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Abstract. Spherical image processing has been widely applied in many important fields, such as omnidirec-
tional vision for autonomous cars, global climate modeling, and medical imaging. It is nontrivial to
extend an algorithm developed for flat images to the spherical ones. In this work, we focus on the
challenging task of spherical image inpainting with a deep learning-based regularizer. Instead of a
naive application of existing models for planar images, we employ a fast directional spherical Haar
framelet transform and develop a novel optimization framework based on a sparsity assumption of
the framelet transform. Furthermore, by employing progressive encoder-decoder architecture, a new
and better-performed deep CNN denoiser is carefully designed and works as an implicit regular-
izer. Finally, we use a plug-and-play method to handle the proposed optimization model, which
can be implemented efficiently by training the CNN denoiser prior. Numerical experiments are
conducted and show that the proposed algorithms can greatly recover damaged spherical images
and achieve the best performance over purely using a deep learning denoiser and a plug-and-play
model.
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1. Introduction. In practical problems, a large amount of data comes in the form of
spherical images, such as from cosmology [20], astrophysics [22], geophysics [1, 23], neuro-
science [21], and the omnidirectional AR/VR field [2, 27], where images are naturally defined
on the 2D spherical surface. Due to the storage bottleneck and observation being costly and
infeasible, these spherical images (signals) usually contain very limited pixels (observed data),
especially if the observation scales involved are large. Therefore, repairing missing or damaged
parts is a fundamental yet challenging task in spherical image processing. Apparently, spher-
ical images take an inherent domain different from planar images in two dimensions in terms
of symmetries, coordinate systems, and translates, which demand special processing methods.
In this paper, we are concerned with spherical image restoration, which can further serve as a
preliminary for subsequent tasks, like object recognition and segmentation. Mathematically,
it aims to estimate \bfitx from observation \bfity for the following model:

\bfity = T (\bfitx ) + \varepsilon ,(1.1)

where T is a degradation operator, and \varepsilon is assumed to be the additive noise. Different
degradation operations correspond to different image restoration (IR) tasks [13, 14]. Typically,
the IR task would be image denoising when T is an identity operation, image deblurring when
T is a 2D convolution operation, image super-resolution when T is a composite operation of
convolution and downsampling, color image demosaicing when T is a color filter array (CFA)
masking operation, and image inpainting when T is the orthogonal projection onto the linear
space of matrices. In this paper, we propose a general model for spherical image inpainting
with a new denoiser.

Regarding the degradation equation (1.1), the IR task model can be solved through the
following optimization:

\^\bfitx = argmin
\bfitx 

\| \bfity  - T (\bfitx )\| + \lambda \Phi (\bfitx ),(1.2)

where the first term is the data fitting with \| \cdot \| usually chosen to be the Frobenius norm,
the second term \Phi (\cdot ) is an operator playing the role of regularity, and \lambda is a positive trade-off
parameter. With the aid of the half quadratic splitting (HQS) algorithm, by introducing an
auxiliary variable, the optimization problem (1.2) can be addressed by iteratively solving the
following subproblems

\bfitx k = argmin
\bfitx 

\| \bfity  - T (\bfitx )\| 2 + \alpha \| \bfitx  - \bfitz k - 1\| 2 ,(1.3)

\bfitz k = argmin
\bfitz 
\alpha \| \bfitz  - \bfitx k\| 2 + \lambda \Phi (\bfitz ).(1.4)
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SPHERICAL IMAGE INPAINTING 1179

Here \alpha will be set accordingly to specific problems. Equation (1.3) is usually interpreted as
the data fitting subproblem and (1.4) as the regularization subproblem. Many research efforts
have been devoted to this hot topic and achieved extensive improvements [3, 5, 11, 24, 25].

As one can see, the fidelity term and the regularization term are decoupled into two indi-
vidual subproblems. Specifically, the fidelity term is associated with a quadratic regularized
least-squares problem (i.e., (1.3)) which has various fast solutions for different degradation
matrices. The regularization term is involved in (1.4), which can be rewritten as

\bfitz k+1 = argmin
\bfitz 

1

2(
\sqrt{} 
\lambda /\alpha )2

\| \bfitx k+1  - \bfitz \| 2 +\Phi (\bfitz ).(1.5)

According to Bayesian probability, (1.5) corresponds to denoising the image \bfitx k+1 by a Gauss-
ian denoiser with noise level

\sqrt{} 
\lambda /\alpha . As a consequence, any Gaussian denoisers can be acted

as a modular part to solve (1.2). To address this, we rewrite (1.5) by the following:

\bfitz k+1 =Denoiser
\Bigl( 
\bfitx k+1,

\sqrt{} 
\lambda /\alpha 

\Bigr) 
.(1.6)

It is worth noting that, according to (1.5) and (1.6), the image prior \Phi (\cdot ) can be implicitly
replaced by a denoiser prior. In this paper, we apply the proposed denoiser as a prior to
generate a better performance.

In recent years, deep learning-based models have extensively emerged and achieved state-
of-the-art restoration performance [4, 9, 15, 17, 19]. The SeaNet proposed in [6] consists of
three subnets for single image super-resolution with the help of image soft edge. Liu et al.
[18] proposed MWCNN for image restoration, which is a U-shaped network with DWT and
IWT for downsampling and upsampling, respectively, and thus there is no information loss
during subsampling. Both approaches achieved competitive performance in IR tasks.

