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ABSTRACT. The phase retrieval task has received considerable attention in re-
cent years. Here, phase retrieval refers to the problem of recovering the clear
image from magnitude-only data of its Fourier transform, or other linear trans-
forms. As the observed magnitude signal is usually corrupted by heavy noise,
retrieving the original object is rather difficult. In this paper, we investigate
a regularization-based framelet method to recover the phase information and
alleviate the influence of noise. Indeed, since phase retrieval is usually mod-
eled by a non-convex model, how to find the solution efficiently is an intricate
challenge. For this reason, we first reformulate the objective function as the
difference between two convex functions. By introducing the boosted difference
of convex algorithm (BDCA), the proposed scheme has good performance in
handling the phase retrieval problem. Theoretically, we also present the con-
vergence analysis of the numerical algorithm. To exhibit the effectiveness of our
approach, we consider two classical regularizers with the proposed framework.
Besides, two different measurement models are carefully studied to illustrate
the robustness of our scheme. Numerical experiments demonstrate clearly that
the proposed framelet method is effective and robust in tackling the non-convex
phase retrieval task.

1. Introduction. In optics, the information on high-frequency light waves can be
readily recorded by optical devices. However, obtaining the phase information of
these lights is quite difficult. The reason is that the diffraction pattern can only
capture the absolute value of the Fourier transformed sample [25]. Furthermore,
the observed magnitude is frequently corrupted by heavy noise during the signal
acquisition process, which makes the image recovery problem more complicated.
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Since the phase of an image contains rich information, it is important to reconstruct
the latent image efficiently. In the literature, phase retrieval has been widely utilized
in adaptive optics [22], inverse problem [26], and optical imaging [39].

The main point of phase retrieval is to consider how to recover an image or a sig-
nal from its Fourier-transformed magnitude with heavy noise. In the past decades,
various remarkable methods have been applied to handle the phase retrieval task
with or without the regularizer. For example, the Gerchberg-Saxton algorithm (also
called the error-reduction algorithm) was originally proposed to handle the phase
retrieval problem [21]. Through the straightforward transform between the Fourier
and real domain, the phase can be well reconstructed. In [9], Candes, Li, and
Soltanolkotabi suggested a Wirtinger flow (WF) algorithm to solve a non-convex
model of the phase retrieval problem with careful initialization. In [33], Netrapalli,
Jain, and Sanghavi used spectral initialization of WF for the error reduction al-
gorithm. Moreover, Wang et al. [49] proposed a sparse truncated amplitude flow
algorithm (SPARTA) with low computational complexity to reconstruct a signal.
In [46], Vaswani, Nayer, and Eldar handled the low-rank phase retrieval problem by
modifying the truncated Wirtinger flow (TWF) [15] and alternating minimization
technique. There are many other methods proposed for phase retrieval, such as the
PhaseLift method [7], the difference map iterative scheme [18], the hybrid input-
output (HIO) algorithm [19], PhaseLamp [16], and so on. The interested readers
are referred to [55] for a comprehensive review.

The methods mentioned above are efficient for reconstructing the latent image
from the magnitudes of the Fourier-transformed signal. Considering that phase
retrieval is an ill-posed problem and the obtained images are probably being cor-
rupted by the heavy noise [11], a regularization term should be applied to better
suppress noise. The classic regularizers include the total variation regularizer [37],
tight frame function [56], and low-rank regularizer [45], etc. More specifically, a
tight frame model that took advantage of the signal’s sparsity with support prior
was proposed to solve the phase retrieval problem [40]. Chang et al. [11] introduced
a total variation-based model to reconstruct an image from its noisy magnitude. In
[29], a phase retrieval model with the low-rank regularizer based on the Bayesian
framework was proposed. Although regularizers helped in reconstructing the image,
the phase retrieval problem is still non-convex and the optimization methods may
converge to some local minimizers [41]. Besides, different initial values probably
generate different solutions. Therefore, how to efficiently find a good solution to
the phase retrieval task is still an open question.

In the literature, many excellent algorithms have been proposed to solve the
non-convex image processing problem, such as [12]. Specifically, an effective algo-
rithm [6] was proposed for phase retrieval, which converges under certain condi-
tions. In [35], the low-complexity algorithms with a superior performance based
on the majorization-minimization (MM) framework was proposed to handle the
phase retrieval problem. In [34], the proximal alternating linearization algorithm
was employed to handle the phase retrieval model. However, the convergence of
their algorithm was guaranteed under some assumptions. Hence, it is difficult to
find the robust minimizer of the phase retrieval task under some general cases. Note
that a novel algorithm named the boosted difference of convex functions algorithm
(BDCA) [3] was proposed to tackle non-smooth functions. The DCA is a special
case of MM algorithm. In this paper, the boost DCA is considered to tackle the
phase retrieval task. The improvement of a more general case of MM algorithm
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will be considered in the future. The details of the BDCA are presented in Section
3. By ameliorating the DCA with a line search step along the descent direction,
the BDCA is four times faster than the related methods [1] in both iterations and
computational time. Besides, it has been proved that every cluster point of the
BDCA is a stationary point [3]. However, not many works applied the BDCA in
data science and the effectiveness of this algorithm is still debatable. In this paper,
we try to address the BDCA to solve the proposed model and give the convergence
analysis.

Indeed, considering that various works have ignored the effect of noise and the
non-convex property, in this paper, we propose a general regularization framework
for phase retrieval with Gaussian noise. We test our approach with two basic and
effective regularizers: total variation (T'V) and tight frame (TF). For the optimiza-
tion scheme, we first reformulate the model to be strongly convex with the Huber
function [24] and a square term. Then we introduce the BDCA to solve the new
proposed model with guaranteed convergence. Furthermore, we also test with two
different measurements (3n Fourier and coded diffraction pattern) to demonstrate
the robustness of the proposed approach. Experiment results imply that our strat-
egy is flexible and effective with convergence for different regularization terms and
measurements on the phase retrieval task.

The paper is organized as follows. Mathematical models are given in Section 2; a
brief review of the BDCA is given in Section 3; our model and theoretical analysis
are given in Section 4; experimental results are given in Section 5; and Section 6
follows the conclusion.

