 28.59 0.9030
Imgl2 23.87 0.7996 | 25.72 0.8767 | 26.15 0.8771 | 26.68 0.8914 | 26.64 0.8852 | 25.27 0.8582 | 25.12 0.8042 | 26.87 0.8915
Img13 24.22 0.6981 | 26.36 0.8547 | 26.64 0.8792 | 27.03 0.9044 | 27.00 0.8637 | 26.01 0.8292 | 25.81 0.8144 | 27.67 0.9052
Imgl4 24.14 0.6897 | 26.61 0.8766 | 27.64 0.9217 | 27.19 0.9200 | 27.60 0.8252 | 27.03 0.8950 | 27.12 0.8641 | 27.69 0.9192
Imgl5 2493 0.5607 | 27.86 0.7826 | 28.48 0.8264 | 29.23 0.8576 | 29.22 0.8002 | 29.81 0.8195 | 29.73 0.8311 | 29.82 0.8537
Aver. 25.09 0.7295 | 27.92 0.8758 | 29.30 0.9036 | 29.10 0.9118 | 29.19 0.8997 | 29.51 0.9058 | 29.59 0.8892 | 30.29 0.9336

TABLE III
PSNR AND SSIM VALUES OF COLOR IMAGE RESTORATION WITH GAUSSIAN KERNEL (15,1.5) AND NOISE LEVEL o = 12.75
Images\Methods | Degraded SOCF [66] BM3D [67] DTV [63] SV-TV [49] GSR [64] INSR [65] Ours

PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Imgl 25.41 0.8445 | 30.59 0.9642 | 32.66 0.9806 | 31.94 0.9745 | 32.32 0.9725 | 32.64 0.9674 | 31.95 0.8809 | 32.72 0.9771
Img2 25.48 0.8824 | 29.93 0.9734 | 34.73 0.9918 | 33.56 0.9897 | 34.75 0.9897 | 33.88 0.9809 | 33.85 0.8983 | 34.95 0.9885
Img3 25.02 0.7428 | 28.87 0.9073 | 30.72 0.9150 | 29.08 0.8886 | 30.38 0.9145 | 31.00 0.9154 | 30.87 0.8538 | 31.18 0.9397
Img4 22.21 0.6002 | 23.78 0.8138 | 23.99 0.8562 | 24.56 0.8928 | 24.79 0.8559 | 23.87 0.7513 | 23.67 0.6482 | 24.91 0.8568
Img5 21.81 0.6549 | 23.09 0.8067 | 23.11 0.8077 | 23.04 0.8491 | 23.45 0.8428 | 22.56 0.7519 | 22.88 0.6960 | 23.53 0.8532
Img6 23.32 0.6621 | 25.60 0.8344 | 27.04 0.8774 | 26.63 0.8419 | 27.32 0.8812 | 27.31 0.8620 | 27.12 0.8893 | 27.33 0.8937
Img7 24.33 0.5859 | 27.20 0.8233 | 28.66 0.8530 | 28.35 0.8185 | 28.68 0.8348 | 28.80 0.8353 | 29.01 0.8141 | 29.20 0.8631
Img8 22.71 0.7632 | 24.59 0.8667 | 24.60 0.8602 | 25.04 0.8973 | 25.17 0.8983 | 23.77 0.8005 | 23.77 0.8005 | 25.65 0.9074
Img9 23.72 0.7449 | 26.17 0.8946 | 27.55 0.9192 | 27.54 0.9012 | 27.04 0.8773 | 29.81 0.8195 | 28.59 0.8632 | 29.91 0.9274
Imgl10 23.66 0.7433 | 26.03 0.8753 | 27.55 0.8989 | 27.35 0.8748 | 27.72 0.9025 | 28.00 0.8966 | 28.26 0.8605 | 28.27 0.8875
Imgl1 23.50 0.6214 | 25.64 0.7985 | 27.41 0.8335 | 26.17 0.7936 | 27.84 0.8426 | 27.88 0.8339 | 27.64 0.8604 | 27.49 0.8733
Imgl12 23.27 0.7763 | 25.32 0.8685 | 25.72 0.8695 | 25.28 0.8791 | 25.30 0.8794 | 23.61 0.7856 | 23.61 0.7856 | 26.03 0.8795
Img13 23.04 0.6549 | 25.11 0.8449 | 25.26 0.8505 | 24.94 0.8752 | 24.82 0.8708 | 24.16 0.7811 | 24.27 0.6947 | 25.58 0.8789
Imgl4 22.84 0.6603 | 24.77 0.8688 | 26.89 0.9189 | 28.60 0.8958 | 26.97 0.8522 | 30.03 0.8950 | 29.76 0.9023 | 30.34 0.8884
Imgl5 2429 0.5248 | 27.29 0.7916 | 28.83 0.8348 | 28.58 0.8069 | 29.06 0.8198 | 29.81 0.8195 | 28.99 0.7946 | 29.83 0.8626
Aver. 23.64 0.6975 | 26.27 0.8621 | 27.30 0.8686 | 27.66 0.8944 | 27.71 0.8823 | 27.81 0.8464 | 27.62 0.8162 | 28.46 0.8983

