
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW © 2023 Society for Industrial and Applied Mathematics
Vol. 65, No. 3, pp. 831–865

Bayesian Inverse Problems Are
Usually Well-Posed\ast 

Jonas Latz\dagger 

Abstract. Inverse problems describe the task of blending a mathematical model with observational
data---a fundamental task in many scientific and engineering disciplines. The solvability
of such a task is usually classified through its well-posedness. A problem is well-posed if
it has a unique solution that depends continuously on input or data. Inverse problems are
usually ill-posed, but can sometimes be approached through a methodology that formulates
a possibly well-posed problem. Usual methodologies are the variational and the Bayesian
approach to inverse problems. For the Bayesian approach, Stuart [Acta Numer., 19 (2010),
pp. 451--559] has given assumptions under which the posterior measure---the Bayesian
inverse problem's solution---exists, is unique, and is Lipschitz continuous with respect to
the Hellinger distance and, thus, well-posed. In this work, we simplify and generalize this
concept: Indeed, we show well-posedness by proving existence, uniqueness, and continuity
in Hellinger distance, Wasserstein distance, and total variation distance, and with respect
to weak convergence, respectively, under significantly weaker assumptions. An immense
class of practically relevant Bayesian inverse problems satisfies those conditions. The
conditions can often be verified without analyzing the underlying mathematical model---
the model can be treated as a black box.
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1. Introduction. The representation of systems and processes in nature and tech-
nology with mathematical and computational models is fundamental in modern sci-
ence and engineering. For a partially observable process, the model calibration or
inverse problem is of particular interest. It consists of fitting model parameters such
that the model represents the underlying process. Aside from classical mathematical
models, such as partial differential equations and dynamical systems, inverse problems
also play a central role in machine learning applications, for example, classification
with deep neural networks or (non)linear support vector machines, as well as regres-
sion with deep Gaussian processes.

The solvability of inverse problems is usually classified in terms of their well-
posedness. In 1902, Hadamard [36] defined well-posedness as follows:

. . . ces probl\'emes . . . bien pos\'e, je veux dire comme possible et d\'etermin\'e.

In other words, according to Hadamard, a problem is well-posed if the solution is
possible and determined ; that is, it can be found and is exact. Today, we interpret
this principle as follows: the solution of the inverse problem exists, is unique, and
depends continuously on the data. The continuity in the data implies stability. The
existence and stability allow us to find the solution (possible), and uniqueness makes
the solution exact (d\'etermin\'e). This is a justification for well-posedness from an
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analytical and computational viewpoint. From a statistical viewpoint, well-posedness
not only allows us to find the estimate but also gives us robustness of the estimate
with respect to marginal perturbations in the data: since we often know that data is
not precise, we should anticipate only marginal changes in the estimate with respect
to marginal changes in the data. Otherwise, we should not consider the estimate
trustworthy.

Measurement noise, complexity of the model, and a lack of data typically lead to
ill-posed (i.e., not well-posed) inverse problems. Ill-posed inverse problems cannot be
solved as they are. However, certain procedures allow us to obtain estimators for the
``solution"" of the ill-posed inverse problem. To be practically relevant, of course, these
procedures should be well-posed. The most common methodologies are the Bayesian
and the variational approaches to inverse problems. In this work, we focus on the
Bayesian approach. We discuss the variational approach briefly (in subsection 2.5),
but consider it generally outside of the scope of this work.

The Bayesian approach to inverse problems represents the uncertain model pa-
rameter as a random variable. The random variable is distributed according to a
prior (measure), which reflects uncertainty in the parameter. Observing the data is
then an event with respect to which the prior shall be conditioned. The solution
of the Bayesian inverse problem is this conditional probability measure, called the
posterior (measure). Stuart [74] transferred Hadamard's principle of well-posedness
to Bayesian inverse problems: the posterior exists, it is unique, and it is locally Lip-
schitz continuous with respect to the data; continuity is measured in the Hellinger
distance. Stuart [74] shows well-posedness under a set of sufficient but not neces-
sary assumptions. Subsequently, Dashti and Stuart [21] reduced these assumptions
significantly. Several authors have discussed what we call (Lipschitz, Hellinger) well-
posedness for a variety of Bayesian inverse problems, for example, elliptic partial
differential equations [20, 42], level-set inversion [43], Helmholtz source identification
with Dirac sources [29], a Cahn--Hilliard model for tumor growth [47], hierarchical
prior measures [56], stable priors in quasi-Banach spaces [77, 78], and convex and
heavy-tailed priors [40, 41]. Finally, we mention Ernst, Sprungk, and Starkloff [30],
who discussed uniform and H\"older continuity of posterior measures with respect to
data and gave sufficient assumptions in this setting. We refer to these as (H\"older,
Hellinger) and (uniform, Hellinger) well-posedness, respectively.

In practical applications, it may be difficult to verify (Lipschitz, Hellinger), (uni-
form, Hellinger), or (H\"older, Hellinger) well-posedness. The underlying mathematical
model can be too complicated to analyze or may even be hidden in software. Indeed,
this is the case in large-scale applications, e.g., in geotechnical engineering, meteo-
rology, and genomics, and in machine learning algorithms. In any of these cases,
the model is often a black-box, i.e., a function that takes inputs and produces de-
terministic outputs but with no known properties. To the best of our knowledge, it
is not possible to show (Lipschitz, Hellinger) well-posedness for the Bayesian inver-
sion of such black-box models. In turn, it may not be necessary to show (Lipschitz,
Hellinger) well-posedness for many practical problems; Hadamard's concept contains
only continuity, not Lipschitz continuity. In either case, we know that marginal per-
turbations in the data lead to marginal changes in the posterior measure. Given only
continuity, the only difference is that we cannot use information about the data per-
turbation to quantify the change in the posterior. This, however, may be tolerable in
most practical applications.

Another pressing issue is the measurement of marginal changes in the posterior.
Most authors have discussed Lipschitz continuity with respect to the Hellinger dis-
tance; exceptions are, e.g., the articles of Iglesias, Lin, and Stuart [42] and Sprungk

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

37
.1

89
.4

9.
34

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

834 JONAS LATZ

[73]. While the Hellinger distance has useful properties, the actual choice of the metric
should depend on the area of application.

The main contributions of this article are the following:
1. A new concept of well-posedness of Bayesian inverse problems is proposed. It

consists of the existence and the uniqueness of the posterior as well as of the
continuity of the data-to-posterior map in some metric or topological space
of probability measures.

2. More specifically, the spaces of probability measures metrized with the Hell-
inger distance, the total variation distance, and the Wasserstein(p) distance,
as well as those associated with the weak topology and the topology induced
by the Kullback--Leibler divergence, are investigated.

3. Well-posedness of large classes of Bayesian inverse problems in any of these
settings is shown. The sufficient assumptions are either nonrestrictive or eas-
ily verifiable in practical problems (e.g., when having an arbitrary model,
finite-dimensional data, and nondegenerate Gaussian noise). The only actu-
ally restrictive case is that of the Kullback--Leibler topology.

This work is organized as follows. We review the Bayesian approach to inverse
problems and the concept of (Lipschitz, Hellinger) well-posedness in section 2. In
section 3, we advocate our relaxation of Lipschitz continuity and our consideration
of metrics other than the Hellinger distance. In the same section, we introduce our
notion of well-posedness and show well-posedness with respect to Hellinger, total vari-
ation, weak convergence, and the Wasserstein(p) distance, respectively. In section 4,
we extend our concept to stability measurements in the Kullback--Leibler divergence,
which is a quasi-semimetric. We specifically consider the case of finite-dimensional
data and nondegenerate Gaussian noise in section 5. We illustrate our results numer-
ically in section 6. In section 7, we give conclusions and point the reader towards
potential future research directions. As this is a revised version of the paper [54], we
also use this section for an outlook to some works that were published since publi-
cation of the original paper. Finally, we review the basics of conditional probability
in Appendix A and give detailed proofs of all statements formulated in this work in
Appendix B.

2. Inverse Problems, Ill-Posedness, and Well-Posedness.

2.1. Inverse Problem. We now introduce our notion of inverse problems and
the necessary mathematical framework. The framework uses various concepts from
measure and probability theory; for a detailed introduction, we recommend, e.g., the
book by Ash and Dol\'eans-Dade [2] or the book by Billingsley [7].

Let y\dagger be (observational) data in some separable Banach space (Y, \| \cdot \| Y ); this is
the data space. The data shall be used to train a mathematical model, that is, identify
a (model) parameter \theta \dagger in a set X. The parameter space X is a measurable subset
of some Radon space (X \prime , \scrT \prime ); i.e., (X \prime , \scrT \prime ) is a separable, completely metrizable
topological vector space. X \prime could, for instance, also be a separable Banach space.
Moreover, X and Y form measurable spaces with their respective Borel-\sigma -algebras
\scrB X := \scrB (X,X \cap \scrT \prime ) and \scrB Y := \scrB (Y, \| \cdot \| Y ). Let \scrG : X \rightarrow Y be a measurable
function called the forward response operator. It represents the connection between
parameter and data in the mathematical model. We define the inverse problem as
follows:

(IP) Find \theta \dagger \in X, such that y\dagger = \scrG (\theta \dagger ) + \eta \dagger .

Here, \eta \dagger \in Y is (observational) noise. The given ``additive noise"" setting is usual in
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many practical applications. We mainly use it here to discuss some basic principles;
many of the results shown throughout the article do not actually rely on this structure.

We discuss the solvability and stability of inverse problems in terms of well-
posedness.

Definition 2.1 (well-posedness). The problem (IP) is well-posed if
1. this problem has a solution (existence),
2. the solution is unique (uniqueness), and
3. the solution depends continuously on the data y (stability).

A problem that is not well-posed is called ill-posed.

We generally consider the observational noise \eta \dagger to be unknown and model it as
a realization of a random variable \eta \sim \mu noise. If the noise takes any value in Y , the
problem (IP) is ill-posed.

Proposition 2.2. Let X contain at least two elements, and let the support of
\mu noise be Y . Then the inverse problem (IP) is ill-posed.

Note that the assumptions in Proposition 2.2 can often be verified. If X con-
tains only one element, the inverse problem is uniquely solvable. However, there is
only one possible parameter \theta \in X, which makes the inverse problem trivial. If Y
is finite-dimensional, the second assumption is, for instance, fulfilled when \mu noise is
nondegenerate Gaussian.