2. Mathematical models. In this section, the mathematical models of the phase
retrieval task are reviewed. Firstly, the basic definitions are presented. Secondly, the
general acquisition process is described. Thirdly, a brief review of the regularizer-
based phase retrieval model is presented.

2.1. Basic mathematical notions. In order to increase the readability of the
paper, we give some basic mathematical definitions.

Definition 2.1 (convex function). Let X be a convex subset of a real vector space
and let f: X — R be a function. Then f is called convex if and only if any of the
following equivalent conditions hold:

1. Forall 0 <t <1 and all 1,25 € X:
[tz + (1= t)ao) < tf (1) + (1 —t)f (22);
2. For all 0 <t <1 and all z1,29 € X such that x; # x3:
[t + (1 =t)ze) <tf (z1) + (1 — 1) f (22).

Remark 2.2 (non-convex). A function is non-convex if the function is not a
convex function.

Definition 2.3 (strongly convex). A differentiable function f is strongly convex
if

1) = J@)+ (hy =) + Sy = o)
for some p > 0, h € Vf(z), and all z,y.

Definition 2.4 (coercive). An (extended valued) function f : R" — RU{—o00, 400}
is called coercive if
f(z) = +o0 as ||z]| = +o0.
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Definition 2.5 (subgradient). g is a subgradient of a convex function f at z €
dom f if

fy) = f(x) +{g,y —x), Vy€domf,
where dom f = {x € X : f(z) < +o0}.

2.2. Phase retrieval problem. Assume that C is the complex domain, by repre-
senting a two-dimensional image in terms of a vector by the lexicographical order,
ie, let u: Q = {0,1,...,n1 X ng — 1} — C of size n = n; x ny be the two-
dimensional ground truth image on a discrete lattice. Denote F : C* — C™ as the
discrete Fourier transform (DFT)

wity | wats

Fu (wy + wany) = % > u(ts +tan)exp (%i (m + m)) . (1)

n
OStj S’I’Lj*l

where V 0 < w; <nj —1for j = 1,2, and i = y/—1 is the imaginary unit. Then the
obtained data is the absolute value of the Fourier transformed u, i.e., | Ful|, where
| - | means the absolute value operator. In fact, the DFT can be replaced with an
arbitrary linear operator A [11], leading to a general phase retrieval problem as
follows

min ||| Aul — b]]%, (2)

where the observed image b: A = {0,1,...,m—1} > Ry, A: C* - C™ (m >n) is
a linear operator in the complex Euclidean space, and ||-|| is the Euclidean norm. Eq.
(2) denotes the minimum value of the objective function f(u) = ||| Au| — b]|?> when
choosing u from the set of the complex domain. A vector u* is called optimal, or a
solution of the problem (2), if it has the smallest objective value, i.e., f(u) > f (u*),
V u from the given domain [5].

In the literature, there are many types of measurements. For example, Candes
et al. [7] proved exact phase retrieval from 3n Fourier measurements is effective,
where

Fu
Au=| Fu+2°*2u) |, (3)
F (u—1i2%1%2q)

and (2°1°24) (t1 + tany) = exp (2”;7911“ + 2”;1%@) u(ts +tam1), 0 < t; < n; —1,
here integers s1, s coprime to n, ng, respectively. Many researchers applied Eq.(3)
to simulate phase retrieval degradation [11, 17]. Later, an effective measurement of

coded diffraction pattern (CDP) [8, 14] was proposed as

F(I1)ou
f([z) ou
Au = . , (4)
F(I.)ou
where o is the Hadamard product and Iy, ---, I, € C™ are diagonal matrices. We

take both Eq.(3) and Eq.(4) into consideration to illustrate the robustness of our
scheme.

2.3. Phase retrieval models. From model (2), it is apparent that without prior
information, there is no unique solution of u. The main goal of phase retrieval is to
achieve an efficient algorithm that recovers data with minimal errors and is stable
in the case of heavy noise. In the past decades, many researchers have developed
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various practical numerical algorithms by exploring the characteristics and internal
structure of signals according to specific problems.

In [40], the authors developed a translation invariant Haar pyramid tight frame
regularizer with the support prior for sparse phase retrieval. They assumed that
the magnitude is corrupted by the Gaussian white noise { with zero mean, i.e.,
b = | Au| + ¢. Their model was written as

A 2
omin o[l Aul = Bl + [Wull, ()

where A is the DFT matrix, A is a positive parameter, ||z||; = >.I, |z;| is the
{1-norm with © = (z1,22, -+ ,x,), and W denotes the translation invariant Haar
pyramid tight frame operator, which satisfies WTW = T (here T is an identity ma-
trix). The authors applied the alternating direction method of multipliers (ADMM)
scheme [13, 20] to solve model (5) which is a non-convex problem. The optimal so-
lution of each subproblem exists. However, the convergence to the solution is not
guaranteed. In addition, the DFT matrix can not describe the degradation process
of phase acquisition exactly [7].

In [11], the total variation regularization was adopted to phase retrieval problem
with Gaussian noise. Besides, the 3n Fourier measurements as in Eq.(3) were used
to describe Au. The model was written as

A 2
min, 14wl = b+ [V, ©)
where V is the discrete gradient operator as (Vu), ; = ((Vju)” , (V;u)l j) and
(4,7) denotes a pixel of the image with
s s < i< m, —
(Viwy, ={ gt T I Th
) J =ni, (7)
(Viu). = Ui 1,5 — Uigs 1 <i<ng—1,
i, 0, 1 = Na.

The total variation regularization has good properties of keeping the edge and helps
to generate better phase reconstruction results. The author handled Eq.(6) with the
ADMM algorithm and the convergence of u is still without guarantee. The phase
retrieval model is a typical non-convex problem. Although the ADMM algorithm
can be used to solve the model, the robust minimizer is not guaranteed. Since the
BDCA can well handle the non-convex model, we use a deformation of our model
to make it easy to solve under the framework of the BDCA. The BDCA is relatively
new and rarely emerges in image science. For better illustration, we will give a brief
review of the BDCA in the next section.