The numerical quality of the restored images is measured by
S-CIELAB error* [68], PSNR (peak signal-to-noise ratio), and
SSIM (structural similarity index measure) [69]. All test ex-
periments are conducted in MATLAB R2020a under macOS
Catalina 10.15.4 with a 1.40 GHz CPU and 8 GB memory.

A. Parameter Setting

The Dataset DIV2K? [61] has a training set and a test set.
There are 800 images in the training set and 200 images in the
test set. We make use of images® in Fig. 4 taken from the test set
of the DIV2K Dataset to test the proposed model for color image
restoration. We simulate the degraded images by convoluting
the original image in Fig. 4 with different Gaussian blur levels
(Matlab language degraded=fspecial(‘Gaussian,’15,1), and
fspecial(‘Gaussian,’15,1.5)). Furthermore, we add the Gaussian
noise to model the unavoidable noise degradation in image

4S-CIELAB code is in [Online]. Available: http://scarlet.stanford.edu/brian/
scielab/scielab.html.

5[Online]. Available: https://data.vision.ee.ethz.ch/cvl/DIV2K/.

6Image size: Imgl, 2, 3, 7, 10, 11, 12, 13 with 2040 x 1356; Img 4, 5 with
2040 x 1536; Img 6 with 2040 x 1200; Img 14 with 2040 x 1152; Img 8 with
2040 x 1284; Img 9 with 1356 x 2040; Img 15 with 2040 x 2040.

processing. For Gaussian blur (15,1), we set A = 0.5, n = 0.5,
a = 0.22, f = 0.01 for our method. For Gaussian blur (15,1.5),
we set 77 = 0.4. The parameters of other methods are the default
values or the corresponding values described in their articles
and codes. We break the ADMM iteration when the relative
error of the successive iterates is less than or equal to 10~° for
all the testing methods.

B. Our Strategy

With the fixed dictionary, by updating the subproblems under
the framework of the ADMM algorithm, the final restoration re-
sult is obtained. The convergence of Img6 is given in Fig. 5 to
illustrate the effectiveness of the proposed model. As the itera-
tion goes, the PSNR (dB) value is going to stability. Due to the
proposed model combines different regularizers for color image
restoration, we display the analysis of the balance parameters 7
and A in a small interval in Fig. 6. In the test, we choose differ-
ent 77 and A by trial and error to produce the best possible result.
The PSNR and SSIM curves become quite flat as the parameter
from 0.3 to 0.8 along the 7 axis, which implies choosing = 0.5
ensures the best result of the test Img6. We choose the parameter
7 in the interval [0.3,0.8] for other test images. The curve along
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(b) Zoomed part of Imgl (c) Degraded 25.70/0.8489 (d) SOCF 30.56/0.9556
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(e) BM3D 32.76/0.9788

(f) DTV 32.17/0.9480  (g) SV-TV 32.24/0.9461

Fig. 9.