To improve interpretability and effectively use the trained neural networks from various
tasks, plug-and-play (PnP) is one of the choices to combine neural networks and prior knowl-
edge of images with an optimization model. Zhang et al. [28, 29] developed the deep prior
to handle the IR tasks, PnP. Specifically, they regarded the regularization term \Phi (x) as a
deep denoiser with the deep CNNs. The optimization problem (1.2) was solved by the half
quadratic splitting (HQS) algorithm and divided into two subproblems, in which the solution
of one of the problems is replaced by the deep CNN, which is the so-called deep denoiser.

Furthermore, the step (1.4) is usually termed a denoiser prior and conducted by a single
CNN denoiser [31], which is trained specifically for a denoising prior and to replace solving
(1.4) to exploit the advantages of CNN. Following this line, the PnP-based model has wide
applications [10]. For example, Wu et al. [26] proposed a deep CNN-based PnP framework
with MWCNN and has competitive performance in Cauchy noise removal. Zhao et al. [31]
suggested a PnP model for image completion with a low rankness assumption. Fang and Zeng
[7] applied the soft edge network [6] as a denoiser for image deblurring and denoising and gave
a mathematical interpretation of the PnP-based model. Overall, the PnP-based framework
has a promising performance.

Motivated by the advantages of the aforementioned PnP models, in this paper, we are
going to apply them to the image inpainting problem for spherical signals. Precisely, for a
spherical signal, with its partially observed samplings, a novel PnP model integrating spherical
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1180 LI, HUANG, CHAN, FENG, NG, AND ZENG

framelet decomposition is proposed to restore the signal. The proposed model is based on
low rank assumption under a directional spherical Haar tight framelet, which is designed for
testing image texture. In addition, we exploit a newly designed deep convolutional neural
network to be the PnP prior denoiser. The network inspired by [16, 12] employs two-stage
encoder-decoder architecture, which is termed as Double-S2HaarNet. Under ground-truth
supervision at each stage it provides progressive and improved denoising.

The rest of this paper is organized as follows. In section 2, the related works about
spherical signal sampling and frame decomposition are reviewed. The proposed scheme and
numerical algorithm are given in section 3. Numerical results including gray image and color
image inpainting are listed in section 4. Section 5 concludes this paper.

2. Spherical signal sampling and frame decomposition. We employ a Haar tight framelet
transform that was developed in [16]. Let L2(\BbbS 2) be a Hilbert space with inner product \langle \cdot , \cdot \rangle 
and norm \| \cdot \| defined by

\langle f, g\rangle :=
\int 
\Omega 
f(x)g(x)dx,

\| f\| =
\biggl( \int 

\Omega 
| f(x)| 2dx

\biggr) 1

2

,

where f, g \in L2(\BbbS 2) and \BbbS 2 \in \BbbR 3 is the unit sphere. We call a countable collection \{ ek\} k\in \Lambda \subset 
L2(\BbbS 2) a tight frame with frame bound c if there exists a constant c > 0 such that

f =
1

c

\sum 
k\in \Lambda 

\langle f, ek\rangle ek \forall f \in L2(\BbbS 2).

The frame decomposition is a transformation \scrF given by

\scrF : f \in L2(\BbbS 2)\rightarrow \{ \langle f, ei\rangle : ei \in \{ ek\} k\in \Lambda \} 

and the reconstruction \scrF \ast given by

\scrF \ast : \{ \langle f, ei\rangle : ei \in \{ ek\} k\in \Lambda \} \rightarrow f \in L2(\BbbS 2).

A Haar tight frame on the sphere can be constructed based on a hierarchical partition.

Definition 2.1. Let \BbbN 0 be a set of nonnegative integers. We call \{ \scrB j\} j\in \BbbN 0
a hierarchical

partition of \BbbS 2 if the following three conditions are satisfied:
(a) Root property: \scrB 0 = \{ \BbbS 2\} , and each \scrB j is a partition of \BbbS 2 having finitely many

measurable sets with positive measures.
(b) Nested property: for any j \in \BbbN and any (child) set R1 \in \scrB j, there exists a (parent)

set R0 \in \scrB j - 1 such that R1 \subseteq R0. In other word, partition \scrB j is a refinement of the
partition \scrB j - 1.

(c) Density property: the maximal diameters among the sets in \scrB j tend to zero as j tends
to infinity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL IMAGE INPAINTING 1181

Denote \Lambda j := [\ell 1]\times \cdot \cdot \cdot \times [\ell j ] to be an index set for the labeling sets in \scrB j , where [N ] = \{ 1, . . . ,N\} 
for any positive integer N and

\scrB j = \{ R\vec{}v \subseteq \BbbS 2, \vec{}v \in \Lambda j\} .

By the nested property, R(\vec{}v,i) \subseteq R\vec{}v for \vec{}v \in \Lambda j - 1 and i \in [\ell j ]. Now, for each \vec{}v \in \Lambda j , define a
Haar-type scaling function to be

\phi \vec{}v :=
\chi R\vec{}v\sqrt{} 
| R\vec{}v| 

(2.1)

and for some integer nj \geq 1, nj Haar-type framelet functions to be

\psi (\vec{}v,k) =
\sum 
i\in [\ell j ]

a
(\vec{}v)
k,i\phi (\vec{}v,i), k= 1, . . . , nj ,(2.2)

where a
(\vec{}v)
k,i is the (k, i)-entry of some matrix \bfitA \vec{}v \in \BbbR nj\times lj . By setting proper matrices A\vec{}v, one

can construct a Haar-type tight frame and develop its fast decomposition and reconstruction
algorithms. The following corollary determines the framelet and algorithm we shall use.