3. A brief review of BDCA. In fact, there are many prominent algorithms for
the non-convex minimization problem. One of the popular algorithms is the BDCA.
In this section, we present a brief review of the BDCA. The DC theory was created
in 1986 [42], and extended by [23, 43]. Many works were devoted to promoting the
progression of the DC theory, such as [38, 51]. Among these works, Artacho et al.
[2, 3] boosted the convergence rate of the DC algorithm by adding a line search
step along the descent direction. Given a function F : R” — RU {+00}, we need to
solve inf F'(u) : w € R™. The DC algorithm substitutes F by a difference between
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functions G and H, which are two lower semi-continuous proper convex functions,
such that

F(u) = G(u) — H(u), YueR™ (8)
The DC algorithm is based on convex analysis and primal-dual theory. Its key idea
is to extend the convex analysis to non-smooth and non-convex analysis with convex
programming. The primal problem is

nf P(u) = inf (Glu) — H(w), )

where inf F'(u) is to find the infimum of F'(u) by choosing u in the set of R”. Some

u€ER™
properties [43] of the DC algorithm are summarized in Definition 3.1. The main

idea of DCA is simple: each iteration k& of DCA approximates the concave part —H
by its affine majorization (that corresponds to taking y* € 0H (uk) ) and computes
u**1 by solving the resulting convex problem, min {G(x) — <u, yk> tu€ R"} .

u

Definition 3.1. For the primal DC program, u* is called a critical point of G(u) —
H (u) or generalized Karush-Kuhn-Tucker (KKT) point for (9) if 0H (u*)NOG (u*) #
§ and @ # 0H (u*) C G (u*).

In the DC theory [43], Tao and An have proved that the critical point u* is a
local minimum for non-convex function F'(u). The convergence property of the DC
algorithm is also discussed in their study. The BDCA is the extension of DCA,
where the function F' is non-differentiable. Significantly, the version used in this
paper restricts that G is differentiable and H is non-differentiable [3]. The line
search is employed along the descent direction (generated by DCA) and the BDCA
can be described as Algorithm 1, in which d* = y* — u* is a descent direction for
F(u) at y*. We can choose the initial value 8, > 0 freely in the line search step used
for finding an appropriate value of the step size 8;. Meanwhile, we need to mention
that the iterations of the BDCA and the DCA coincide when 8, = 0. The other
core idea of the DC algorithm is for minimization of the difference G(u) — H(u) as
Eq. (8), first H is replaced by its first order approximation H (u°) + (u —u®, h%),
where h° is a vector in subgradient of H at point «° in Algorithm 1. Then, G(u) —
H (uo) — <u —uP, h0> is a convex function and can be optimized efficiently.

4. The proposed regularizer framelet method. In this paper, we propose a
general regularizer framework to handle the phase retrieval problem. Two differ-
ent regularizers and two different measurements are applied to demonstrate the
effectiveness of our strategy.

We assume the original image u is non-negative, bounded, and real-valued. The
proposed scheme can be formulated as

)
min Z{||Au| = b]* + ®(u), (10)

where ) is a positive parameter; b is the observed image; A is a linear operator,
two kinds of measurements (3n Fourier measurements and CDP) are applied; and
®(u) is the regularization term. We apply two different regularizers: the total vari-
ation regularizer ||Vul|; and the tight frame regularizer |[Wul|; to demonstrate the
robustness of the proposed model. Here ||z||; = Zi |x¢| with {z = z1, 29, -+, 27}
Since those two regularizers are related to the ¢; norm, we introduce the Huber
function [24, 27] to smooth the ¢, norm. The Huber function ®.(u) =>"" | U (u;)
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Algorithm 1 Boosted DC algorithm
Initialization © € R”, a > 0,0< <1, m=0,k =0, €, €

[+ =]
for W S €1 do
Calculate h* by h* € OH (uk)

||um+1_u7n ||

for ] < e do
Calculate u™*! by u™*! € argmin {G(u) — [H (u™) + (u — u™, h*)]}
end for ’
Set y* = umtl, dF = yF — P
if d* =0 then
Stop and return u®
else

Choose any fj, > 0 and set 8 = B
while F (yf + 8.d%) > F () — a2 ||d*|* do
Bre = &Pk
end while
Set uF 1 = y* 4 Brd*
if u**1 = u* then
Stop and return u
end if
end if
end for

k

can be seen as the Moreau-Yosida regularization [28] of the ¢; norm and has the
following form

1
= . . 1 9 ?6|u1| il <
D (u) = Z U (u;) with W(u;) = IItlf{q)(t)—i-Z‘ui—ﬂ } = .
i=1 |ws] lui| > €,

where € > 0, ®(u) is continuously differentiable and

—Ui, U] S €,
VU (u;) = € [uil <€ (12)
sign(u;), |ui| > e.

The minimizer of ®.(u) and ®(u) are the same, and we refer the interested readers
to [31, 32] for a comprehensive review. The model (10) favors the solution being
approximately piece-wise constant, and the model is effective for the data corrupted
by the Gaussian white noise. In addition, the existence of the minimizer (10) is also
proved ([11], Theorem 3.1).

Proposition 4.1. Denote Q as the bounded and Lipschitz-regular domain, and

given non-negative data b = (bg, by, bs), then model (10) has at least one minimizer
u* € BV(Q).

By applying the BDCA, we first reformulate the proposed model (10) as

min F(u) = muin D (u) + %|||Au|H2 — (b, | Aul), (13)

0<u<1
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where (-,) is the complex inner product. Hence F(u) can be split to G(u) and
H (u) naturally, i.e.,

A
G(u) = (u) + F[Aull* + £ llul?, "
H () =X, |Aul) + £lul?,

where convexity of H(u) is due to entries of b being non-negative, and modulus

p is a positive constant to make the components G(u) and H(u) strongly convex.
Based on the framework of BDCA, we need to find out h* € 0H (u*). Since H(u)
is non-smooth, we have the following formula

h* = XA* (b o sign(Auf)) + pu®, (15)

where A* is the conjugate transpose of A, and sign(-) is the sign function applying
to a vector element-wisely [11]. Then we have

uF ! = arg min G(u) — <hk,u>
. A 0 (16)
= argmin D (u) + 5H|AU|H2 + §||u||2 — (h*,u).