(h) GSR 32.62/0.9662

(i) INSR 31.93/9068 (j) Ours 33.17/0.9826

Color image restoration results on Img1. (a) Original image; (b) The zoomed part of Img1; (c) Gaussian blur (15,1) and Gaussian noise level o = 12.75;

The zoomed part of restored image reconstructed by: (d) SOCF [66], (e) BM3D [67], (f) DTV [63], (2) SV-TV [49], (h) GSR [64], (i) INSR [65], and (j) Ours.

“

(f) DTV 34.41/0.9519  (g) SV-TV 34.39/0.9492

Fig. 10.

(b) Zoomed part of Img3 (c) Degraded 27.37/0.8655 (d) SOCF 29.20/0.9583

(h) GSR 34.31/0.9802

(e) BM3D 35.02/0.9927

= PEe

(i) INSR 34.99/0.9875

(j) Ours 35.87/0.9929

Color image restoration results on Img?2. (a) Original image; (b) The zoomed part of Img2; (c) Gaussian blur (15,1) and Gaussian noise level o = 12.75;

The zoomed part of restored image reconstructed by: (d) SOCF [66], (¢) BM3D [67], (f) DTV [63], (g) SV-TV [49], (h) GSR [64], (i) INSR [65], and (j) Ours.

A almost has a wider peak in (0.1,0.9], which gives more choices
of A. Here, we find a small interval (0.1,0.9], such that the results
are robust to the parameter A. The analysis of parameters o and
[ are also conducted in Fig. 8. We set o € [0.05, 0.34] with step
size 0.01 and 8 € [0.005,0.015] with step size 0.001. How to
select the related parameters automatically is an open question.
We leave this as future works.

C. Experimental Results

Since the CIELAB system [70] is an important international
standard for measuring color reproduction errors, we test the
results with the S-CIELAB error indicator [68]. The S-CIELAB

error evaluates the error between a pair of images. For 15 images
in Fig. 4, we find that when the S-CIELAB error becomes 70,
all the error pixels number of restored images by the methods
we tested equate to zero. We set the error from O to 80 so that
the S-CIELAB indicator can calculate the error number of these
image pairs. Here error = 0 means the two images are the same.
As the S-CILEB error goes, the number of error pixels decreases.
We plot the average S-CIELAB errors of all 15 images in Fig. 7,
which shows the restored image of our method has the least total
error pixel number. It becomes clear that the proposed method
outperforms other testing methods in terms of the S-CIELAB
color metric when the S-CIELAB error less than 10 units.
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(a) g6

(f) DTV 26.55/0.8519  (g) SV-TV 26.62/0.8563

Fig. 11.

A (b) Zoomed part of Img6 (c) Degraded 24.38/0.7076 (d) SOCF 26.50/0.8094

(h) GSR 26.92/0.8914
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' ‘ E
%
*

(e) BM3D 26.95/0.8758

(i) INSR 27.23/0.9025 (i) Ours 28.11/0.8932

Color image restoration results on Img6. (a) Original image; (b) The zoomed part of Img6; (c) Gaussian blur (15,1) and Gaussian noise level o = 12.75;

The zoomed part of restored image reconstructed by: (d) SOCF [66], (e) BM3D [67], (f) DTV [63], (2) SV-TV [49], (h) GSR [64], (i) INSR [65], and (j) Ours.

(2) SV-TV 26.12/0.8345

(f) DTV 25.46/0.8996

Fig. 12.