Corollary 2.2. There exists a collection \{ \phi \vec{}u\} \vec{}u\in \Lambda L
\cup \{ \psi (\vec{}v,k), k \in [6]\} j\geq L,\vec{}v\in \Lambda j

\subset L2(\BbbS 2) deter-
mined by a hierarchical partition with each parent containing four children that forms a Haar
tight frame with frame bound 1, and the corresponding operators \scrF and \scrF \ast depend on the
following matrix P :

P =
1

2

\left[          

1 1 1 1
1  - 1 0 0
1 0  - 1 0
1 0 0  - 1
0 1  - 1 0
0 1 0  - 1
0 0 1  - 1

\right]          
.(2.3)

As is well known, computers can only deal with discrete signals. To do spherical signal
processing, we first need a proper way to discretize an analog signal. In this work, we take
the discretization sampling method based on an area-regular partition of 2-sphere [16]. It was
constructed through a bijective mapping and its rotations: T : [ - 1,1]\times [ - 1,1] \rightarrow \BbbS 2 defined

by T (x, y) = (x,y,1)\surd 
x2+y2+1

. See Figure 1 for the illustration.

Then, for any given resolution J \geq 0, a 2-sphere can be divided into equal-area partitions;
see Figure 2 for the illustration. This forms an algorithm for a hierarchical partition on the
2-sphere.

By taking the centers of the partition patches, the samplings of an analog signal can
be distributed equivalently, which takes advantage over the traditional spherical coordinate
discretization.

Based on the above discussion, any signal f \in L2(\BbbS 2) is discretized to \bfitf , which depends on
a certain resolution J . The discrete signal \bfitf is actually the set \{ f(\bfitxi i) : \bfitxi i \in Si, Si \in \scrB j ,

\bigcup 
i Si =

\BbbS 2, Sj \cap Sk = \emptyset \forall j \not = k\} . We assume that the dataset is defined on some resolution level

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1182 LI, HUANG, CHAN, FENG, NG, AND ZENG

Figure 1. Visualization of mapping T which maps a square to a spherical cap.

Figure 2. Partition process.

in the following and assume the sampling \bfitf of f is in \BbbR d. Applying the discretization and
Corollary 2.2, the spherical Haar framelet and fast framelet transform algorithms are exactly
constructed.

With the help of the fast decomposition and reconstruction algorithms, it, on the one
hand, allows our model to capture directional texture details. On the other hand, it can
reduce the spatial footprint and granularity of convolutions.

3. The proposed model and algorithm. In this section, based on the aforementioned
off-the-shelf spherical signal sampling and Haar-type framelets, to enhance the inpainting
performance, we shall first improve the denoiser and then exploit a PnP model involving fast
frame decomposition.

3.1. Improved denoiser. As mentioned above, the iteration (1.4) will be conducted by
a denoiser. The performance of the denoiser will affect the resulting restoration. In [16],
a CNN spherical denoising model, S2HaarNet, was developed and achieved a competitive
performance. In the present paper, we further exploit a new spherical CNN (illustrated in
Figure 3), which partly follows the infrastructure of the Double-Unet [12] and S2HaarNet [16]
and incorporates the skip connections and spherical frame transformations. Thus we shall call
it Double-S2HaarNet.

The new network consists of two feature encoder-decoder stages for which each one follows
S2HaarNet. We then take ground-truth supervision at each stage for progressive and improved

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL IMAGE INPAINTING 1183

Figure 3. Double-S2HaarNet.

Table 1
The complexity (parameters (in MB), Flops (in GB), running times (in seconds)) of the proposed models.

Methods Parameters Flops Running time

S2HaarNet 0.02MB 5.30G 0.0020s
Double-S2HaarNet 0.63MB 199.45G 0.1310s

denoising performance. We adopt the feature concatenation by combining the feature maps
from the encoder path and decoder path, which can capture multiscale information and enrich
feature representation for a better feature prediction. To bridge the two blocks, we concentrate
the input and output of the first block and feed it into the second. Our model can also be
readily extended to deal with color images by handling three channels independently.

For the designed models, we also present the computational cost. As we know, the indexes
that are often used to measure the complexity of deep learning models include parameters,
FLOPs (Floating-point Operations), and running time. More specifically, the parameters refer
to the total number of parameters that need to be trained during model training, which is
used to measure the computational space complexity. FLOPs is often used as an indirect
measure of the speed of the neural network model. The complexity of the proposed networks
S2HaarNet and Double-S2HaarNet are listed in Table 1.

3.2. Proposed PnP model. To develop a PnP model, besides the above pretrained de-
noiser, a proper design for a data fitting subproblem plays a crucial role as well. In this work,
we attempt to propose a new data fitting operator to simultaneously exploit the strengths of
the PnP model. In [31], data fitting was operated by using the tensor singular value decom-
position and tensor nuclear norm, which promoted the low-rankness of the underlying tensor.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1184 LI, HUANG, CHAN, FENG, NG, AND ZENG

Motivated by such an idea, we instead utilize the tight frame decomposition in our data fitting
and suggest the novel PnP model as follows:

min
\bfitx 

\| \scrF \bfitx \| 0 + \lambda \Phi (\bfitx )

s.t. \scrP \gamma (\bfitx ) =\scrP \gamma (\bfitg ),
(3.1)

where \scrF \bfitx is the coefficient of tight frame decomposition as mentioned in subsection 3.1, \Phi (\bfitx )
is an implicit regularizer by plugging our denoising Double-S2HaarNet, \scrP \gamma is a predefined
observation operator, and \lambda is a positive parameter. The observation operator is defined
with respect to a prior-given subset \gamma \subset [d], | \gamma | =m \leq d, which refers to locations of known
observation points. Precisely, for any signal x\in L2(\BbbS 2) and its discretization \bfitx \in \BbbR d, \scrP \gamma (\bfitx ) :=
\bfitO \bfitx , where \bfitO \in \BbbR d\times d with the kth row of \bfitO being the kth one-hot row for k \in \gamma and the
remaining rows being zero. In addition, we denote \scrP \gamma c(\bfitx ) := (\bfitI  - \bfitO )\bfitx .