For the total variation regularizer and the tight frame regularizer, it is not difficult
to find that the only difference is the operator WW and V. For simplicity, we denote
B as the operator W or V, i.e., ®(u) = ||Bull;. Based on the ADMM algorithm,
we rewrite the above equation (16) as follows

A
min .(u) + 312/ + 5 llul® - (r*,u). a7
st. z=Au, v=u, p=DBu,

where z = (29, 21, 22).

To clarify downsampling for 3n Fourier measurements Eq.(3), we introduce three
subsets: €; C Q, for i = 0,1,2, each of which provides a binary mask of the
incomplete Fourier transform magnitude. One can readily construct the augmented
Lagrangian function as

£T177‘2,T3(p7u7v7z;w7q’d)
A P
= ®c(u) + A1 + Sllul® = hou) + (2 — Au, d) (18)
T T T
+ {p = Buyq) + u— v,w) + 5l = Aull® + 2 u— v + Z|lp - Bul%,

where w, q,d are called Lagrange multipliers or dual variables and r1, 73, 73 are
Lagrange penalty parameters. Alternating minimization for the above Lagrangian
consists of solving four subproblems w.r.t. p,u,v and z, followed by updating dual
variables. Below we elaborate on solving each subproblem with m-th iteration.

4.1. v-subproblem. The v-subproblem is
™! = arg min (u™ — ™, W™) + %Hum —o™|?, (19)
which has a closed solution as follows

™! = min{1, max{0,u™ + w—}} (20)
T2
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4.2. P-subproblem. We can expand the objective function of the p-subproblem
as

.
. (p) + (p— Bu™,q™) + 53 Ip — Bu™|”

2n—1
3

= {\Ife (pj) + g5 (pj - (Bum)j) +5 (pj - (Bum)j)Z]

=0

and solve the minimization for each j separately. Let p = Bu — i, we have the
3
solution with soft-shrinkage algorithm as
Lﬁm
+1 ~m r3t’J
Pl =Py — p— (21)
7 max{; +e 157}

4.3. Z-subproblem. Suppose for 3n Fourier measurement (3), minimization for
each component of z = (zo,21,22) is independent of the other two, so we just
describe how to solve for zy as an example. Note that here zy is a vector and we
apply all operations entrywise. The zp-subproblem is

m : >\ m m m r m m
A4 = angmin S |77 + (2 — Au™, do) + T2 — Awm P (22)

We can decompose the minimization problem

A r do |°
2 —argmin 2202 + = |20 — Au™ + =
z0 2 2 T1
do |? d
:aurgmini 25" + n Iz > + [Au™ — =2 —2|20"| Re ( sign(zg") | Aum — =
20 2 2 r r
(23)
into two subproblems, i.e., |zg| and sign(zg) (sign(zog) = ey if 20 # 0; otherwise

sign(0) = ¢ with an arbitrary constant ¢ € C with unity length). One can readily
obtain sign(z§*) = sign(Au™ — ). To minimize the subproblem |zo|, we have

T

A r do|\?
m—+1| __ . m|2 1 m m 0
Z =arg min —|z + = |27 — |Au™ — — , 24
et =arg i 31+ 2 (1 - [ - 2)) 24
which has a closed-form solution
dg’
r | Au™ — —
|Zm+1| _ ! 1 (25)
0 A+
Letting 0™ = Au™ — dj* /r1, we reformulate the above solution as
5m
it = 0 G om), (26)

D

For the CDP measurement (4), the r-components F(I;) ou,j = 1,2,--- ,r, where
o is the Hadamard product and Iy, ---, I, € C™ are diagonal matrices. Then z-
subproblem is with r components, similar to Eq. (22), we can get the solution of
p-subproblem of the CDP measurement.
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4.4. U-subproblem. At last, we consider u-subproblem
um—i—l _ argming||um||2 _ <hk7um> 4 <zm+1_Aum7dm>

+ ("t — Bu, ¢ )+ (u" — o™ UJ””L>—|—%||Zerl — Au™|? (27)

T T
+ 52||um _ Um+1||2 + g“pm+l _ Bum||2.
According to Eq.(3), by computing the derivative of ||z — Aul?/2 as follows
A (|20 — Full?/2) = 0y (| F*20 — ul?/2) = u — R(F*20), (28a)
Ou (|21 =F (u+ 2°-%2u) |/2) = (24 2R(2°%))u — R(F* 21 + 2°02F*z),
(28Db)
O ([|22 — F (u —12%2u) |2 /2) = (24 23(Z2°**))u — R(F*20 — 1D°V 52 F*23),
(28¢)

where F* denotes the inverse Fourier transform and Z denotes the complex conjugate
of z, we therefore obtain

(875 + @ + I (5 4+ 2R(90) + 29(9°2) Jum
3 3
m 1
=B + Ly = (h ™t —w™) (29)
T3 T3

1 o . o N . N
+ 73?(28”1 + z{nH + z;’”l + .@sl"”zf”*l—ﬂ)sl’s"‘zg”l),
3

where 2"t = Fr (2t 4 %) for i = 0,1, 2. By updating the Lagrange multipliers,
we have the proper solution u. For CDP measurement, one can just refer Eq. (28a)
to find the solution. With the linear search of BDCA, the pseudocode of solving
model (13) is provided in Algorithm 2. In fact, the proposed method can be applied
with other linear operators A, and the derivation is not that different. Here we only
verify the effectiveness of the proposed algorithm with two classic measurements.

4.5. Convergence analysis. The convergence of the proposed method is studied
in this subsection. According to equations (10)-(18), our convergence analysis is
mainly based on the following optimization problem

min {F(u) = G(u) - H(u)}. (30)
Both functions G(u) and H(u) in Eq.(14) are strongly convex with modulus p > 0.