2.2. Bayesian Inverse Problem. The Bayesian approach to (IP) proceeds as
follows. First, we model the parameter \theta \sim \mu prior as a random variable. \mu prior is
the so-called prior measure. This probability measure reflects the uncertainty in the
parameter.1 Moreover, we assume that \theta , \eta are independent random variables defined
on an underlying probability space (\Omega ,\scrA ,\BbbP ). In this setting, the inverse problem (IP)
is an event,

\{ y\dagger = \scrG (\theta ) + \eta \} \in \scrA ,

where the data y\dagger is a realization of the random variable \scrG (\theta \dagger ) + \eta . The solution to
the Bayesian inverse problem is the posterior measure

(2.1) \mu \dagger 
post := \BbbP (\theta \in \cdot | \scrG (\theta ) + \eta = y\dagger ).

For the definition, existence, and uniqueness statement concerning conditional prob-
abilities, we refer the reader to Appendix A.

First, note that we define y := \scrG (\theta ) + \eta to be a random variable reflecting the
distribution of the data, given an uncertain parameter. We can deduce the conditional
measure of the data y given \theta = \theta \prime :

\mu L = \BbbP (y \in \cdot | \theta = \theta \prime ) = \mu noise(\cdot  - \scrG (\theta \prime )).

To this end, note again that the inverse problem setting y\dagger = \scrG (\theta )+\eta is only a specific
example. In the following, we consider more general Bayesian inverse problems. Now,
y is a random variable on (Y,\scrB Y ) depending on \theta . The conditional probability of y
given that \theta = \theta \prime is defined by \mu L, which now fully describes the dependence of \theta and
y. In case it exists, the forward response operator \scrG is implicitly part of \mu L.

1The use of probabilities to reflect uncertainties, rather than (only) randomness, has been dis-
cussed by, e.g., Bayes [4], Cox [17], and Jaynes [45] and opposes the classical view of, e.g., Kolmogorov
[51] and von Mises [81]. Schwarz [71] criticizes both (or all) interpretations of probability.
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Remark 2.3. From a statistical viewpoint, we consider a parametric statistical
model (Y,\scrP ), where \scrP := \{ \mu L(\cdot | \theta \prime ) : \theta \prime \in X\} . Hence, the data y\dagger \in Y is a realization
of y \sim \mu L(\cdot | \theta \dagger ) for \theta \dagger \in X. The data y\dagger is then used to identify this \theta \dagger from among
the other elements of X. For a thorough discussion of statistical models, we refer
the reader to [64]. We note that throughout this work, we use the denomination
``parametric,"" even if X is an infinite-dimensional space---as opposed to the usual
nomenclature in the statistical literature, which uses the term ``parametric"" only in
the case where X is finite-dimensional, e.g., [16, 33].

Given \mu prior and \mu L, we apply Bayes' theorem to find the posterior measure \mu \dagger 
post,

now given by

(2.2) \mu \dagger 
post := \BbbP (\theta \in \cdot | y = y\dagger ).

Bayes' theorem gives a connection of \mu prior, \mu 
\dagger 
post, and \mu L in terms of their probability

density functions (pdfs). We obtain these pdfs by assuming that there are \sigma -finite
measure spaces (X,\scrB X, \nu X) and (Y,\scrB Y, \nu Y ), where \mu prior \ll \nu X and \mu L(\cdot | \theta \prime ) \ll \nu Y
for \theta \prime \in X, \mu prior-almost surely (a.s.). The Radon--Nikodym theorem implies that the
following pdfs exist:

d\mu L

d\nu Y
(y\dagger ) =: L(y\dagger | \theta \prime ), d\mu prior

d\nu X
(\theta ) =: \pi prior(\theta ).

The conditional density L(\cdot | \theta \prime ) is called (data) likelihood. The dominating measures
\nu X , \nu Y are often (but not exclusively) given by the counting measure, the Lebesgue
measure, or a Gaussian measure. For example, if X is infinite-dimensional and \mu prior

is Gaussian, we set \nu X := \mu prior and \pi prior \equiv 1. The posterior measure is then given in
terms of a pdf with respect to the Gaussian prior measure. This setting is thoroughly
discussed in [21, 74]; however, it is also contained in our version of Bayes' theorem.
Before moving on to that, we discuss a measure-theoretic subtlety we encounter with
conditional probabilities and their densities.

Remark 2.4. Conditional probabilities such as \mu \dagger 
post = \BbbP (\theta \in \cdot | y = y\dagger ) are

uniquely defined only for \BbbP (y \in \cdot )-almost every (a.e.) y\dagger \in Y ; see Theorem A.1.
This implies that if \BbbP (y \in \cdot ) has a continuous distribution, point evaluations in Y
of the function \BbbP (\theta \in A| y = \cdot ) may not be well defined for A \in \scrB X. In this case,
one would not be able to compute the posterior measure for any single-point data set
y\dagger \in Y . Also, the statements (2.1), (2.2), as well as the definition of the likelihood,
should be understood only for \BbbP (y \in \cdot )-a.e. y\dagger \in Y .

Our version of Bayes' theorem is mainly built on [21, Theorem 3.4]. However, in
the proof we need neither assume that the model evidence is positive and finite nor
assume continuity in the data or the parameter of the likelihood.

Theorem 2.5 (Bayes). Let y\dagger \in Y be \BbbP (y \in \cdot )-a.s. defined. Moreover, let L(y\dagger | \cdot )
be integrable, i.e., in L1(X,\mu prior), and strictly positive. Then,

Z(y\dagger ) :=

\int 
L(y\dagger | \theta )d\mu prior(\theta ) \in (0,\infty ).

Moreover, the posterior measure \mu \dagger 
post \ll \nu X exists, it is unique, and it has the \nu X-

density

(2.3) \pi \dagger 
post(\theta 

\prime ) =
L(y\dagger | \theta \prime )\pi prior(\theta 

\prime )

Z(y\dagger )
(\theta \prime \in X, \nu X-a.s.).
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The quantity in the denominator of Bayes' formula Z(y\dagger ) :=
\int 
L(y\dagger | \theta )d\mu prior(\theta ) is

the \nu Y -density of \BbbP (y \in \cdot ) and is called (model) evidence. We comment on the
assumptions of Theorem 2.5 in subsection 3.4. In Remark 2.4, we mention that the
posterior measure is only \BbbP (y \in \cdot )-a.s. uniquely defined. Hence, the map y\dagger \mapsto \rightarrow \mu \dagger 

post

is not well defined. We resolve this issue by fixing the definition of the likelihood
L(y\dagger | \theta \prime ) for every y\dagger \in Y and \mu prior-a.e. \theta 

\prime \in X. According to Theorem 2.5, we then
indeed obtain a unique posterior measure for any data set y\dagger \in Y . We define the
Bayesian inverse problem with prior \mu prior and likelihood L by

(BIP) Find \mu \dagger 
post \in Prob(X,\mu prior) with \nu X -density \pi \dagger 

post(\theta ) =
L(y\dagger | \theta )\pi prior(\theta )

Z(y\dagger )
.

Here, Prob(X,\mu prior) denotes the set of probability measures on (X,\scrB X) which are
absolutely continuous with respect to the prior \mu prior. Similarly, we define the set of
all probability measures on (X,\scrB X) by Prob(X). If X forms a normed space with
some norm \| \cdot \| X , we define the set of probability measures with finite pth moment
by

Probp(X) :=

\biggl\{ 
\mu \in Prob(X) :

\int 
\| \theta \| pX\mu (d\theta ) < \infty 

\biggr\} 
(p \in [1,\infty )).

2.3. Degenerate Bayesian Inverse Problems. There are Bayesian inverse prob-
lems for which Bayes' theorem (Theorem 2.5) is not satisfied. Consider \mu noise :=
\delta (\cdot  - 0) as a noise distribution; i.e., the noise is a.s. 0. We refer to Bayesian inverse
problems with such a noise distribution as degenerate, since the noise distribution is
degenerate. Here, we represent the likelihood by

L(y\dagger | \theta \prime ) :=

\Biggl\{ 
1 if y\dagger = \scrG (\theta \prime ),
0 otherwise.

Due to different dimensionality, it is now likely that the prior \mu prior is chosen such
that it gives probability 0 to the solution manifold S = \{ \theta \prime \in X : y\dagger = \scrG (\theta \prime )\} , i.e.,
\mu prior(S) = 0. Then, we have

Z(y\dagger ) =

\int 
X

L(y\dagger | \theta )\mu prior(d\theta ) =

\int 
S

1\mu prior(d\theta ) = \mu prior(S) = 0

and do not obtain a valid posterior measure for y\dagger from Theorem 2.5. Alternatively,
we can employ the disintegration theorem; see Cockayne et al. [14] and the definition
of conditional probabilities after Theorem A.1. In the following proposition, we give
a simple example for such (BIP).

Proposition 2.6. Let \scrG : X \rightarrow Y be a homeomorphism; i.e., it is continuous and
bijective, and \scrG  - 1 : Y \rightarrow X is continuous as well. Moreover, let \mu prior \in Prob(X)

be some prior measure, and let \mu noise = \delta (\cdot  - 0). Then, \mu \dagger 
post = \delta (\scrG (\cdot )  - y\dagger ) =

\delta (\cdot  - \scrG  - 1(y\dagger )) for \mu prior(\scrG \in \cdot )-a.e. y\dagger \in Y .

Note that we cannot easily solve the problem discussed in Remark 2.4 for this
Bayesian inverse problem. Hence, point evaluations y\dagger \mapsto \rightarrow \mu \dagger 

post may indeed not be well
defined in this setting. Therefore, when discussing this Bayesian inverse problem, we
will fix one representative in the class of measures that are a.s. equal to the posterior.
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2.4. Lipschitz Well-Posedness. We now move on to the definition of Stuart's
[74] concept of well-posedness of Bayesian inverse problems. Similarly to the well-
posedness definition of the classical problem (IP), we consider an existence, a unique-
ness, and a stability condition; see Definition 2.1. Stability is quantified in terms of
the Hellinger distance

dHel(\mu , \mu 
\prime ) =

\sqrt{}    1

2

\int \Biggl( \sqrt{} 
d\mu \prime 

d\mu prior
 - 

\sqrt{} 
d\mu 

d\mu prior

\Biggr) 2

d\mu prior

between two measures \mu , \mu \prime \in Prob(X,\mu prior). The Hellinger distance is based on
the work [38]. With this, we can now formalize the concept of (Lipschitz, Hellinger)
well-posedness for Bayesian inverse problems.