3.3. Implementation details. We apply the ADMM framework to solve the optimization
problem. Notice that in practice it is more convenient to replace \| \cdot \| 0 by \| \cdot \| 1. Then we
reformulate model (3.1) as

min
\bfitx ,\bfity ,\bfitz 

\| \bfity \| 1 + \lambda \Phi (\bfitz )

s.t. \scrP \gamma (\bfitx ) =\scrP \gamma (\bfitg ), \bfity =\scrF \bfitx , \bfitz =\bfitx .
(3.2)

The augmented Lagrangian function of (3.2) is

\scrL (\bfitx ,\bfity ,\bfitz ;\Lambda 1,\Lambda 2) =\| \bfity \| 1 + \lambda \Phi (\bfitz ) + \langle \bfity  - \scrF \bfitx ,\Lambda 1\rangle +
\beta 1
2
\| \bfity  - \scrF \bfitx \| 2 + \langle \bfitz  - \bfitx ,\Lambda 2\rangle +

\beta 2
2
\| \bfitz  - \bfitx \| 2

s.t. \scrP \Gamma (\bfitx ) =\scrP \Gamma (\bfitg ),

(3.3)

where \beta 1, \beta 2 > 0 are two penalty parameters and \Lambda 1,\Lambda 2 are the Lagrange multipliers. The
ADMM iteration for solving (3.3) goes as follows:\left\{                     

\bfity = argmin
\bfity 

\| \bfity \| 1 + \langle \bfity  - \scrF \bfitx ,\Lambda 1\rangle + \beta 1

2 \| \bfity  - \scrF \bfitx \| 2 ,

\bfitz = argmin
\bfitz 
\lambda \Phi (\bfitz ) + \langle \bfitz  - \bfitx ,\Lambda 2\rangle + \beta 2

2 \| \bfitz  - \bfitx \| 2,\Biggl\{ 
\bfitx = argmin

\bfitx 

\beta 1

2 \| \bfity  - \scrF \bfitx + \Lambda 1

\beta 1
\| 2 + \langle \bfitz  - \bfitx ,\Lambda 2\rangle + \beta 2

2 \| \bfitz  - \bfitx \| 2

s.t. \scrP \gamma (\bfitx ) =\scrP \gamma (\bfitg ),

\Lambda 1 =\Lambda 1 + (\bfity  - \scrF \bfitx ),
\Lambda 2 =\Lambda 2 + (\bfitz  - \bfitx ).

(3.4)

Next, we elaborate on how to solve these respective subproblems.
\bullet The \bfity -subproblem is written as

\bfity = argmin
\bfity 

\| \bfity \| 1 + \langle \bfity  - \scrF \bfitx ,\Lambda 1\rangle +
\beta 1
2
\| \bfity  - \scrF \bfitx \| 2

= argmin
\bfity 

\| \bfity \| 1 +
\beta 1
2

\bigm\| \bigm\| \bigm\| \bigm\| \bfity  - \scrF \bfitx +
\Lambda 1

\beta 1

\bigm\| \bigm\| \bigm\| \bigm\| 2 .(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL IMAGE INPAINTING 1185

Then the solution of y can be obtained by

\bfity = shrink

\biggl( 
\scrF \bfitx  - \Lambda 1

\beta 1
,
1

\beta 1

\biggr) 
=max

\biggl( \bigm\| \bigm\| \bigm\| \bigm\| \scrF \bfitx  - \Lambda 1

\beta 1

\bigm\| \bigm\| \bigm\| \bigm\| 
2

 - 1

\beta 1
,0

\biggr) \scrF \bfitx  - \Lambda 1

\beta 1\bigm\| \bigm\| \bigm\| \scrF \bfitx  - \Lambda 1

\beta 1

\bigm\| \bigm\| \bigm\| ,
(3.6)

where the shrink operator is a soft shrinkage operator.
\bullet The \bfitz -subproblem is written as

\bfitz = argmin
\bfitz 
\lambda \Phi (\bfitz ) + \langle \bfitz  - \bfitx ,\Lambda 2\rangle +

\beta 2
2
\| \bfitz  - \bfitx \| 2

= argmin
\bfitz 
\lambda \Phi (\bfitz ) +

\beta 2
2

\bigm\| \bigm\| \bigm\| \bigm\| \bfitz  - \bfitx +
\Lambda 2

\beta 2

\bigm\| \bigm\| \bigm\| \bigm\| 2 .(3.7)

According to Bayes rule, (3.7) corresponds to denoising the image \bfitx  - \Lambda 2/\beta 2 by the
CNN denoiser with noise level \lambda /\beta 2. To address this, we rewrite (3.7) as

\bfitz =Denoiser

\Biggl( 
\bfitx  - \Lambda 2

\beta 2
,

\sqrt{} 
\lambda 

\beta 2

\Biggr) 
.(3.8)

In this paper, we apply the Double-S2HaarNet as the denoiser.
\bullet The \bfitx -subproblem is written as

\bfitx = argmin
\bfitx 

\beta 1
2

\bigm\| \bigm\| \bigm\| \bigm\| \bfity  - \scrF \bfitx +
\Lambda 1

\beta 1

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \langle \bfitz  - \bfitx ,\Lambda 2\rangle +
\beta 2
2
\| \bfitz  - \bfitx \| 2

= argmin
\bfitx 

\beta 1
2

\bigm\| \bigm\| \bigm\| \bigm\| \bfity  - \scrF \bfitx +
\Lambda 1

\beta 1

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \beta 2
2

\bigm\| \bigm\| \bigm\| \bigm\| \bfitz  - \bfitx +
\Lambda 2

\beta 2

\bigm\| \bigm\| \bigm\| \bigm\| 2
s.t. \scrP \gamma (\bfitx ) =\scrP \gamma (\bfitg ).