(h) GSR 25.08/0.7963

(e) BM3D 25.63/0.8934

(1) INSR 2536/0.7718  (j) Ours 26.24/0.8996

Color image restoration results on Img4. (a) Original image; (b) The zoomed part of Img4; (c) Gaussian blur (15,1.5) and Gaussian noise level 0 = 12.75;

The zoomed part of restored image reconstructed by: (d) SOCF [66], (e) BM3D [67], (f) DTV [63], (2) SV-TV [49], (h) GSR [64], (i) INSR [65], and (j) Ours.

The numerical results of the SSIM and PSNR values are
present in Table II and Table III. The highest PSNR and SSIM
values are highlighted in bold and the second-highest ones are
underlined. The average PSNR and SSIM values of all compared
methods are also computed. We find that most of our results out-
perform other competing methods’ results in terms of the PSNR
and SSIM values, which further verifies the advantages of our
method. For visual quality, we display the recovered results of
our experiments in Fig. 9, Fig. 10, and Fig. 11 for the blur ker-
nel of standard deviation 1 and white Gaussian noise of standard

deviation o = 12.75. Fig. 12, Fig. 13, and Fig. 14 show the blur
kernel of standard deviation 1.5 and white Gaussian noise of
standard deviation 0 = 12.75. The quality of the restored images
can be evaluated visually besides the values. From the visual re-
sults, we know that the restored images of the SOCF method still
have some color spots. The DTV method tends to smooth the
textures in the restored images. The SV-TV method is good at
handling image noise, while the results show that this method is
not very expert in blur removal. For the classical BM3D method,
the results seem to oversmooth. As for the dictionary learning
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(a) Img5

‘d‘ln‘

(f) DTV 24.77/0.8790

.. .

(g) SV-TV 24.87/0.8602

Fig. 13.

. .

(b) Zoomed part of Img5 (c) Degraded 22.96/0.7030 (d) SOCF 24.19/0.8282

‘-h‘..

(h) GSR 24.12/0.7932
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‘-h;.. ‘d&\.‘

(e) BM3D 24.01/0.8365

‘dﬂ\.‘

(i) INSR 24.86/0.8324

.. .

(i) Ours 25.09/0.8872

Color image restoration results on Img5. (a) Original image; (b) The zoomed part of Img5; (c) Gaussian blur (15,1.5) and Gaussian noise level o = 12.75;

The zoomed part of restored image reconstructed by: (d) SOCF [66], () BM3D [67], (f) DTV [63], (g) SV-TV [49], (h) GSR [64], (i) INSR [65], and (j) Ours.

(f) DTV 26.89/0.9189  (g) SV-TV 26.97/0.8522

Fig. 14.

(h) GSR 30.03/0.8950

(d) SOCF 24.77/0.8688  (e) BM3D 28.60/0.8958

(i) INSR 29.76/0.9023 (j) Ours 30.34/0.8884

Color image restoration results on Imgl4. (a) Original image; (b) The zoomed part of Imgl4; (c) Gaussian blur (15,1.5) and Gaussian noise level

o = 12.75; The zoomed part of restored image reconstructed by: (d) SOCF [66], (e) BM3D [67], (f) DTV [63], (g) SV-TV [49], (h) GSR [64], (i) INSR [65], and

(j) Ours.

method INSR and GSR, the artifacts can be found clearly. Our
method can better restore the degraded images and remove the
artifacts generated by the patch-based method.

V. CONCLUSION

In this paper, we propose an effective method that combines
pure quaternion dictionary learning and SV-TV regularizers for
color image recovery. For color image processing, we represent
the color image with the pure quaternion matrix. In this case,
the inner relationship of the color image can be well preserved.

The patch-based dictionary learning method always generates
some unsatisfied artifacts. We apply SV-TV to overcome these
artifacts. Compared with some state-of-the-art image restoration
methods, our model can preserve more texture details and avoid
the generation of artifacts. In summary, the method we proposed
achieves great success in numerical and visual results.

Since the parameters of different test images are quite differ-
ent, it may not be good enough to tune parameters manually.
Hence, how to determine the parameters automatically will be
our future work.
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