Definition 2.7 ((Lipschitz, Hellinger) well-posedness). The problem (BIP) is
(Lipschitz, Hellinger) well-posed if

1. \mu \dagger 
post \in Prob(X,\mu prior) exists (existence),

2. \mu \dagger 
post is unique in Prob(X,\mu prior) (uniqueness), and

3. (Y, \| \cdot \| Y ) \ni y\dagger \mapsto \rightarrow \mu \dagger 
post \in (Prob(X,\mu prior),dHel) is locally Lipschitz continu-

ous (stability).

2.5. Variational Inverse Problems. We have presented the Bayesian approach
to inverse problems here as a natural way to formulate and solve the inverse problem
(IP) from a probabilistic perspective. Although it does not appear in the remainder
of the article, for the sake of completeness, we briefly comment now on the variational
approach to inverse problems. For more details, we refer to, e.g., [11, 12, 34]. The
fundamental idea traces back to classical maximum likelihood estimation: we aim to
find the parameter that maximizes the likelihood function given the observed data y\dagger .
In particular, we find

\theta ml \in argmin\theta \prime \in X  - logL(y\dagger | \theta \prime ).
This problem is, for instance, a (possibly nonlinear) least-squares problem if \mu noise is
nondegenerate Gaussian. This problem is still likely to be ill-posed: the optimization
problem may be nonconvex or the parameter underdetermined, which in both cases
can lead to multiple global minimizers. Even if there is a single global minimizer, dis-
continuity of y\dagger \mapsto \rightarrow \theta ml appears in, e.g., image deblurring, where \scrG is often linear and
invertible, but not boundedly invertible [34]. Another example for the ill-posedness
of maximum likelihood estimation is given by [48] in the context of estimating hyper-
parameters in Gaussian process regression.

The ill-posedness of the variational inverse problem can often be mitigated through
appropriate regularization, e.g., solving

\theta reg \in argmin\theta \prime \in X  - logL(y\dagger | \theta \prime ) +R(\theta \prime )

for an appropriate function R : X \rightarrow \BbbR , the regularizer. R is used to introduce
additional information about \theta \dagger , e.g., that it lives in a certain subspace of X, that it
is close to some value \theta 0 \in X, or that it is sparse, i.e., it is a vector that has many
zero entries. Some examples for well-posed regularized variational inverse problems
can be found in [13].

The regularizer is conceptually very similar to a prior measure. Indeed, in finite-
dimensional settings, where \pi \dagger 

post is a Lebesgue density, the maximum a posteriori
(MAP) estimator

\theta MAP \in argmin\theta \prime \in X  - log \pi \dagger 
post(\theta 

\prime )
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corresponds to a regularized variational inverse problem, with R =  - log \pi prior. In the
infinite-dimensional setting a similar correspondence of MAP and variational inverse
problem can often be shown to hold true. As there is no Lebesgue density in infinite
dimensions, we need a different way to represent the MAP estimator. A natural way
is to consider the \theta \prime \in X that maximizes the limit

lim
\delta \downarrow 0

\mu \dagger 
post(B(\theta \prime , \delta ))

\mu \dagger 
post(B(\theta \prime \prime , \delta ))

for all \theta \prime \prime \in X and where B(\theta \prime \prime , \delta ) \in \scrB X denotes the open ball with center \theta \prime \prime \in X and
radius \delta > 0. MAP estimators in this infinite-dimensional setting have been studied
in, e.g., [19, 37, 60], where they can indeed be determined through a regularized vari-
ational inverse problem. The opposite correspondence between MAP and regularized
variational inverse problems is not always true. Indeed, exp( - R) does not need to
represent a prior measure, e.g., [53].

3. Redefining Bayesian Well-Posedness. In this work, we try to identify gen-
eral settings in which we can show some kind of well-posedness of (BIP), using no or
very limited assumptions on the underlying mathematical model or the forward re-
sponse operator. In particular, we aim to find verifiable assumptions on the likelihood
L(y\dagger | \theta \prime ) (or rather the noise model) that are independent of the underlying forward
response operator

\scrG \in M := \{ f : X \rightarrow Y measurable\} .

Neglecting Proposition 2.6 for a moment, existence and uniqueness are often im-
plied by Theorem 2.5. However, the local Lipschitz continuity condition, reflecting
stability, is rather strong. In subsection 3.1, we give examples in which local Lipschitz
continuity does not hold in the posterior measure or is hard to verify by using results
in the literature. In any of these cases, we show that the posterior measures are
continuous in the data. Given that the classical formulation of well-posedness, i.e.,
Definition 2.1, does not require local Lipschitz continuity and that local Lipschitz con-
tinuity may be too strong for general statements, we use these examples to advocate
a relaxation of the local Lipschitz continuity condition.

Moreover, it is not possible to use the Hellinger distance to quantify the dis-
tance between two posteriors in some situations. In other situations, the Hellinger
distance may be inappropriate from a contextual viewpoint. In subsection 3.2, we
will investigate these issues as motivation to consider metrics other than the Hellinger
distance.

In subsection 3.3, we will introduce the concept of (P, d)-well-posedness of Bayesian
inverse problems. Finally, we will show the main results of this work: we give condi-
tions under which we can show well-posedness in a variety of metrics in subsections 3.4
and 3.5.

3.1. Relaxing the Lipschitz Condition. Ill-posedness in the (Lipschitz, Hellinger)
sense can, for instance, occur when data has been transformed by a non-Lipschitz con-
tinuous function. As an example, we consider a Bayesian inverse problem that is linear
and Gaussian; however, the data is transformed by the cube root function.

Example 3.1. Let X := Y := \BbbR . We consider the Bayesian approach to the
inverse problem

y\dagger = (\theta + \eta )3,
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Fig. 1 Hellinger distances between posterior measures in Example 3.1. The posterior measures are
based on two data sets: y\dagger that varies in (--1,1) and y\ddagger := 0. In the left figure, we show the
relationship between the data and the Hellinger distance. In the right figure, we replace the

data by y\dagger := 3
\sqrt{} 

y\dagger , y\ddagger := 3
\sqrt{} 

y\ddagger . In both plots, we observe a continuous relationship between
the Hellinger distance and the data, which is also Lipschitz continuous in the right figure but
not in the left figure.

where \theta is the unknown parameter and \eta is observational noise; both are inde-
pendent. The probability measures of the parameter and the noise are given by
\mu prior := \mu noise := N(0, 12). The likelihood of (BIP) is

L(\theta | y\dagger ) = 1\surd 
2\pi 

exp

\biggl( 
 - 1

2
\| \theta  - 3

\sqrt{} 
y\dagger \| 2

\biggr) 
.

Since both the prior and noise are Gaussian, and the forward model is linear (the
identity operator), we can compute the posterior measure analytically; see [1, section

3]. We obtain \mu \dagger 
post := N( 3

\sqrt{} 
y\dagger /2, (1/

\surd 
2)2). Moreover, one can show that

dHel(\mu 
\dagger 
post, \mu 

\ddagger 
post) =

\sqrt{} 
1 - exp

\biggl( 
 - 1

8

\Bigl( 
3
\sqrt{} 
y\dagger  - 3

\sqrt{} 
y\ddagger 
\Bigr) 2\biggr) 

,(3.1)

where \mu \ddagger 
post is the posterior measure based on a second data set y\ddagger \in Y . One can show

analytically that this Hellinger distance in (3.1) is not locally Lipschitz as | y\dagger  - y\ddagger | \rightarrow 0.
It is, however, continuous. We plot the Hellinger distance in Figure 1 on the left-hand
side, where we set y\ddagger := 0 and vary only y\dagger \in ( - 1, 1). We observe indeed that the
Hellinger distance is continuous but not Lipschitz continuous. In the plot on the
right-hand side, we show the Hellinger distance when considering 3

\sqrt{} 
y\dagger , rather than

y\dagger , as the data set. In this case, the Hellinger distance is locally Lipschitz in the data.

The Bayesian inverse problem in Example 3.1 is ill-posed in the sense of Defini-
tion 2.7, since the posterior is only continuous but not Lipschitz in the data. However,
we can heal this ill-posedness by transforming y\dagger \mapsto \rightarrow 3

\sqrt{} 
y\dagger . Hence, the (Lipschitz,

Hellinger) well-posedness property reduces to a continuous data transformation prob-
lem.

Other examples may be (Lipschitz, Hellinger) well-posed, but this may be difficult
to verify in practice or for general forward response operators. Dashti and Stuart give
[21, Assumptions 1] that are sufficient, but not necessary, to prove well-posedness.
One of the assumptions is local Lipschitz continuity in the log-likelihood logL with
respect to the data. Here, the Lipschitz constant is assumed to be a positive function
that is monotonically nondecreasing in \| \theta \| X . This assumption is not satisfied in the
following example.
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Example 3.2. Let X := (0, 1) and Y := \BbbR . We consider the Bayesian approach
to the inverse problem

y\dagger = \theta  - 1 + \eta ,

where \theta is the unknown parameter and \eta is observational noise. Neglecting linear
prefactors, this inverse problem can be thought of as the recovery of a wavelength \theta 
from a noisy frequency measurement y\dagger .

The prior measure of \theta is given by \mu prior = Unif(0, 1). The noise is distributed
according to \mu noise = N(0, 12). Moreover, note that both the parameter and noise are
independent random variables. The likelihood of (BIP) is

L(y\dagger | \theta ) = 1\surd 
2\pi 

exp

\biggl( 
 - 1

2
\| \theta  - 1  - y\dagger \| 2

\biggr) 
.

For fixed \theta \in X, the logarithm of the likelihood in this setting is Lipschitz continuous
in the data. However, as \theta \downarrow 0, the Lipschitz constant explodes. Hence, the likelihood
does not fulfill [21, Assumptions 1].

Hence, we cannot use the theory of Dashti and Stuart [21, section 4] to show (Lip-
schitz, Hellinger) well-posedness of the Bayesian inverse problem in Example 3.2. We
expect a similar problem for forward response operators that are not locally bounded.
In Corollary 5.1, we revisit Example 3.2 and show that the posterior measure is
continuous with respect to the data.