(3.9)

By minimizing the \bfitx -subproblem, we have \bfone \Omega (\bfitx ) = 0, i.e., \bfitx \in \BbbS . Then the optimality
condition of (3.9) is given by

\beta 1\scrF \ast 
\biggl( 
\scrF \bfitx  - \bfity  - \Lambda 1

\beta 1

\biggr) 
+ \beta 2

\biggl( 
\bfitx  - \bfitz  - \Lambda 2

\beta 2

\biggr) 
= 0.(3.10)

Since \scrF \ast \scrF = I, we obtain the following linear system:

(\beta 1 + \beta 2)\bfitx = \beta 1\scrF \ast \bfity + \beta 2\bfitz +\scrF \ast \Lambda 1 +\Lambda 2.(3.11)

Thus, the closed-form solution of the \bfitx -subproblem is given as \bfitx \ast =\scrP \gamma (\bfitx 
\ast )+(\scrP \gamma c)(\bfitx \ast ):\Biggl\{ 

\scrP \gamma (\bfitx 
\ast ) =\scrP \gamma (\bfitg ),

\scrP \gamma c (\bfitx \ast ) =\scrP \gamma c

\Bigl( 
\beta 1\scrF \ast \bfity +\beta 2\bfitz +\scrF \ast \Lambda 1+\Lambda 2

\beta 1+\beta 2

\Bigr) 
.

(3.12)
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1186 LI, HUANG, CHAN, FENG, NG, AND ZENG

(a) Barbara (b) Boat (c) Fingerprint (d) Hill (e) Man

Figure 4. Five grey images for testing.

4. Experimental results. In this section, we present experimental results to verify the
performance of the proposed model Double-S2HaarNetPnP in image inpainting. As afore-
mentioned, we proposed a PnP model for the image inpainting task. The parameters of the
optimization function (3.3) are set as \lambda = 1, \beta 1 \in [0.1,1] with step 0.1, \beta 2 \in [1,5] with step
1. For training Double-S2HaarNet, we use the ADAM algorithm and a minibatch size of 16.
The learning rate decays exponentially from the beginning value 0.001 with a multiplicative
factor 0.9 in 100 epochs. Weight decay is chosen to be 0.001. Since the contrast of greyscale
images is relatively low, we present the visual effects of the image with color so that the image
information can be displayed more clearly.

4.1. Datasets. The dataset for training CNN denoisers is produced by converting color
images of Caltech101 [8] into grey ones and then conducting spherical sampling (defined in
section 2). 7677 images are for training, and 1000 are for validation. For the testing, we take
the dataset F-360iSOD [30], which contains 107 omnidirectional images. Additionally, we take
five classical images as illustrated in Figure 4 for testing as well. Experiments for color images
are conducted on RGB channels, respectively.

4.2. Evaluation metrics. To demonstrate the effectiveness of the proposed scheme, we
test the images with random missing values, i.e., the missing ratio with 50\%,80\%,90\%,95\%.
With the built-in function in numpy, we use the command ``numpy.random.rand"" to generate
random values of the same size as the input image. Then let the value greater than the
missing ratio equal to 1 and less than the missing ratio equal to 0. Then we have the missing
operator, with the function ``numpy.multiply"" mapping the missing operator and the ground
truth image to the observed image. The peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) are used to evaluate the performance of the inpainting results. To be
specific, with the reference x and the obtained result x\ast , the PSNR is defined as

PSNR(x,x\ast ) = 20 log10
255

1
mn \| x \star  - x\| 

,(4.1)

where \| \cdot \| denotes a Frobenius norm. The SSIM is defined as

SSIM(x,x \star ) =
(2\mu x\mu x \star +C1) (2\sigma xx \star +C2)\bigl( 

\mu 2x + \mu 2x \star +C1

\bigr) \bigl( 
\sigma 2x + \sigma 2x \star +C2

\bigr) ,(4.2)

where \mu x, \mu x\ast and \sigma x, \sigma x\ast , \sigma xx\ast are the mean and the standard deviation of x and x\ast ,
respectively. The positive constants C1 and C2 are used to avoid a null denominator, which
are defaulted by the built-in ssim function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL IMAGE INPAINTING 1187

Table 2
Average inpainting results with PSNR/SSIM on F-360iSOD. In Fx, x = 6,7,8 represents the resolution

level. The best results are highlighted.

Dataset Methods 50\% 80\% 90\% 95\%

degraded 10.08/0.2087 8.04/0.0806 7.52/0.0445 7.29/0.0268
S2HaarNet 23.02/0.7711 20.27/0.5777 19.16/0.4962 18.02/0.4175

F6 S2HaarNetPnP 23.96/0.8125 20.81/0.6024 19.47/0.5225 18.33/0.4290
DoubleS2HaarNet 24.22/0.8321 20.99/0.6470 19.55/0.5367 18.41/0.4568

DoubleS2HaarNetPnP \bftwo \bffour .\bfsix \bfthree /\bfzero .\bfeight \bffour \bfseven \bfzero \bftwo \bfone .\bffour \bfnine /\bfzero .\bfsix \bfseven \bffive \bfsix \bfone \bfnine .\bfnine \bfsix /\bfzero .\bffive \bffour \bfnine \bffive \bfone \bfeight .\bfsix \bfthree /\bfzero .\bffour \bffive \bfnine \bfsix 

degraded 10.08/0.1857 8.04/0.0776 7.53/0.0454 7.29/0.0290
S2HaarNet 23.94/0.7822 21.12/0.5920 20.03/0.5125 18.89/0.4380