Definition 4.2. For an extended real-valued function f : R” — R U {4o0c}, the
domain of f is the set dom f = {u € R" : F(u) < +00}. The function f is said to be
proper if its domain is nonempty.

The function H(u) is subdifferentiable at every point in dom H. The function
G(u) is continuously differentiable on an open set containing dom H and

ulénﬂ{ F(u) > —o0. (31)

Under these conditions, the following necessary optimality condition holds.

Proposition 4.3. (first-order necessary optimality condition [44]). If u* € dom F
is an optimal solution of problem (F'), then OH (u*) = {VG (u*)}.
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Algorithm 2 BDCA to solve the model (13)

Input: Given parameters r1, 2, 13, A, 8, p, Outmazx, Intmaz, €1, e; and fixed
a>0,1>&>0
Initialize: u, 20 = Au®, v° =u°, p° = Bu’, ¢* =0, w® =0,d° =0
for k =1 to Outmax do
Calculate h* via Eq.(15)
for m =1 to Intmax do
Calculate v+, pmtl pmH+l ym+l via Eq. (20), Eq. (21), Eq. (26), Eq.
(29)
Update multipliers as
dmtl = gm + T1(2m+1 _ Aum+1)
wm+1 = w™ + ,,,2(um+1 _ Um+1)

qmﬁl :+(%m + ,,,3||(pm+1 _ Bum+1)
u™ —um

if — < €1 then
[[wm]|
yk — um+1
end if
end for

Set d* = y* —uF
if d* =0 then
stop and return u
else
choose any B > 0 and set B, = B
while F(y* + B,d*) > F(y*) — aB,[|d*|? do
Br = &Pk
end while
Set ub*! = y* + Brd*
if ©**! = u* then
stop and return «
end if
end if
end for

k

k

Any point satisfying Proposition 4.3 is called a stationary point of F. In the
literature [3], it is shown that @ is a critical point of F if VG (@) € 0H (a). It is
obvious that every stationary point u* is a critical point, but the converse is not
true in general.

Theorem 4.4. For any u® € R", either Algorithm 2 returns a critical point of
Eq.(16) or generates an infinite sequence such that the following holds.

(i) F(u*) is monotonically decreasing and convergent to some F*.

(ii) Any limit point of u* is a stationary point of Eq.(16). If in addition F is
coercive, then there exists a subsequence of u*, which converges to a critical point
of Eq.(16).

(iii) X325]1d¥ |13 < oco. Further, if there is some B such that Bx < B for all k, then
E52 ol — o3 < oo.
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Proof. If Algorithm 2 stops at the inner iteration and returns ¥, then u* = y*.

Because y* is the unique solution of the strongly convex problem (16), we have
VG (y*) = hF e 0H (u¥), (32)

i.e., u* is a critical point of Eq.(16). Otherwise, by the backtracking process of

Algorithm 2, we have
F () < P () - g [ < P (&) - (o8t +0) |7 (39)

In fact, with the strong convexity (Definition 2.3) and y* is the unique solution

of the strongly convex problem (16), the second inequality holds. Therefore, the

sequence {F (u*)} converges to some F*, since it is monotonically decreasing and
bounded from below by Theorem 31. This proves (i). As a result, we obtain

F (ufth) — F (u¥) =0, (34)

which implies ||dkH2 = Hyk — ukH2 — 0.

If @ is a limit point of {uk}, there exists a subsequence {uk} converging to u.
Then, as Hyk —u¥|| = 0, we have y* — @. Since VG is continuous, we get

hF = VG (y*) — VG(a). (35)

Hence, we deduce VG(u) € 0H(u), thanks to the closedness of the graph of 0H
(see [36], Theorem 24.4). When F is coercive, by (i), the sequence {u*} must be
bounded, which implies the rest of the claim in (i7).

To prove (7i7), Eq.(33) implies that

(B} + p) ||d*[|” < F@u*) — P, (36)
Summing the above inequality from 0 to IV,
al 2
> (et +p)||d*]]” < Fu®) — FN) < P(u®) - inf F(u), (37)
ueR™
k=0
whence taking the limit when N — oo, we obtain
S ollde I3 < S (aBf + p) [|d¥]) < F(u®) ~ inf F(u) < oo, (38)
k=0 k=0 e
and > 7 ||d¥||3 < co. Since
Pt —oF = b — b 4 gRaE = (14 g7)d", (39)
we get
Dol =M =Y (1 + 85 < (14 B)? ) 1dF3 < oo, (40)
k=0 k=0 k=0
and the proof is complete. O

Remark 4.5. The above considers a general case 3 > 0, if we choose S = B
for all k > 0, then condition (iii) of the above Theorem is satisfied and the series
ZZOZO ||uk“‘1 — ukﬂz is finite. Thus, u**! — «* is a Cauchy sequence and, hence,
convergent.
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In addition, the convergence rate on the iterative sequence {u*} is also established
in ([3], Theorem 4.9). First, we give the definition of locally Lipschitz continuous.
The function F' is called Lipschitz continuous if there is some constant L > 0 such
that
and F' is said to be locally Lipschitz continuous if, for every x in R™, there exists
a neighborhood U of x such that F' restricted to U is Lipschitz continuous. A
Lipschitz continuous function must be a locally Lipschitz continuous function.

Next, we show our V(G is Lipschitz continuous:

1
[VG(21) — VG(z2)l2 < g||$1 — xall2 + A[A"Al2||lzy — z2ll2 + pllrr — 222
(41)
1
= (E +A[A*All2 + p)llz1 — 222

Hence VG is locally Lipschitz continuous. From the previous assumption, F satisfies
the strong KL inequality, and then we know that the following proposition holds.

Proposition 4.6. Suppose that the sequence {uk} generated by the BDCA has the
limit point u*. Assume that VG is locally Lipschitz continuous around u* and F
satisfies the strong Kurdyka-Lojasiewicz inequality at w* with p(t) = Mt'*=? for
some M >0 and 0 < 0 < 1. Then, the following convergence rates are guaranteed:
(i) if @ = 0, then the sequences {uk} converges in a finite number of steps to u*;
(ii) if 0 €]0, %], then the sequences {uk} converges linearly to u*;
(iti) if 0 €]5,1], then there exist a positive constant 1) such that

_1-6
|2 < nk 20-1,

||uk —u*

for all large k.