Up to now we have presented academic examples. A practical and more relevant
problem is the Bayesian elliptic inverse problem. It is the prototype example in the
context of partial differential equations and has been investigated by various authors,
e.g., [20, 21, 56, 67, 74].

Example 3.3 (elliptic inverse problem). Let the parameter space be the space of
continuously differentiable functions X := C1(D) on a connected, bounded open set
D \subseteq \BbbR d, d = 1, 2, 3, with smooth boundary. The data space Y := \BbbR k is finite-
dimensional. Moreover, let f \in C0(D) be a continuous function. The underlying
model is an elliptic partial differential equation,

 - \nabla \cdot 
\Bigl( 
e\theta (x) \nabla p(x)

\Bigr) 
= f(x) (x \in D),

p(x) = 0 (x \in \partial D),

or rather its weak formulation. In a typical application, the solution p represents
the pressure head in a groundwater reservoir, while the diffusion coefficient exp(\theta (x))
represents the reservoir's hydraulic conductivity. Noisy measurements of the pressure
head at locations x1, . . . , xk \in D shall now be used to infer the log-conductivity \theta .
Hence, the forward response operator is the map

\scrG : X \rightarrow Y, \theta \mapsto \rightarrow (p(x1), . . . , p(xk)).

In practical applications, allowing only continuously differentiable functions to be
diffusion coefficients may be too restrictive. Iglesias, Lin, and Stuart [42] consider
more realistic geometric prior measures. In [42, Theorem 3.5], the authors show local
Lipschitz continuity for some of those prior measures, but they show only H\"older
continuity with coefficient \gamma = 0.5 for others. This is another example where (Lip-
schitz, Hellinger) well-posedness in the sense of Definition 2.7 has not been shown,
but continuity in the posterior measure is satisfied.
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In the following, in subsection 3.3, we weaken the Lipschitz well-posedness by
replacing Lipschitz continuity with continuity as a stability condition. Looking back
at Examples 3.1--3.3, we consider this weakening to be tolerable for practical problems.

3.2. Reconsidering the Hellinger Distance. The Hellinger distance is a pop-
ular choice for analyzing the continuous dependence or, e.g., the approximation of
measures. However, there are cases in which it cannot be used.

We consider the Bayesian inverse problem discussed in Proposition 2.6. We set
\mu \dagger 
post := \delta (\cdot  - \scrG  - 1(y\dagger )) as a posterior measure with \scrG  - 1 : Y \rightarrow X continuous. We set

X := Y := \BbbR and \mu prior := N(0, 12). Then \mu \dagger 
post \not \ll \mu prior for y\dagger \in Y . The Hellinger

distance between \mu \dagger 
post and \mu \ddagger 

post is not well defined for any other data set y\ddagger \not = y\dagger .
Instead, we consider the closely related total variation (tv) distance and obtain

dtv(\mu 
\dagger 
post, \mu 

\ddagger 
post) := sup

B\in \scrB X

\bigm| \bigm| \bigm| \mu \dagger 
post(B) - \mu \ddagger 

post(B)
\bigm| \bigm| \bigm| = 1.

Hence, \mu \ddagger 
post \not \rightarrow \mu \dagger 

post in tv as y\ddagger \rightarrow y\dagger . Thus, the Bayesian inverse problem is not
stable in the tv distance, i.e., ill-posed in this sense.

However, we have \mu \ddagger 
post \rightarrow \mu \dagger 

post weakly as y\ddagger \rightarrow y\dagger . Hence, we observe continuity
in the weak topology on the space Prob(X) of probability measures on (X,\scrB X).
Equivalently, we can say that we observe continuity in the Prokhorov metric on
Prob(X),

dProk(\mu , \mu 
\prime ) := inf \{ \varepsilon > 0 : \mu (B) \leq \mu \prime (B\varepsilon ) + \varepsilon ,B \in \scrB X\} ,

where B\varepsilon := \{ b \in X : b\prime \in B, \| b  - b\prime \| X < \varepsilon \} is the open generalized \varepsilon -ball around
B \in \scrB X; see [66] for details.

To summarize, there are cases in which the Hellinger distance is infeasible for
showing well-posedness. Moreover, different metrics may lead to different well-posed-
ness results. Hence, we should introduce a concept that allows for different metrics
on the space of probability measures.

3.3. Definition. As motivated in subsections 3.1 and 3.2, we next generalize the
notion of well-posedness of Bayesian inverse problems. In Definition 2.7, we considered
Lipschitz continuity in the Hellinger distance as a stability criterion. Now, we consider
simple continuity with respect to various metric spaces.

Definition 3.4 ((P, d)-well-posedness). Let (P, d) be a metric space of probabil-
ity measures on (X,\scrB X), i.e., P \subseteq Prob(X). The problem (BIP) is (P, d)-well-posed
if

1. \mu \dagger 
post \in P exists (existence);

2. \mu \dagger 
post is unique in P (uniqueness); and

3. (Y, \| \cdot \| Y ) \ni y\dagger \mapsto \rightarrow \mu \dagger 
post \in (P, d) is a continuous function (stability).

For particular (P, d), we introduce special denominations. Indeed, we denote
(P, d)-well-posedness by

(i) weak well-posedness if we consider the Prokhorov metric; i.e., we set (P, d) =
(Prob(X),dProk);

(ii) tv well-posedness if we consider the tv; i.e., we set (P, d) := (Prob(X),dtv);
(iii) Hellinger well-posedness if we consider the Hellinger distance; i.e., we set

(P, d) := (Prob(X,\mu prior),dHel); and
(iv) Wasserstein(p) well-posedness if X is a normed space and if we consider the

Wasserstein(p) distance; i.e., we set (P, d) := (Probp(X),dWas(p)) for some
p \in [1,\infty ).
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Which concept of well-posedness should we consider in practice? Weak well-posedness
implies continuity of posterior expectations of bounded, continuous quantities of inter-
est. If this is the task of interest, weak well-posedness should be sufficient. Hellinger
and tv distance imply convergence of the posterior expectation of any bounded quan-
tity of interest. Hence, if discontinuous functions shall be integrated, or probabilities
computed, those distances should be chosen. Wasserstein(p) distances have gained
popularity in the convergence and stability theory of Markov chain Monte Carlo
(MCMC) algorithms; see, e.g., [31, 69]. Hence, Wasserstein(p) well-posedness may
be the right tool when discussing the well-posedness of solving a Bayesian inverse
problem via MCMC.

3.4. Hellinger, Total Variation, and Weak Well-Posedness. We now give as-
sumptions under which a Bayesian inverse problem can be shown to be Hellinger
well-posed, tv well-posed, and weakly well-posed.

Assumptions 3.5. Consider (BIP). Let the following assumptions hold for \mu prior-
a.e. \theta \prime \in X and every y\dagger \in Y .

(A1) L(\cdot | \theta \prime ) is a strictly positive probability density function;
(A2) L(y\dagger | \cdot ) \in L1(X,\mu prior);
(A3) g \in L1(X,\mu prior) exists such that L(y\ddagger | \cdot ) \leq g for all y\ddagger \in Y ; and
(A4) L(\cdot | \theta \prime ) is continuous.

(A1) means that any data set y\dagger \in Y has a positive likelihood under any parameter
\theta \prime \in X. We conservatively assume that no combination of parameter and data values
is impossible, but some may be unlikely. This can usually be satisfied by continuously
transforming the forward response operator and/or by choosing a noise distribution
that is concentrated on all of Y . Note that the assumption that L(y\dagger | \theta \prime ) is a pdf
can be relaxed to c \cdot L(y\dagger | \theta \prime ) being a pdf, where c > 0 depends on neither y\dagger nor
\theta \prime . (A2)--(A3) imply that the likelihood is integrable with respect to the prior and
that it is bounded from above uniformly in the data by an integrable function. These
assumptions are satisfied, for instance, when the likelihood is bounded from above by
a constant. Noise models with bounded pdfs on Y should generally imply a bounded
likelihood. (A4) requires the continuity of the likelihood with respect to the data.
Continuity in the data is given, for instance, when considering noise models with
continuous pdfs and a continuous connection between the noise and the model. We
give examples in section 6 showing that we cannot neglect the continuity in the data.
Here, we show Hellinger, tv, and weak well-posedness under (A1)--(A4).

Theorem 3.6. Let (A1)--(A4) hold for (BIP). Then (BIP) is weakly, Hellinger,
and total variation (whtv) well-posed.

For the proof of this theorem, we proceed as follows. First, we show that (A1)--
(A4) imply Hellinger well-posedness. Then we show that tv well-posedness and weak
well-posedness are indeed implied by Hellinger well-posedness by some topological
argument.

Lemma 3.7. Let (A1)--(A4) hold for (BIP). Then (BIP) is Hellinger well-posed.

We can bound Prokhorov and tv distance with the Hellinger distance; see [32] for
the appropriate results. In such a case, the continuity of a function in the bounding
metric immediately implies continuity also in the bounded metric.

Lemma 3.8. Let A,B be two sets, and let (A, dA), (B, d1), and (B, d2) be metric
spaces. Let f : (A, dA) \rightarrow (B, d2) be a continuous function. Moreover, let t : [0,\infty ) \rightarrow 
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[0,\infty ) be continuous in 0, with t(0) = 0. Finally, let

d1(b, b
\prime ) \leq t(d2(b, b

\prime )) (b, b\prime \in B).

Then f : (A, dA) \rightarrow (B, d1) is continuous as well.

In the setting of Lemma 3.8, we call d1 coarser than d2, respectively, d2 finer
than d1. The lemma implies that if we are going from a finer to a coarser metric,
continuous functions keep being continuous. By the bounds given in [32], Prokhorov

and tv distance are coarser than the Hellinger distance. If the function y\dagger \mapsto \rightarrow \mu \dagger 
post is

continuous in the Hellinger distance, it is also continuous in the weak topology and
the tv distance. We summarize this result in the following proposition.

Proposition 3.9. Let d1, d2 be metrics on P, and let d1 be coarser than d2. Then,
a Bayesian inverse problem that is (P, d2)-well-posed is also (P, d1)-well-posed.

Therefore, Hellinger well-posedness (in Lemma 3.7) implies tv and weak well-
posedness (in Theorem 3.6).