F7 S2HaarNetPnP 24.92/0.8213 21.72/0.6200 20.33/0.5445 19.01/0.4553
DoubleS2HaarNet 25.15/0.8349 21.83/0.6590 20.41/0.5506 19.30/0.4750

DoubleS2HaarNetPnP \bftwo \bfsix .\bfone \bffour /\bfzero .\bfeight \bfsix \bftwo \bfthree \bftwo \bftwo .\bfsix \bfthree /\bfzero .\bfseven \bfzero \bfzero \bfnine \bftwo \bfzero .\bfnine \bfthree /\bfzero .\bffive \bfnine \bfzero \bfone \bfone \bfnine .\bfsix \bfzero /\bfzero .\bffive \bfzero \bfzero \bfseven 

degraded 10.08/0.1660 8.04/0.0755 7.53/0.0469 7.29/0.0313
S2HaarNet 26.86/0.8402 23.79/0.6965 22.49/0.6337 21.05/0.5633

F8 S2HaarNetPnP 27.35/0.8613 24.18/0.7313 22.84/0.6667 21.49/0.5953
DoubleS2HaarNet 28.55/0.8918 24.76/0.7607 23.03/0.6751 21.64/0.6006

DoubleS2HaarNetPnP \bftwo \bfeight .\bfnine \bfthree /\bfzero .\bfeight \bfnine \bfsix \bfone \bftwo \bffive .\bfzero \bftwo /\bfzero .\bfseven \bfseven \bfone \bfthree \bftwo \bfthree .\bfthree \bfone /\bfzero .\bfsix \bfeight \bfsix \bftwo \bftwo \bfone .\bfeight \bfseven /\bfzero .\bfsix \bfone \bfsix \bfseven 

4.3. Results. We make a detailed comparison of our method. More specifically, the meth-
ods with single net (S2HaarNet and DoubleS2haarNet) and the methods with plug-and-play
(S2HaarNetPnP and DoubleS2haarNetPnP) are compared. First, the three datasets are
tested. The results of datasets F6, F7, and F8 are listed in Table 2, from which we know
that the proposed methods are robust in different degradation. For example, when the miss-
ing ratio is from 50\% up to 95\%, our methods always have competitive restoration results.
Besides, the results based on the PnP approach are better than the one with only CNN, which
also illustrate the effectiveness of the proposed PnP scheme. Moreover, the testing of two dif-
ferent datasets and different combinations of the proposed model also gives a strong validity
to our scheme. On the other hand, five grey images are also tested in this paper. We list the
numerical results in Table 3, from which the PnP-based models also have better restoration
results.

The visual results are present in Figures 5--8 with missing ratios 50\%,80\%,90\%,95\%,
respectively. Figure 5(a) is the observed image with a low missing ratio (50\%). As we can see
from the results (b)--(e), most of the objects in the image are recovered. However, with detailed
observation, we know that the PnP-based methods have more competitive performance. With
the missing ratio up to 80\%, there are some outlines of the original image that can be seen
in Figure 6(a). It turns out that the results of the S2HaarNet and Double-S2HaarNet have
quite satisfactory results. As the PnP is applied in (b) and (d), respectively, the results of
inpainting are greatly improved. For the low sample ratio, from Figures 7(a) and 8(a), the
details of the image have almost disappeared. With this low observation, our models also
can recover the images with good quality. The above visual results demonstrate again the
robustness and effectiveness of the proposed inpainting models.

The experiments on color images are also conducted in Figures 9--12, which illustrate
the good generalization of our model to color images. Note that our results are slightly

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1188 LI, HUANG, CHAN, FENG, NG, AND ZENG

Table 3
Inpainting results with PSNR/SSIM. The best results are highlighted.

Images Methods 50\% 80\% 90\% 95\%

degraded 8.54/0.1039 6.50/0.0466 5.99/0.0281 5.75/0.0169
S2HaarNet 26.91/0.8523 23.77/0.7092 22.57/0.6386 21.30/0.5653

Barbara S2HaarNetPnP 27.56/0.9043 24.36/0.7547 23.14/0.6834 21.70/0.5731
Double-S2HaarNet 28.81/0.9153 24.79/0.7732 23.17/0.6788 21.87/0.6083

Double-S2HaarNetPnP \bftwo \bfnine .\bfone \bffour /\bfzero .\bfnine \bftwo \bfeight \bfthree \bftwo \bffive .\bfone \bffive /\bfzero .\bfseven \bfeight \bfnine \bffive \bftwo \bfthree .\bfseven \bffive /\bfzero .\bfsix \bfeight \bfthree \bfsix \bftwo \bftwo .\bftwo \bfone /\bfzero .\bfsix \bfseven \bfnine \bfnine 

degraded 8.57/0.0976 6.52/0.0453 6.02/0.0281 5.78/0.0172
S2HaarNet 30.33/0.8569 26.94/0.7618 25.08/0.6995 22.84/0.6158

Boat S2HaarNetPnP 32.04/0.9202 28.08/0.8079 25.77/0.7141 23.16/0.6372
Double-S2HaarNet 32.69/0.9208 28.20/0.8099 25.83/0.7371 23.60/0.6554