5. Numerical experiments. To demonstrate the effectiveness of the proposed
regularization model, we present the numerical and visual results in this section.
To better simulate the observed image in the real world, the white Gaussian noise
with zero mean is added. The Signal-to-noise ratio (SNR) is used for measurement
which compares the level of a desired signal to the level of background noise. De-
noting b= | Au| as the degraded image, o as the noise level, and 5 as the white
Gaussian noise with zero mean, i.e., b = b+ O'CN , then the noiséy measurement SNR
is defined as SNR(N, M) = —101log, (Zi€520>0<i<2 bi§)—bi5)] ) where i = 0,1,2,

Zjeno,ogigz bi(])|
N = {50, 517 52} is the degraded measurement related to the mask Qy (The masks
Q; are randomly generated, and we further assume that they are identical, i.e.,

Qo = Q1 = Q2.) and M = {bg,b1,ba} is the ideal measurement. Hence, we have

SNR
10~ <o b (5)12 L. .
o= v 20552“*””' Gl , here d = # {j : j € Qo} counts the number of j. In

this paper, different Gaussian noise levels are considered, i.e., 0 = 0, 0 = 10, and
o = 30. The structural similarity index measure (SSIM) is also applied to quantify
reconstruction quality for images. SSIM is defined as

(2paphar + Cl) (Qwa* + 02)
(W2 + p3s + C1) (02 + 050 + Ca)’
where fip, pzx and oy, 0+, Oz are the mean and the standard deviation of z

and z*, respectively. The positive constants C; and Cy are used to avoid a null
denominator, which is defaulted by the Matlab built-in ssim function.

SSIM (x, 2*) = (42)
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SNR (dB)

22
o 10 20 3 40 50 60 70 80 9 100

(a) Numerical results of ®(u) = ||Vul|1.

0 20 8 40 50 60 70 & 90 100

(c) Numerical results of ®(u) = ||[Wul|1. (d) Corresponding average visual result.

FIGURE 1. The sensitive analysis of initial values. The proposed
model (10) of the image ‘cameraman’ with the degradation of the
3n Fourier mask ratio 50% and SNR = 30. (a) SNR(dB) results
with 100 random values of ®(u) = ||Vul1; (¢) SNR(dB) results with
100 random values of ®(u) = ||Wul|1; the average visual results
with (b) SNR = 22.67 and (d) SNR = 24.47.

Related Error

FIGURE 2. Comparisons between our BDCA and DC algorithm
of Image ‘cameraman’ with CDP mask type J = 2. Here the red,
green, and blue lines are with ¢ = 0, 0 = 10, and ¢ = 30 respec-
tively.

Before comparing with other methods, we first conduct parameter analysis and
convergence analysis with Eq.(3) of our approach.

5.1. Parameter setting. In this subsection, the initialization and parameter sen-
sitivity analyses are presented. Since model (10) is non-convex, the initial value has
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30

SNR

(a) Effect of \. (b) Effect of p.

FIGURE 3. Sensitive analysis with parameters A, p. Image ‘cam-
eraman’ with the degradation of the 3n Fourier mask ratio 50%

and SNR = 30.
’M\WW E e e s - ]
(a) Effect of rq. (b) Effect of ro. (c) Effect of rs.

sNR
sNR

(d) Effect of rq. (e) Effect of ra. (f) Effect of r3.

FIGURE 4. Sensitive analysis with parameters r1, o, and r3. Image
‘cameraman’ with the degradation of the 3n Fourier mask ratio 50%
and SNR = 30. The first row displays the results of the proposed
model with ®(u) = ||Vu||; and the second row is the results of the
proposed model with ®(u) = [|[Wull.

some effects on the final result. We analyze the effectiveness of 100 random initial
values. In Algorithm 2, according to the DFT Eq.(1), we set

Ow) = b;(w) exp (—27ib;w) , if we Q, (43)
¢ 0, otherwise,
and v = F*2¥ as initial values. Thus, by giving b; and w, all we need to change
is the 6;. To test the sensitivity of the final result to the initial value, we set 6;
as random values. Cropped by the sampling masks w.r.t. undersampling ratios

50% (mask ratio 50%) and the SNR 30, we test the degraded image ‘cameraman’
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with 100 random initial values. The test results are displayed in Fig. 1, which
demonstrates the robustness of the proposed method with random initialization. In
numerical results of the case ®(u) = ||Vu|; (Fig. 1 (a)), SNR falls into the interval
[22.20, 23.41] with the average value equal to 22.67, the corresponding average result
is shown in Fig. 1 (b) with parameters are set as A = 100, p = 0.1, 71 = 0.2, ro = 0.3,
rg = 0.02. For ®(u) = ||[Wull1, SNR € [23.02,25.56] and the average value is 24.47,
the corresponding average results are presented in Fig. 1 (d) (parameters are set as
A =100, p=0.5, 71 = 0.3, 7o = 1.5, r3 = 0.1).

As we reviewed in Section 3, the boost DC algorithm (BDCA) is the extension
of DC algorithm (DCA). As we proposed to handle the phase retrieval task with
BDCA, Fig. 2 presents the related error curves of BDCA and DCA to further
demonstrate the advantages of the proposed scheme. We test the phase retrieval
with TV regularizer on the image ‘cameraman’ with CDP mask type J = 2 with
different noise levels o = 0 (red lines), o = 10 (green lines), and o = 30 (blue lines).
For example, the green lines are the reconstruction results obtained when the image
degradation with the CDP mask and noise level 0 = 10. From the two curves, we
can see that the relative error of the proposed method decreases faster, and finally,
a small error result is obtained. That is, a better reconstruction result is obtained.
Through testing on three different noise levels, we can see that our method also has
good stability with the CDP mask. It is worth mentioning that the results in Fig.
2 are also based on random initial values. In particular, we use Matlab’s built-in
random function and fix the random value as 2022 with the random seed. Both
Fig. 1 and Fig. 2 illustrate the stability of our method.