3.5. Wasserstein(\bfitp ) Well-Posedness. Let p \in [1,\infty ), and let X form a normed
space with norm \| \cdot \| X . The Wasserstein(p) distance between \mu , \mu \prime \in Probp(X) can
be motivated by the theory of optimal transport. It is given as the cost of the optimal
transport from \mu to \mu \prime . The cost of transport from \theta \in X to \theta \prime \in X is given by
\| \theta  - \theta \prime \| X . More precisely, the Wasserstein(p) distance (i.e., the Wasserstein distance
of order p) is defined by

dWas(p)(\mu , \mu 
\prime ) :=

\biggl( 
inf

\Lambda \in C(\mu ,\mu \prime )

\int 
X\times X

\| \theta  - \theta \prime \| pXd\Lambda (\theta , \theta \prime )

\biggr) 1/p

,

where C(\mu , \mu \prime ) := \{ \Lambda \prime \in Prob(X2) : \mu (B) = \Lambda \prime (B \times X), \mu \prime (B) = \Lambda \prime (X \times B), B \in 
\scrB X\} is the set of couplings of \mu , \mu \prime \in Probp(X). We can link convergence in the
Wasserstein(p) distance to weak convergence. Let (\mu n)n\in \BbbN \in Probp(X)\BbbN be a se-
quence, and let \mu \in Probp(X) be some other probability measure. Then, according
to [80, Theorem 6.9], we have

lim
n\rightarrow \infty 

dWas(p)(\mu n, \mu ) = 0(3.2)

\leftrightarrow 
\biggl( 

lim
n\rightarrow \infty 

dProk(\mu n, \mu ) = 0 and lim
n\rightarrow \infty 

\int 
\| \theta \| pX\mu n(d\theta ) =

\int 
\| \theta \| pX\mu (d\theta )

\biggr) 
.

Hence, to show Wasserstein(p) well-posedness, we need to show weak well-posedness
and stability of the pth posterior moment with respect to changes in the data. As-
sumptions (A1)--(A4) are not sufficient to show the latter. As in subsection 3.4, we
now give the additional assumption (A5) that we need to show Wasserstein(p) well-
posedness. Then, we discuss situations in which this assumption is satisfied. We finish
this section by showing Wasserstein well-posedness under (A1)--(A5).

Assumption 3.10. Consider (BIP). Let the following assumption hold:
(A5) g\prime \in L1(X,\mu prior) exists such that \| \theta \prime \| pX \cdot L(y\dagger | \theta \prime ) \leq g\prime (\theta \prime ) for \mu prior-a.e.

\theta \prime \in X and all y\dagger \in Y .

Assumption (A5) eventually requires a uniform bound on the pth moment of the
posterior measure. This is, in general, not as easily satisfied as (A1)--(A4). However,
there is a particular case when we can show that (A1)--(A5) are satisfied rather easily,
which is if the likelihood is bounded uniformly by a constant and if the prior has a
finite pth moment.
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Proposition 3.11. We consider (BIP) and some p \in [1,\infty ). Let (A1) and (A4)
hold. Moreover, let some c \in (0,\infty ) exist, such that

L(y\dagger | \theta \prime ) \leq c (y\dagger \in Y ; \theta \prime \in X,\mu prior-a.s.),

and let \mu prior \in Probp(X). Then (A1)--(A5) are satisfied.

We have already mentioned that a uniformly bounded likelihood does not appear
to be a very restrictive property. Boundedness of the pth moment of the prior is rather
restrictive, however. In practical problems, prior measures very often come from well-
known families of probability measures, such as Gaussian, Cauchy, and exponential.
For such families we typically know whether certain moments are finite. In this case, it
is easy to see, with Proposition 3.11, whether (BIP) satisfies assumption (A5). Hence,
(A5) is restrictive but easily verifiable. Next, we state our result on Wasserstein(p)
well-posedness.

Theorem 3.12. Let p \in [1,\infty ), and let (A1)--(A5) hold for (BIP). Then, (BIP) is
Wasserstein(p) well-posed.

Finally, we note that weak and Wasserstein(p) stability can also hold in degen-
erate Bayesian inverse problems; see subsection 2.3. Given the argumentation in
subsection 3.2, we see that the Bayesian inverse problem discussed in Proposition 2.6
is stable in the weak topology but not in the Hellinger or in the tv sense. Indeed,
the Bayesian inverse problem is also stable in the Wasserstein(p) distance for any
p \in [1,\infty ) but satisfies neither (A1) nor (A4).

Corollary 3.13. We consider the Bayesian inverse problem given in Proposi-
tion 2.6; i.e., we assume that the posterior measure is given by

\mu \dagger 
post = \delta (\cdot  - \scrG  - 1(y\dagger )) (y\dagger \in Y ),

and that \scrG  - 1 : Y \rightarrow X is continuous. Then this posterior measure is stable in the
weak topology. If X is additionally a normed space, the posterior is also stable in
Wasserstein(p) for any p \in [1,\infty ).

4. Well-Posedness in Quasi-semimetrics. The distances we have considered
in section 3 (dHel,dtv,dProk,dWas(p)) are all well-defined metrics. In statistics, and
especially in information theory, various distance measures are used that are not
actually metrics. For instance, they are asymmetric (quasi-metrics), they do not
satisfy the triangle inequality (semimetrics), or they do not satisfy either (quasi-
semimetrics). Due to their popularity, it is natural to consider stability also in such
generalized distance measures.

The Kullback--Leibler divergence (KLD) is a popular quasi-semimetric used in
information theory and machine learning. In the following, we consider the KLD
exemplary as a quasi-semimetric, in which we discuss well-posedness. The KLD is
used to describe the information gain when going from \mu \in Prob(X) to another
measure \mu \prime \in Prob(X,\mu ). If defined, it is given by

DKL(\mu 
\prime \| \mu ) :=

\int 
X

log

\biggl( 
d\mu \prime 

d\mu 

\biggr) 
d\mu \prime .

The KLD induces a topology; see [5]. Hence, we can indeed describe continuity in
the KLD and, thus, consider the Kullback--Leibler well-posedness of Bayesian inverse
problems. This concept bridges information theory and Bayesian inverse problems and
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allows statements about the loss of information in the posterior measure when the
data is perturbed. In particular, we define this loss of information by the information
gain when going from the posterior \mu \ddagger 

post with perturbed data y\ddagger to the posterior \mu \dagger 
post

with unperturbed data y\dagger . Hence, the loss of information is equal to DKL(\mu 
\dagger 
post\| \mu 

\ddagger 
post).

A Bayesian inverse problem is Kullback--Leibler well-posed if the posterior measure
exists, if it is unique, and if the information loss is continuous with respect to the
data.

Definition 4.1 (Kullback--Leibler well-posed). The problem (BIP) is Kullback--
Leibler well-posed if

1. \mu \dagger 
post \in Prob(X,\mu prior) exists (existence);

2. \mu \dagger 
post is unique in Prob(X,\mu prior) (uniqueness); and

3. for all y\dagger \in Y and \varepsilon > 0, there is \delta (\varepsilon ) > 0, such that

DKL(\mu 
\dagger 
post\| \mu 

\ddagger 
post) \leq \varepsilon (y\ddagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta (\varepsilon )) (stability).

In the setting of Theorem 2.5, (A1)--(A4) are not sufficient to show Kullback--
Leibler well-posedness; indeed, the Kullback--Leibler divergence may not even be well
defined. We require the following additional assumption on the log-likelihood.

Assumption 4.2. Consider (BIP). Let the following assumption hold for \mu prior-
a.e. \theta \prime \in X and every y\dagger \in Y :

(A6) There are a \delta > 0 and a function h(\cdot , y\dagger ) \in L1(X,\mu \dagger 
post) such that

| logL(y\ddagger | \cdot )| \leq h(\cdot , y\dagger ) (y\ddagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta ).

Assumption (A6) is much more restrictive than (A1)--(A4). Indeed, we now re-
quire some integrability condition on the forward response operator. The condition
may be hard to verify when the posterior measure has heavy tails, when the model is
unbounded, or when we are not able to analyze the underlying model.

Theorem 4.3. Let (A1)--(A4) and (A6) hold for (BIP). Then (BIP) is Kullback--
Leibler well-posed.

Remark 4.4. We note that we have allowed the bound in (A6) to depend on
y\dagger \in Y and to hold only locally on sets of the form \{ y\ddagger : \| y\dagger  - y\ddagger \| Y \leq \delta \} , rather than
uniformly over Y . In the same way, we can also generalize the given ``global"" versions
of (A3) and (A5) to local versions. This will, for instance, be required in the proof of
Corollary 5.3. However, we imagine that in most practical cases the global versions
of (A3) and (A5) are not too restrictive. Hence, for the sake of simplicity we prefer
those.

5. The Additive Gaussian Noise Case. In practice, the data space is typically
finite-dimensional, and a popular modeling assumption for measurement error is ad-
ditive nondegenerate Gaussian noise. In this case, one can verify assumptions (A1)--
(A4)---independently of prior \mu prior and forward response operator \scrG \in M = \{ f : X \rightarrow 
Y measurable\} . Hence, this very popular setting leads to a well-posed Bayesian in-
verse problem in the weak topology, the Hellinger distance, and the tv distance. If the
prior has a finite pth moment, we additionally obtain Wasserstein(p) well-posedness.

Corollary 5.1. Let Y := \BbbR k and \Gamma \in \BbbR k\times k be symmetric positive definite.
Let \scrG \in M be a measurable function. A Bayesian inverse problem with additive
nondegenerate Gaussian noise \eta \sim N(0,\Gamma ) is given by the following likelihood:

L(y\dagger | \theta ) = det(2\pi \Gamma ) - 1/2 exp

\biggl( 
 - 1

2
\| \Gamma  - 1/2(\scrG (\theta ) - y\dagger )\| 2Y

\biggr) 
.
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Then (BIP) corresponding to likelihood L and
(a) any prior \mu prior \in Prob(X) is whtv well-posed;
(b) any prior \mu prior \in Probp(X) is Wasserstein(p) well-posed, where p \in [1,\infty )

and X is a normed space.

Remark 5.2. Let X contain at least two elements. The non-Bayesian inverse
problem (IP) corresponding to the additive Gaussian noise setting in Corollary 5.1
is ill-posed. We have shown this in Proposition 2.2. Hence, in the case of Gaussian
noise, the Bayesian approach using any prior measure always gives a whtv well-posed
Bayesian inverse problem, in contrast to the always ill-posed (IP).

The fact that we can show well-posedness under any forward response operator
and any prior measure in Prob(X) or Probp(X) has relatively strong implications for
practical problems. We now comment on the deterministic discretization of posterior
measures, hierarchical models, and Bayesian model selection.