Double-S2HaarNetPnP 3\bfthree .\bfone \bftwo /\bfzero .\bfnine \bftwo \bfnine \bfnine \bftwo \bfeight .\bfeight \bfone /\bfzero .\bfeight \bftwo \bfthree \bffour \bftwo \bfsix .\bfsix \bfthree /\bfzero .\bfseven \bffive \bfsix \bfseven \bftwo \bfthree .\bfeight \bffour /\bfzero .\bfsix \bfnine \bffour \bfsix 

degraded 7.39/0.1268 5.35/0.0477 4.83/0.0254 4.60/0.0136
S2HaarNet 27.53/0.9165 23.88/0.8183 21.28/0.7101 17.90/0.4914

Fingerprint S2HaarNetPnP 29.10/0.9465 24.62/0.8294 21.79/0.7342 18.39/0.5394
Double-S2HaarNet 29.50/0.9485 25.06/0.8596 22.26/0.7630 18.92/0.5768

Double-S2HaarNetPnP \bfthree \bfzero .\bfzero \bfnine /\bfzero .\bfnine \bffive \bffive \bftwo \bftwo \bffive .\bffive \bfone /\bfzero .\bfeight \bfsix \bfeight \bffour \bftwo \bftwo .\bfseven \bfeight /\bfzero .\bfseven \bfseven \bfseven \bfthree \bfone \bfnine .\bfthree \bfeight /\bfzero .\bfsix \bfthree \bfnine \bftwo 

degraded 10.25/0.0876 8.21/0.0444 7.69/0.0286 7.47/0.0182
S2HaarNet 31.28/0.8541 28.06/0.7314 26.52/0.6656 24.68/0.5880

Hill S2HaarNetPnP 32.81/0.9076 28.74/0.7739 27.00/0.6909 25.17/0.5973
Double-S2HaarNet 33.29/0.9119 29.15/0.7836 27.15/0.6991 25.48/0.6266

Double-S2HaarNetPnP \bfthree \bfthree .\bfsix \bfzero /\bfzero .\bfnine \bfone \bfeight \bfseven \bftwo \bfnine .\bffive \bffour /\bfzero .\bfseven \bfnine \bffour \bfseven \bftwo \bfseven .\bffive \bfone /\bfzero .\bfsix \bfnine \bfnine \bffour \bftwo \bffive .\bfnine \bfthree /\bfzero .\bfsix \bffive \bfeight \bfsix 

degraded 9.35/0.0830 7.31/0.0408 6.80/0.0266 6.56/0.0166
S2HaarNet 31.08/0.8782 27.85/0.7833 26.20/0.7242 24.30/0.6521

Man S2HaarNetPnP 32.70/0.9293 28.65/0.8204 26.77/0.7391 24.76/0.6733
Double-S2HaarNet 33.00/0.9303 28.99/0.8295 26.93/0.7588 25.03/0.6890

Double-S2HaarNetPnP \bfthree \bfthree .\bfthree \bfseven /\bfzero .\bfnine \bfthree \bfseven \bffive \bftwo \bfnine .\bfthree \bfeight /\bfzero .\bfeight \bfthree \bfsix \bfnine \bftwo \bfseven .\bfone \bftwo /\bfzero .\bfseven \bfsix \bfseven \bfzero \bftwo \bffive .\bftwo \bfseven /\bfzero .\bfsix \bfnine \bfzero \bfthree 

oversmoothed for lower sample rates, such as 95\%. Figure 12 shows that, in contrast to other
results, our solutions can better restore the structures of images, which is consistent with the
results of the majority of PnP-based works.

4.4. Ablation experiments. In this section, to analyze the improvement effect of intro-
ducing framelet transforms in image inpainting tasks, the following three variants of our model
are designed for comparison: (a) random filters for constructing framelets, which is different
from specifically designed directional framelets with respect to matrix (2.3); (b) max-pooling
for downsampling and bilinear interpolation for upsampling; (c) average pooling for down-
sampling and bilinear interpolation for upsampling. The comparison results are illustrated in
Table 4, which shows the advantages by introducing framelet transforms, especially for the
case of high inpainting rates.

5. Conclusion and further remarks. In this work, we presented a novel model, the Double-
S2HaarNetPnP model, for image inpainting. We remark that (a) low-rank framelet coefficient
regularizer is introduced to learn; (b) a new denoiser Double-S2HaarNet for spherical image
inpainting is proposed, and in the experiments it is powerful for the inpainting task with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL IMAGE INPAINTING 1189

(a) degraded

7.12/0.0532

(b) S2HaarNet

28.32/0.8735

(c) S2HaarNetPnP

30.15/0.9349

(d) Double-S2HaarNet

30.87/0.9346

(e) Double-S2HaarNetPnP

31.87/0.95542

(f) Ground-truth

infinity/1

Figure 5. The inpainting results (PSNR (dB)/SSIM) with random missing ratio 50\%. (a) the degraded
image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d) Double-S2Haar network
only; (e) PnP with Double-S2Haar network; (f) the original image.

(a) degraded

7.21/0.0612

(b) S2HaarNet

21.78/0.7525

(c) S2HaarNetPnP

22.33/0.8095

(d) Double-S2HaarNet

23.38/0.8227

(e) Double-S2HaarNetPnP

23.68/0.8402

(f) Ground-truth

infinity/1

Figure 6. The inpainting results (PSNR (dB)/SSIM) with random missing ratio 80\%. (a) the degraded
image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d) Double-S2Haar network
only; (e) PnP with Double-S2Haar network; (f) the original image.
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1190 LI, HUANG, CHAN, FENG, NG, AND ZENG

(a) degraded

7.77/0.0284

(b) S2HaarNet

19.12/0.5090

(c) S2HaarNetPnP

19.34/0.5303

(d) Double-S2HaarNet

19.40/0.5446

(e) Double-S2HaarNetPnP

19.68/0.6557

(f) Ground-truth

infinity/1

Figure 7. The inpainting results (PSNR (dB)/SSIM) with random missing ratio 90\%. (a) the degraded
image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d) Double-S2Haar network
only; (e) PnP with Double-S2Haar network; (f) the original image.