Fig. 1 illustrates that the proposed model is robust to random initialization.
However, the recovery result is also decided by the parameters. The parameter
analysis of the proposed model is as follows. First of all, we analyze the balance
parameter A in the proposed model Eq.(10) by fixing the other parameters, i.e.,
p=01r =02, r, =03, r3 = 0.02 for ®(u) = ||Vul|; and p = 0.5, r; = 0.3,
rg = 1.5, r3 = 0.1 for ®(u) = [|Wul|;. We test A ranging from 5 to 500 with the
step size 5. Besides, we add the results with A = 0.1,0.5 and A = 550,650. With
the fixed initial parameters, which are also generated by random, 100 results with
respect to different A\ are obtained in Fig. 3 (a). From the curves, we can see
that the proposed models are stable with parameter A in some range, but when we
enlarge the range, the performance of the proposed algorithms will decrease. Then
we research the influence of the positive constant p, which makes sure the strong
convexity of H(x) and G(z). We set p € [0.1,1] and the step-size as 0.02, and the
effect of p is exhibited in Fig. 3 (b). Finally, the Lagrange penalty parameters r1,
ro, and r3 are studied. Since parameters 1, 2, and r3 lead to relatively poor results
under some values, we exhibit the results of two regularizers in Fig. 4, respectively.
We set r1, 72,73 € [0.01,2] with step-size 0.02 and the results are displayed in Fig.
4. As the results of r3 with ®(u) = ||Vu|; are relatively poor in r3 > 0.11 and
ry with ®(u) = ||[Wul|1 are relatively poor in r; > 0.8, so we set r3 € [0.01,0.1]
with step-size 0.01 in Fig. 4 (c) and r; € [0.05,0.79] with step-size 0.02 in Fig. 4
(d). From Fig. 3 and Fig. 4, the proposed model has good robustness in different
parameters.

5.2. Convergence behavior. In this subsection, we present the convergence be-
havior of the proposed scheme in terms of experimental results. In Fig. 5, the
energy and the corresponding relative error with respect to the inner iteration of
®(u) = ||Vul|; and ®(u) = [|[Wul|; are given. It can be seen from the graph that our
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x10'0
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Inner lteration

(a) Decreasing energies of ®(u) = ||Vul1.

10
g x10°

Energy

o 20 40 60 8 100 120 140 160 180 200
Inner lteration

(c) Decreasing energies of ®(u) = [[Wul|1.

Relative Error

Relative Eror

o 20 40 60 8 100 120 140 160 180 200
Inner fteration

(b) Relative errors of ®(u) = ||Vul|1.

0 20 4 60 8 100 120 140 160 180 200
Inner Iteration

(d) Relative errors of ®(u) = |[Wul|1.

FIGURE 5. The convergence behavior of the proposed model (10)
of the image ‘cameraman’ with the degradation of the 3n Fourier

mask ratio 50% and SNR = 30.

(a) Original

(b) TVB [11] (29.05/0.7481)c) Our TV (30.63/0.8115)(d) Our TF (32.96/0.9342)

FIGURE 6. The comparison results (SNR/SSIM) of Imgl0 with
3n Fourier mask ratio 50% and o = 0.

method is convergent. After 40 and 80 iterations, the objective function reaches the
minimum with regularizers ®(u) = ||Vul|: and ®(u) = |[Wul|1, respectively. The
energy graph and the relative error graph also manifest the correctness of Theorem

4.4.

5.3. Phase retrieval results. In this subsection, the comparison results of differ-
ent phase retrieval methods are studied. We compare the proposed method with
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’ = =7 T LT 'a‘ ...r‘,‘
| . 3 |
3 ’i i lé : f
TN itand el L
(a) Original (b) TVB [11] (24.42/0.5375)c) Our TV (25.76/0.6035)(d) Our TF (26.99/0.7715)

FIGURE 7. The comparison results (SNR/SSIM) of Img08 with
3n Fourier mask ratio 50% and o = 10.

TABLE 1. Average results of Set18 with SNR/SSIM/running time
in second of phase retrieval (3n Fourier measurements).

mask 50% TVB [11] Our TV Our TF
oc=0 27.83/0.7411/24.12 27.99/0.7755/21.80 28.97/0.7952/60.33
=10 23.14/0.5472/24.37 24.00/0.5616/19.70 24.59/0.6148/57.28
o =30 19.40/0.4117/24.70  20.08/0.4365/19.93 21.27/0.4677/60.17

some state-of-the-art methods of phase retrieval. However, due to the different mea-
surements, we compare the proposed method with TVB [11] under mask Eq.(3),
and the proposed model with RAAR [30], RAF [48], RWF [52], TAF [47], CDA
[54], HIO [19], TWF [15], WF [9] and DDWF [34] with DCP measurement Eq.(4).
All the experiments' are conducted in MATLAB R2020a under macOS Catalina
10.15.4 with a 1.40GHz CPU and 8GB memory. We test 18 images of size 500 x 500
from Set182. Two different measurements (3n Fourier measurement and DCP) with
different Gaussian noise levels o = 0, o = 10, and ¢ = 30 are studied.

Firstly, we consider the 3n Fourier measurement Eq.(3) under mask ratios 50%
and 0 = 0, 0 = 10, and ¢ = 30. The results are displayed in Fig. 6 and Fig. 7,
which demonstrate the advantages of the proposed model. The average results of
Set18 with SNR, SSIM and running time in second are shown in Table 1. The best
numerical result is in bold, and the second-best result is underlined. We can see
from the numerical results that the proposed method has better results than the
TVB method [11].