5.1. Deterministic Discretization. Bayesian inverse problems can be discretized
with deterministic quadrature rules; such rules are quasi-Monte Carlo [22], sparse
grids [70], and Gaussian quadrature. Those are then used to approximate the model
evidence and to integrate with respect to the posterior. Deterministic quadrature
rules often behave like discrete approximations of the prior measure. If this discrete
approximation is a probability measure supported on a finite set, we can apply Corol-
lary 5.1 and show that (BIP) based on the discretized prior is whtv and Wasserstein(p)
well-posed for any p \in [1,\infty ).

5.2. Hierarchical Prior. Hierarchical prior measures are used to construct more
complex and flexible prior models. In Bayesian inverse problems, they are discussed
in [26, 27, 56]. The basic idea is to employ a prior measure depending on a so-called
hyperparameter. This hyperparameter has itself a prior measure, which (typically)
leads to a more complex total prior measure. This can be continued recursively down
to K layers:

\mu prior =

\int 
XK

\cdot \cdot \cdot 
\int 
X1

\mu 0
prior(\cdot | \theta 1)\mu 1

prior(d\theta 1| \theta 2) . . . \mu K
prior(d\theta K).

Here, X1, . . . , XK are measurable subsets of Radon spaces, X0 := X, and

\mu k - 1
prior : Xk \times \scrB Xk - 1 \rightarrow [0, 1]

is a Markov kernel from (Xk,\scrB Xk) to (Xk - 1,\scrB Xk - 1) for k \in \{ 1, . . . ,K\} . Note
that hierarchical measures are, in a way, the probabilistic version of a deep model in
machine learning, such as a deep neural network. In a deep neural network, we also
add layers to allow for more flexibility in function approximations.

The likelihood still depends only on \theta but not on the deeper layers \theta 1, . . . , \theta K .
The (BIP) of determining the posterior measure \BbbP (\theta \in \cdot | y = y\dagger ) of the outer layer is
whtv well-posed. This is a direct implication of Corollary 5.1. Moreover, finding the
posterior measure of all layers \BbbP ((\theta , \theta 1, . . . , \theta K) \in \cdot | y = y\dagger ) is whtv well-posed, too.
This can be seen by extending the parameter space to X\times X1\times \cdot \cdot \cdot \times XK to all layers
(\theta k lives in Xk, k = 1, . . . ,K) and applying Corollary 5.1 to the extended parameter
space.

5.3. Model Selection. In Bayesian model selection, not only a model parameter
is identified but also the correct model in a collection of possible models. For instance,
Lima et al. [61] applied Bayesian model selection to identify the correct model to
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represent a particular tumor. We briefly comment on a special case of Bayesian
model selection. Let L(\cdot | \theta ,\scrG ) be the likelihood in Corollary 5.1, where we now also
note the dependence on the forward response operator \scrG . Moreover, let M\prime \subseteq M
be a finite collection of forward response operators from which we want to identify
the correct one. We now define a prior measure \mu \prime 

prior on M\prime which determines our
a priori knowledge about the model choice. The posterior measure of the model
selection problem on (X \times M\prime ,\scrB X \otimes 2\bfM 

\prime 
) is given by

\mu \dagger ,ms
post = \BbbP 

\bigl( 
(\theta ,\scrG \ast ) \in \cdot | \scrG \ast (\theta ) + \eta = y\dagger 

\bigr) 
,

where \scrG \ast : \Omega \rightarrow M\prime is the random variable representing the model; it satisfies \scrG \ast \sim 
\mu \prime 
prior. The posterior can be computed using a generalization of Bayes' theorem,

\mu \dagger ,ms
post (A\times B) =

\sum 
\scrG \in B

\int 
A
L(y\dagger | \theta ,\scrG )\mu \prime 

prior(\{ \scrG \} )d\mu prior(\theta )\sum 
\scrG \prime \in \bfM \prime 

\int 
X
L(y\dagger | \theta \prime ,\scrG \prime )\mu \prime 

prior(\{ \scrG \prime \} )d\mu prior(\theta \prime )
(A \in \scrB X,B \in 2\bfM 

\prime 
).

This identity is indeed correct: we just apply Theorem 2.5 on the parameter space
X \times M\prime with prior measure \mu prior\otimes \mu \prime 

prior and likelihood L(y\dagger | \cdot , \cdot ) : X \times M\prime \rightarrow [0,\infty ).
In the setting of Corollary 5.1, (BIP) of the identifying model and parameter is whtv
well-posed.

5.4. Generalizations. We have discussed finite-dimensional data and additive
nondegenerate Gaussian noise. These results cannot trivially be expanded to the de-
generate Gaussian noise case: degenerate Gaussian likelihoods do not satisfy (A1) and
can lead to degenerate posterior measures; we have discussed those in subsection 2.3.

The infinite-dimensional data with additive Gaussian noise requires a likelihood
definition via the Cameron--Martin theorem. For a discussion of infinite-dimensional
data spaces, we refer the reader to [74, Remark 3.8] for compact covariance operators
and to [47, section 2.1] specifically for Gaussian white noise generalized random fields.
Generalizing the result from [47], we can state the following.

Corollary 5.3. Let (Y \prime , \langle \cdot , \cdot \rangle Y \prime ) be a separable Hilbert space, and let \Gamma : Y \prime \rightarrow Y \prime 

be a covariance operator; i.e., it is self-adjoint, positive definite, and trace-class. We
assume that Y is the Cameron--Martin space of N(0,\Gamma ) \in Prob(Y \prime ), i.e.,

(Y, \langle \cdot , \cdot \rangle Y ) = (img(\Gamma 1/2, Y \prime ), \langle \Gamma  - 1/2\cdot ,\Gamma  - 1/2\cdot \rangle Y \prime ),

where the inverse square-root \Gamma  - 1/2 is well defined. Moreover, let \scrG : X \rightarrow Y be a
measurable function. Then the inverse problem

\scrG (\theta \dagger ) + \eta = y\dagger (\eta \sim N(0,\Gamma ))

can be represented by the likelihood

L(y\dagger | \theta ) = exp

\biggl( 
\langle \scrG (\theta ), y\dagger \rangle Y  - 1

2
\| \scrG (\theta )\| 2Y

\biggr) 
.

If, in addition, \scrG : X \rightarrow Y is bounded, then (BIP) corresponding to likelihood L and
(a) any prior \mu prior \in Prob(X) is whtv well-posed;
(b) any prior \mu prior \in Probp(X) is Wasserstein(p) well-posed, where p \in [1,\infty )

and X is a normed space.

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

37
.1

89
.4

9.
34

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BAYESIAN INVERSE PROBLEMS ARE USUALLY WELL-POSED 849

Note that here we require \scrG to be bounded in X. Hence, while allowing for
infinite-dimensional data spaces, we now have conditions on the forward response
operator and also on the covariance operator. Thus, this result is not as generally
applicable as Corollary 5.1.

Generalizations to non-Gaussian noise models are not as difficult. In the proof
of Corollary 5.1, we used only the fact that the pdf of the noise is strictly positive,
continuous in its argument, and bounded by a constant. This, however, is also sat-
isfied when the noise is additive and nondegenerate and follows, e.g., the Cauchy
distribution, the t-distribution, or the Laplace distribution.

6. Numerical Illustrations. We illustrate some of the results shown in the previ-
ous sections with numerical examples. First, we consider some simple one-dimensional
examples complementing the examples we have considered throughout the article.
These include Bayesian inverse problems with likelihoods that are discontinuous in
parameter or data. Second, we consider an inverse problem that is high-dimensional
in terms of data and parameter. The high-dimensional inverse problem is concerned
with the reconstruction of an image by Gaussian process regression.

6.1. Discontinuities in the Likelihood. In previous works, Lipschitz continuity
of the log-likelihood in the data and (at least) continuity in the parameter has been
assumed; see [74]. In this article, we prove results that do not require continuity in
the parameter; however, we still require continuity in the data. We now illustrate
these results with simple numerical experiments. Indeed, we show that assumption
(A4) is crucial by comparing (BIP) posteriors with likelihoods that are continuous
and discontinuous in the data.

Example 6.1 (continuity of y \mapsto \rightarrow L(y| \cdot )). We define the data and parameter spaces
by Y := \BbbR and X := [0, 1]. We consider (BIP)s with prior measure \mu prior := Unif(0, 1)
on X and one of the following likelihoods:

(a) L(y\dagger | \theta ) = (2\pi ) - 1/2 exp( - 1
2\| y

\dagger  - \theta \| 2Y );
(b) L(y\dagger | \theta ) = (2\pi ) - 1/2 exp( - 1

2\| \lfloor y
\dagger \rfloor  - \theta \| 2Y ).

We solve the inverse problems in Example 6.1 with numerical quadrature. In
particular, we compute the model evidence for a y\dagger \in \{  - 5, - 4.999, - 4.998, . . . , 5\} 
and the Hellinger distances between \mu \dagger 

post and \mu \ddagger 
post, where y\ddagger = 1. In Figure 2,

we plot the likelihood functions at \theta = 0, the logarithms of the posterior densities,
and the Hellinger distances. The top row in the figure refers to (a), and the bottom
row refers to (b). In the continuous setting (a), we see continuity with respect to y\dagger 

in all images. Indeed, (BIP) in (a) fulfills (A1)--(A4). The inverse problem in (b)
satisfies (A1)--(A3) but not (A4). Also, we see discontinuities with respect to the
data in all images referring to (b). Especially, the image of the Hellinger distances
is discontinuous, which leads to the conclusion that this inverse problem is not well-
posed. Hence, (A4) is indeed crucial to obtaining well-posedness of a Bayesian inverse
problem.

Remark 6.2. A likelihood as in Example 6.1(b) can arise when considering cumu-
lative or categorial data, rather than real-valued continuous data as in (a). Categorial
data arises in classification problems.

While continuity in the data is important, we now illustrate that continuity in
the forward response operator is not necessary to obtain continuity in the data-to-
posterior map. We give an example that can be understood as learning the bias in a
single-layer neural network.
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Fig. 2 Top row: Example 6.1(a). Bottom row: Example 6.1(b). Left column: Likelihood at \theta = 0.
Center column: Log-posterior densities corresponding to the Bayesian inference problems.
The colormaps show a descent in posterior density when going from yellow (high) to dark

blue (low). Right column: Hellinger distance between the posterior \mu \ddagger 
post with y\ddagger = 1 and

posterior \mu \dagger 
post with y\dagger varying between  - 5 and 5.