(a) degraded

6.56/0.0166

(b) S2HaarNet

24.30/0.6521

(c) S2HaarNetPnP

24.76/0.6733

(d) Double-S2HaarNet

25.03/0.6890

(e) Double-S2HaarNetPnP

25.27/0.6903

(f) Ground-truth

infinity/1

Figure 8. The inpainting results (PSNR (dB)/SSIM) with random missing ratio 95\%. (a) the degraded
image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d) Double-S2Haar network
only; (e) PnP with Double-S2Haar network; (f) the original image.
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SPHERICAL IMAGE INPAINTING 1191

Color1

(a) degraded

8.39/0.0473

(b) S2HaarNet

31.53/0.9458

(c) S2HaarNetPnP

32.96/0.9551

(d) Double-S2Haar

36.98/0.9850

(e) Double-S2HaarPnP

37.23/0.9856

(f) Ground-truth

infinity/1

Figure 9. The inpainting results (PSNR (dB)/SSIM) with random missing ratio 50\%. (a) the degraded
image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d) Double-S2Haar network
only; (e) PnP with Double-S2Haar network; (f) the original image.

Color4
(a) degraded

8.70/0.0642

(b) S2HaarNet

24.01/0.7669

(c) S2HaarNetPnP

25.96/0.7815

(d) Double-S2Haar

26.13/0.8161

(e) Double-S2HaarPnP

26.56/0.8169

(f) Ground-truth

infinity/1

Figure 10. The color image inpainting results (PSNR (dB)/SSIM) with random missing ratio 80\%. Zoomed
part of (a) the degraded image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d)
Double-S2Haar network only; (e) PnP with Double-S2Haar network; (f) the original image.

the deep PnP framework; and (c) a directional spherical Haar framelet is employed to cap-
ture directional texture information to enhance the learning ability of the model and the
neural network. Experiments evaluated on various images illustrate the performance of the
proposed method for the spherical image inpainting task. The main challenges of our work
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Color12

(a) degraded

6.88/0.0318

(b) S2HaarNet

21.55/0.7226

(c) S2HaarNetPnP

21.89/0.7251

(d) Double-S2Haar

21.9763/0.7485

(e) Double-S2HaarPnP

22.27/0.7666

(f) Ground-truth

infinity/1

Figure 11. The color image inpainting results (PSNR (dB)/SSIM) with random missing ratio 90\%. Zoomed
part of (a) the degraded image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d)
Double-S2Haar network only; (e) PnP with Double-S2Haar network; (f) the original image.

Color6
(a) degraded

7.27/0.0108

(b) S2HaarNet

27.72/0.9042

(c) S2HaarNetPnP

28.08/0.9056

(d) Double-S2Haar

28.84/0.9193

(e) Double-S2HaarPnP

29.09/0.9216

(f) Ground-truth

infinity/1

Figure 12. The color image inpainting results (PSNR (dB)/SSIM) with random missing ratio 95\%. Zoomed
part of (a) the degraded image; the recovered results of (b) Haar network only; (c) PnP with Haar network; (d)
Double-S2Haar network only; (e) PnP with Double-S2Haar network; (f) the original image.

are to develop a proper hierarchical partition of a manifold and explore the corresponding
convolution calculation. With them, the proposed model can be further generalized to other
manifolds.
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Table 4
Average and variance inpainting results of Double-S2HaarNet variants with PSNR/SSIM on F-360iSOD.

In Fx, x= 6,7,8, represents the resolution level.

Dataset Methods 50\% 80\% 95\%

avgpool+bilinear 23.50/0.8151 20.71/0.6310 18.29/0.4389
F6 maxpool+bilinear \bftwo \bfthree .\bfnine \bfeight /\bfzero .\bfeight \bfthree \bffive \bfnine 20.72/0.6328 18.36/0.4461

random filter 18.63/0.6733 15.77/0.4598 17.75/0.4016
Our 23.83/0.8301 \bftwo \bfzero .\bfnine \bfseven /\bfzero .\bfsix \bffive \bfone \bffour \bfone \bfeight .\bffour \bfzero /\bfzero .\bffour \bffour \bfseven \bfnine 

avgpool+bilinear 25.58/0.8377 22.62/0.6785 20.11/0.5161
F7 maxpool+bilinear \bftwo \bfsix .\bfone \bfthree /\bfzero .\bfeight \bffive \bfseven \bfthree 22.66/0.6828 20.19/0.5234

random filter 24.33/0.7634 19.96/0.5077 14.48/0.3999
Our 25.93/0.8509 \bftwo \bftwo .\bfnine \bfsix /\bfzero .\bfseven \bfzero \bfzero \bfeight \bftwo \bfzero .\bftwo \bffive /\bfzero .\bffive \bftwo \bffive \bftwo 

avgpool+bilinear 27.86/0.8628 24.71/0.7283 22.00/0.5903
F8 maxpool+bilinear \bftwo \bfeight .\bffour \bfseven /\bfzero .\bfeight \bfeight \bfone \bfzero 24.79/0.7344 22.11/0.5977

random filter 24.01/0.7545 20.20/0.6349 14.85/0.4915
Our 28.24/0.8743 \bftwo \bffive .\bfone \bfsix /\bfzero .\bfseven \bffive \bfone \bffive \bftwo \bftwo .\bfone \bfeight /\bfzero .\bffive \bfnine \bfnine \bftwo 
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