Secondly, the CDP mask Eq.(4) is considered. In addition to the above com-
parison, the classical phased retrieval methods Kacz [50], PhaseLift [7], PhaseMax
[4], PhaseLamp [16], SketchyCGM [53] are considered in Fig. 8. The initial value
u® was generated by the error reduction (ER) [21] method with 40 iterations. The
comparison results of visual quality and numerical SNR and SSIM results are dis-
played in Fig. 9 and Fig. 10 with ¢ = 10 and ¢ = 30, respectively. The results of
our TV and our TF illustrate that the proposed method can well handle the phase
retrieval problem with the CDP mask. The average results of compared methods

IThe codes of TVB were provided by the corresponding author, other methods’ codes are from
the PhasePack [10] (https://github.com/tomgoldstein/phasepack-matlab).
2https://github.com/cszn/IRCNN/tree/master/testsets/Set18
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amp|[16

£ T S 3l

(1)Phab;e.ft..[7](6.75/0.02.0 7.19/0.02\13) (k)Kace [5:3](880/0.0195;

(m) TWF [15] (12.16/0.3438) (n) WF [9] (11.58/0.3204) (o) Our TV (25.54/0.7860)(p) Our TF (29.18/0.8462)

FIGURE 8. The comparison results ( SNR/SSIM) of (2D projection
slice of molecule) with CDP mask type J =2 and o0 = 1.

are shown in Table 2, which demonstrates our method has the best performance.
Besides, the average running time in the second of the compared methods is listed
in Table 3, in which those methods without regularizer have less time-consuming.
But from both the reconstruction results and the time consumption, we can see that
the proposed methods have a better balance. Furthermore, combining the average
running time listed in Table 1, we can see that our methods still have the advantage
of time consumption. From the compared results of the DDWF [34], i.e., for the
kind of image (2D projection slices of the caffeine molecule) in Fig. 8, we also have
better phase retrieval results.
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(a) Original (b) ER [21] (25.13/0.6142)(c) RAAR [30] (25.13/0.6143d) RAF [48] (25.13/0.6142)

(e) RWF [52] (25.13/0.6142)f) TAF [47] (24.62/0.6140)g) CDA [54] (25.00/0.6137)(h) HIO [19] (14.28/0.1777)

(i) TWF [15] (24.58/0.6136)(j) WF [9] (25.13/0.6142) (k) Our TV (30.41/0.8469) (1) Our TF (31.11/9142)

FIGURE 9. The comparison results (SNR/SSIM) of Imgl3 with
CDP mask type J = 2 and o = 10.

To further demonstrate the effectiveness of the proposed algorithm, we present
the ablation experiment in Figure 11. We first set the initial value with the Matlab
pseudorandom values generator ‘rand(m, n)’, where m and n are the sizes of an
image. We fix the random seed as 2022 to ensure every experiment with the exact
same random value. The degradation is with CDP mask type J = 2 and noise
level o = 10. From the previously compared results and Figure 11 (c), (d), and
(e), we can see that the RAF, TAF, and TWF methods are sensitive to initial
values. However, our methods (h) and (i) still have competitive reconstruction
results. On the other hand, the proposed methods contain regularizers, but most
of the compared algorithms are only with the data fidelity term. Here we set the
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FIGURE 10. The comparison results ( SNR/SSIM) of Img03 with
CDP mask type J = 2 and o = 30.

parameter X in the proposed model (10) as 1e30. We recall the proposed model
. A 2
omin F(u) = min o[ Aul = b+ ®(u),
where A = 1e30 means the regularizer can almost be neglected. Hence it would be
fairer to compare our model with those methods only with the data fidelity term.
From Fig. 11 (f) and (g), we can see that the results of our models still have
outperformed results.

6. Conclusions. In this paper, we propose a regularization framework to recon-
struct the image from the observation that is corrupted by the heavy noise effec-
tively. For the non-convex minimization problem, it is difficult to find a robust
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(a) Original

(b) Random ini (3.48/0.0577) (c) RAF [48] (4%.6/0.1271)

(d) TAF [47] (4.8/0.232)

(g) Our TF-0 (16.65/0.3327) (h) Our TV (23.96/0.8561) (i) Our TF (25.96/0.8861)

FIGURE 11. The comparison results (SNR/SSIM) with random
initial value of (2D projection slice of molecule) with CDP mask
type J = 2 and o = 10. (a) the original image; (b) The random
value image with Matlab command ‘u0=rand(m, n)’; (c) RAF [48];
(d) TAF [47]; (e) TWF [15]; (f) Our TV with parameter A = 1e30;
(g) Our TF with parameter A = 1e30; (h) Our TV; (i) Our TF.

TABLE 2. Average results of Set18 with SNR/SSIM of phase re-
trieval (CDP measurement with J = 2).

CDP mask  ER [21]  RAAR [30]  RAF [18]  RWF [52] _ TAF [17] CDA [54] HIO [19]  TWF [15] WF [9] Our TV Our TF
o =30 22.55/0.3406 22.94/0.3432 22.55/0.3408 22.55/0.3406 22.16/0.3418 21.72/0.3404 12.59/0.1212 22.03/0.3394 22.55/0.3406 27.02/0.6292 27.11/0.6406
=10  30.16/0.7323 30.56/0.7490 30.16/0.7324 30.16/0.7323 30.21/0.7345 30.06/0.7315 20.63/0.3424 30.20/0.7042 20.04/0.7402 34.53/0.8002 35.29/0.9002

minimizer. By reformulating the proposed model with the Huber function and the
square term, the non-convex model can be solved by the boosted DC algorithm
with the convergence guarantee. To better demonstrate the robustness and flexi-
bility of the proposed framework, two general measurements are used to describe
the degradation process and the two regularizers are tested. Both tight frame and
total variation terms have reasonable convergence rates in handling the phase re-
trieval task, which illustrates the robustness of the proposed framelet model. In
addition, we present the theoretical analysis of our model. The numerical results of
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TABLE 3. Average running time in second of Set18 of phase re-
trieval (CDP measurement with J = 2).

CDP mask ER [21] RAAR [30] RAF [18] RWF [52] TAF [17] CDA [54] HIO [19] TWF [15] WF [9] Our TV Our TF
=30 0.67 320 2.83 1439 291 .55 342 306 15491 6277 75.09
o =10 0.66 3.06 275 10.61 2.81 127 2.92 301 136.06 61.21  73.85

our method on both measurements also give a positive demonstration. Compared
to other methods, the proposed model achieves superior performances in both nu-
merical and visual results.
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