Example 6.3 (continuity in \theta \mapsto \rightarrow L(\cdot | \theta )). We define the data and parameter spaces
by Y := \BbbR and X := [0, 1]. Let w \in [1,\infty ] be a known weight parameter. We define
the forward response operator with weight w by

\scrG w : X \rightarrow Y, \theta \mapsto \rightarrow 1

1 + exp( - w(0.5 - \theta ))
.

If w < \infty , the forward response operator resembles a single-layer neural network with
sigmoid activation function evaluated at 0.5. This neural network has known weight
w and uncertain bias \theta . Moreover, note that in the limiting setting w = \infty , the
sigmoid function is replaced by the Heaviside function with step at \theta , evaluated also
at x = 0.5:

(6.1) \scrG \infty : X \rightarrow Y, \theta \mapsto \rightarrow 

\Biggl\{ 
1 if 0.5 \geq \theta ,

0 otherwise.

We consider (BIP) of estimating the true bias \theta \dagger , given an observation y\dagger w := \scrG w(\theta 
\dagger )+

\eta \dagger . Here, we consider the noise \eta \dagger to be a realization of \eta \sim N(0, 12). Moreover, we
assume that the parameter \theta \sim \mu prior = Unif(0, 1) follows a uniform prior measure.

We solve (BIP)s in Example 6.3 with weights w = 1, 10, 100,\infty again with nu-
merical quadrature for y\dagger \in \{  - 13, - 12.99, - 12.98, . . . , 13\} . We compute the Hellinger

distance between \mu \dagger 
post and \mu \ddagger 

post, where y\ddagger = 0. In Figure 3, we plot the logarithms
of the posterior densities obtained in Example 6.3, along with the Hellinger distances.
We observe that all of the posteriors are continuous with respect to the data. These
include the posterior that is based on the discontinuous forward response operator
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Fig. 3 From left to right: Example 6.3 given w = 1, 10, 100,\infty . Top row: Log-posterior densities
corresponding to the Bayesian inference problems. The colormaps show a descent in posterior
density when going from yellow (high) to dark blue (low). Bottom row: Hellinger distance

between the posterior \mu \ddagger 
post with y\ddagger = 1 and posterior \mu \dagger 

post with y\dagger varying between  - 13
and 13.

\scrG \infty . It is discontinuous in the parameter but continuous in the data. (BIP)s consid-
ered here satisfy again (A1)--(A4). Hence, these numerical experiments also verify the
statement of Lemma 3.7.

Remark 6.4. In deep learning, sigmoid functions \scrG w (w < \infty ) are considered
as smooth approximations to the Heaviside function \scrG \infty , which shall be used as an
activation function. The smooth sigmoid functions allow us to train the deep neural
network with a gradient-based optimization algorithm. When training the neural
network with a Bayesian approach, rather than an optimization approach, we see
that we can use Heaviside functions in place of smooth approximations and obtain a
well-posed Bayesian inverse problem.

6.2. A High-Dimensional Inverse Problem. We now consider an inverse prob-
lem that is high-dimensional in parameter and data spaces. In particular, we observe
single, noisy pixels of a grayscale photograph. The inverse problem consists of the
reconstruction of the image, for which we use Gaussian process regression. We then
perturb the data by adding white noise to the image, and we investigate changes in
the posterior as we rescale the noise.

Example 6.5. Let the parameter space X := \BbbR 100\times 100 contain grayscale images
made up of 100 \times 100 pixels. The data space Y := \BbbR 25\times 25 consists of 25 \times 25 pixels
that are observed in a single picture. Returning those 25\times 25 pixels from a 100\times 100
pixel image is modeled by the function \scrG : X \rightarrow Y . Let \theta \dagger \in X be a full image. Given

y\dagger = \scrG (\theta \dagger ) + \eta ,

we shall recover the full image \theta \dagger . Here, \eta \sim N(0, 52I) is normally distributed noise,
with a noise level of about 5/max(y) = 2\%. We assume the following Gaussian prior

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

37
.1

89
.4

9.
34

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

852 JONAS LATZ

Original Observations Posterior meanPrior mean

Fig. 4 Reconstruction of an image with Gaussian process regression. From left to right: Original
image, observational data (white parts are unobserved), prior mean, and posterior mean.

on X:

\mu prior = N

\left(   
\left(   128 \cdot \cdot \cdot 128

...
. . .

...
128 \cdot \cdot \cdot 128

\right)   , C0

\right)   ,

where C0 \in \BbbR 100\times 4

is a covariance tensor assigning the following covariances:

Cov(\theta i,j , \theta \ell ,k) = 10000 \cdot exp

\Biggl( 
 - 
\sqrt{} 

(i - \ell )2 + (j  - k)2

15

\Biggr) 
.

Note that this is essentially an adaptation of an exponential covariance kernel for a
Gaussian process in two-dimensional space.

The Bayesian inverse problem in Example 6.5 can be solved analytically, since \scrG 
is linear, and the prior and noise are Gaussian. We obtain the posterior measure by
Gaussian process regression. In Figure 4, we present the original image, observations,
prior mean image, and posterior mean image. The reconstruction is rather coarse,
which is not surprising given that we observe only 6.25 \cdot 102 of 104 pixels of the image.

We now investigate how the posterior measure changes under marginal changes
in the data. To do so, we perturb the image additively with scaled white noise. In
particular, we add N(0, \sigma 2)-distributed, independent random variables to each pixel.
In Figure 5, we show images and associated observations, where the standard deviation
(StD) of the noise is \sigma \in \{ 1, 10, 100\} .

Using Gaussian process regression, we compute the posteriors after perturbing
the images with scaled white noise given \sigma \in \{ 10 - 17, 10 - 16, . . . , 102\} . Between the
original posterior with no perturbation in the data and all others, we compute the
Hellinger distance and the relative Frobenius distance between the (matrix-valued)
posterior means,

relative Frobenius distance =

\bigm\| \bigm\| \bigm\| \int \theta d\mu \ddagger 
post(\theta ) - 

\int 
\theta d\mu \dagger 

post(\theta )
\bigm\| \bigm\| \bigm\| 
F\bigm\| \bigm\| \bigm\| \int \theta d\mu \ddagger 

post(\theta )
\bigm\| \bigm\| \bigm\| 
F

,

where \mu \dagger 
post (resp., \mu \ddagger 

post) is the posterior referring to the perturbed data y\dagger (resp.,

nonperturbed data y\ddagger ). Since the perturbation is random, we perform this process
20 times and compute the mean over these distances. The standard deviation in
these metrics is negligibly small. We plot the results in Figure 6, where we indeed see
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Fig. 5 Top row: Original image and images perturbed with scaled white noise, given \sigma \in \{ 1, 10, 100\} .
Bottom row: Observations obtained from the perturbed image.
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Fig. 6 Mean relative Frobenius distances and mean squared Hellinger distances computed between

the posteriors \mu \dagger 
post and \mu \ddagger 

post, in which the underlying image was perturbed with white noise

that has been scaled by StD \sigma = 0, 10 - 17, 10 - 19, . . . , 102. ``Mean"" refers to the fact that the
perturbations are random, and the distances have been computed for 20 random perturbations
and then averaged. When approaching | y\ddagger  - y\dagger | \rightarrow 0, the distances go to 0. The left-out
x-values have distance zero numerically.

continuity reducing the error StD in the data. In light of Lemma 3.7 and Corollary 5.1,
the following is what we expect: First, note that the Bayesian inverse problem falls in
the category additive finite-dimensional Gaussian noise and is therefore well-posed.
Hence, also in this high-dimensional setting, we are able to verify our analytical results
concerning well-posedness.

7. Conclusions and Outlook. In this work, we introduce and advocate a new
concept of well-posedness of Bayesian inverse problems. We weaken the stability
condition by considering continuity instead of Lipschitz continuity of the data-to-
posterior map. On the other hand, we make the stability condition somewhat stronger
by allowing one to adapt the metric on the space of probability measures to the
particular situation. Various notions of well-posedness arise from this discussion; we
summarize their relations in Figure 7.

Importantly, we show that given our concept, a huge class of practically relevant
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Kullback--Leibler well-posed (Lipschitz, Hellinger) well-posed
\Downarrow \Downarrow 

Total variation well-posed \leftrightarrow Hellinger well-posed
\Downarrow 

Wasserstein(p) well-posed \Rightarrow Weakly well-posed

Fig. 7 Relations between concepts of well-posedness. Here, A \Rightarrow B means that (BIP) being A-well-
posed implies that it is also B-well-posed.

Bayesian inverse problems is well-posed or can easily be shown to be well-posed.
Hence, we give the following general justification for the Bayesian approach to inverse
problems for a huge number of practical situations: here, the Bayesian inverse problem
will have a unique solution, which will be robust with respect to marginal changes in
the data. Such inverse problems appear, e.g., in the physical and biological sciences,
engineering, machine learning, and imaging.

7.1. An Outlook to Recent Developments. Since the publication of the original
version of this paper [54], several more developments occurred in the analysis of the
well-posedness of Bayesian inverse problems. We briefly summarize some of those
works.

Especially in Bayesian image reconstruction, the use of neural-network-based,
data-driven prior measures has become popular in recent years. The well-posedness
of such approaches has been discussed by [10, 39, 58]. The well-posedness of Bayesian
inverse acoustic scattering was studied by [83] in Hellinger and Wasserstein distance,
as well as in the Kullback--Leibler divergence. The Hellinger well-posedness of the
Bayesian estimation of drift and diffusion coefficient in discretely observed diffusions
has been studied by [18].

Lanthaler, Mishra, and Weber [52] show (Lipschitz, Wasserstein)-well-posedness
of Bayesian data assimilation even in cases where the underlying forward problem
is ill-posed. Similarly, (Lipschitz, Wasserstein)-well-posedness of Bayesian inversion
in hyperbolic conservation laws is discussed by [65]. Dolera and Mainini [24] discuss
Lipschitz continuity in the Wasserstein distance of general probability kernels. As
opposed to previous results that show local Lipschitz continuity, they obtain global
Lipschitz continuity. The same authors have also studied the uniform continuity of
posterior measures [25] with respect to the total variation distance. The stability
of doubly intractable posterior measures, that is, the case where the likelihood itself
has an unknown normalizing constant, in terms of Wasserstein(1) and total variation
distance, has been studied in [35].

7.2. Directions for Future Research. In the following, we propose some direc-
tions for future research.

Degenerate Bayesian Inverse Problems. So far, we have mostly neglected the degenerate
Bayesian inverse problems, which we discussed in subsection 2.3. Such problems
appear in Bayesian probabilistic numerics [14] and other settings where noise-free
data is considered. These may also include the Bayesian formulation of machine
learning problems with discrete loss models, such as 0-1-loss, or Bayesian formulations
of classification problems; see [6].
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Discrete Data. Inverse problems with discrete data spaces Y appear frequently in
applications, such as in computed tomography [72] or when using a charge couple
device camera [3]. Usual concepts of well-posedness fail in this situation, as they
would need us to discuss continuity of a function on a discrete space. In this case,
it may be appropriate to study the difference of posteriors differing in single counts,
i.e., where data sets y\dagger , y\ddagger \in Y differ exactly by \| y\dagger  - y\ddagger \| 1 = 1.

Approximate Models. In many practical applications, we replace \scrG by some approx-
imation \scrG \prime , given, e.g., through a numerical discretization; see, e.g., [44] in the case of
differential equations, or an emulator [75]. Asymptotic results about the convergence
of posteriors with respect to discretization error are known [63, 73, 74], as is the im-
portance of accurate discretizations in posterior estimations [15, 57]. In addition to
the asymptotic results, sharp error estimates with computable constants are necessary
for practical applications.

Approximate Posteriors. It is often impossible to find a closed form representation
for a posterior, instead computational strategies are needed to obtain an appropriate
approximation to the posterior, such as Markov chain Monte Carlo (MCMC). In
computationally intensive applications, MCMC may not be an option for the approx-
imation of a posterior measure; instead, inaccurate MCMC methods are used [28, 82]
or the posterior is approximated by finding a close representative in a family of prob-
ability measures, e.g., in variational Bayes [8], in Bayesian variational autoencoders
[50], and in sparse Gaussian process regression [79]. Such approximation techniques
need to be analyzed separately with regard to their well-posedness.

Implicit Regularization. As discussed previously, the training of machine learning
models can often be understood as an inverse problem. In practice, it is usually
too computationally expensive to train a neural network in a Bayesian way. The
variational approach (see subsection 2.5) is employed instead. Here, regularization is
often done implicitly : stochastic optimization techniques with constant stepsizes are
employed that have no convergence guarantees in the employed setting [49, 68], but
sometimes converge to stationary measures [23, 46, 55]. These stationary measures can
be seen as the result of an implicit regularization. Although these stationary measures
are often not actual Bayesian posteriors, they are used and interpreted in a similar
way [62]. A discussion of the well-posedness of implicitly regularized problems and a
better fundamental understanding of implicit regularization in general are necessary
and vital for the practical use of machine learning models.

Appendix A. Conditional Probability. In this appendix, we briefly summarize
some results concerning conditional probabilities. Let X,Y be given as in subsec-
tion 2.1. Moreover, let \Omega := X \times Y, and let \theta : \Omega \rightarrow X, y : \Omega \rightarrow Y be random
variables.

Theorem A.1. A Markov kernel M : Y \times \scrB X \rightarrow [0, 1] exists, such that

\BbbP (\{ \theta \in A\} \cap \{ y \in C\} ) =
\int 
C

M(y\dagger , A)\BbbP (y \in dy\dagger ) (A \in \scrB X,C \in \scrB Y ).

Moreover, M is \BbbP (y \in \cdot )-a.s. unique.

Let y\dagger \in Y . The probability measure M(y\dagger , \cdot ) in Theorem A.1 is the (regular)
conditional probability distribution of \theta given that y = y\dagger . We denote it by \BbbP (\theta \in 
\cdot | y = y\dagger ). Note that the conditional probability is only unique for a.e. y\dagger \in Y . This
definition, as well as Theorem A.1, is nonconstructive. However, if we can represent
the joint distribution \BbbP ((\theta , y) \in \cdot ) by a pdf, we can compute the density of the
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conditional probability distribution. First, consider the following lemma concerning
joint and marginal pdfs.

Lemma A.2. Let \nu X and \nu Y be \sigma -finite measures on (X,\scrB X) and (Y,\scrB Y ), and
let

\BbbP ((\theta , y) \in \cdot ) \ll \nu X \otimes \nu Y with f :=
d\BbbP ((\theta , y) \in \cdot )
d\nu X \otimes \nu Y

(\nu X \times \nu Y -a.e.).

Then \BbbP (\theta \in \cdot ) \ll \nu X , with d\BbbP (\theta \in \cdot )/d\nu X =
\int 
X
f(\cdot , y\dagger )\nu Y (dy\dagger ), \nu X-a.e., and \BbbP (y \in 

\cdot ) \ll \nu Y with d\BbbP (y \in \cdot )/d\nu Y =
\int 
Y
f(\theta \dagger , \cdot )\nu X(d\theta \dagger ), \nu Y -a.e.

Next, we move on to the construction of the conditional density.

Lemma A.3. Let \nu X , \nu Y , and f be given as in Lemma A.2. Then, for \theta \dagger \in X
(\nu X-a.e.) and y\dagger \in Y (\nu Y -a.e.), we have

d\BbbP (\theta \in \cdot | y = y\dagger )

d\nu X
(\theta \dagger ) =

\Biggl\{ 
f(\theta \dagger ,y\dagger )
g(y\dagger )

if g(y\dagger ) > 0,

0 otherwise,

where g(y\dagger ) :=
\int 
X
f(\theta \ddagger , y\dagger )\nu X(d\theta \ddagger ) is the \nu Y -pdf of \BbbP (y \in \cdot ).

This result is fundamental to proving Bayes' theorem; see Theorem 2.5.

Appendix B. Proofs. In this appendix, we present rigorous proofs of all of the
theorems, propositions, lemmas, and corollaries stated in this article.

Proof of Proposition 2.2. Note that the support of \mu noise is all of Y . Hence, the
noise \eta \dagger can be any value in Y, and we need to solve the equation

(B.1) y\dagger = \scrG (\theta \dagger ) + \eta \dagger 

with respect to both \theta \dagger \in X and \eta \dagger \in Y . Let \theta \prime \in X. Set \eta \prime := y\dagger  - \scrG (\theta \prime ). Then
(\theta \prime , \eta \prime ) solves (B.1) and thus the inverse problem (IP). Hence, each element in X
implies a solution. Since X contains at least two elements, the solution is not unique,
and thus (IP) is ill-posed.

Proof of Theorem 2.5. The following statements hold \BbbP (y \in \cdot )-a.s. for y\dagger \in Y .
We first show that Z(y\dagger ) > 0. Since we assume that L(y\dagger | \cdot ) is \mu prior-a.s. strictly

positive, we can write

Z(y\dagger ) =

\int 
L(y\dagger | \theta )d\mu prior(\theta ) =

\int 
\{ L(y\dagger | \cdot )>0\} 

L(y\dagger | \theta )d\mu prior(\theta ).(B.2)

Now let n \in \BbbN . As the integrand in (B.2) is positive, Chebyshev's inequality [2,
Theorem 2.4.9] implies that

(B.3) n \cdot 
\int 
\{ L(y\dagger | \cdot )>0\} 

L(y\dagger | \theta )d\mu prior(\theta ) \geq \mu prior(L(y
\dagger | \cdot ) > n - 1).

We aim to show that the probability on the right-hand side of this equation converges
to 1 as n \rightarrow \infty . Knowing this, we can conclude that the right-hand side is strictly
positive for all n \geq N for some N \in \BbbN .

Note that measures are continuous with respect to increasing sequences of sets.
We define the set

Bn := \{ L(y\dagger | \cdot ) > n - 1\} 
and observe that (Bn)

\infty 
n=1 is indeed an increasing sequence. Moreover, note that

B\infty =

\infty \bigcup 
m=1

Bm = \{ L(y\dagger | \cdot ) > 0\} 
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and that \mu prior(B\infty ) = 1. Hence, we have

lim
n\rightarrow \infty 

\mu prior(L(y
\dagger | \cdot ) > n - 1) = \mu prior(L(y

\dagger | \cdot ) > 0) = 1.

As mentioned earlier, we now deduce that for some \varepsilon \in (0, 1), there is an index N \in \BbbN 
such that

| \mu prior(L(y
\dagger | \cdot ) > n - 1) - 1| \leq \varepsilon < 1 (n \geq N),

and thus \mu prior(L(y
\dagger | \cdot ) > n - 1) > 0 for n \geq N . Plugged into (B.3), this gives us

Z(y\dagger ) > 0. We have also Z(y\dagger ) < \infty , since L(y\dagger | \cdot ) \in L1(X,\mu prior). Thus, the posterior
density (2.3) is well defined. We now apply Bayes' theorem in the formulation of [21,
Theorem 3.4] and obtain

d\mu \dagger 
post

d\mu prior
(\theta \prime ) =

L(y\dagger | \theta \prime )
Z(y\dagger )

(\theta \prime \in X,\mu prior-a.s.).

This implies

\pi \dagger 
post(\theta 

\prime ) =
d\mu \dagger 

post

d\nu X
(\theta \prime ) =

d\mu \dagger 
post

d\mu prior
(\theta \prime )

d\mu prior

d\nu X
(\theta \prime ) =

L(y\dagger | \theta \prime )\pi prior(\theta 
\prime )

Z(y\dagger )
(\theta \prime \in X, \nu X -a.s.)

by application of standard results concerning Radon--Nikodym derivatives. This con-
cludes the proof.

Proof of Proposition 2.6. We test \mu \dagger 
post in Theorem A.1. Let \theta \sim \mu prior and

y \sim \mu L(\cdot | \theta ). Then, \BbbP (y = \scrG (\theta )) = 1. Therefore, for A \in \scrB X,C \in \scrB Y , we have

\BbbP (\{ \theta \in A\} \cap \{ y \in C\} ) = \BbbP (\{ y \in \scrG (A)\} \cap \{ y \in C\} )

=

\int 
C

1\scrG (A)(y
\dagger )\BbbP (y \in dy\dagger )

=

\int 
C

\delta 
\bigl( 
A - \scrG  - 1(y\dagger )

\bigr) 
\BbbP (y \in dy\dagger ).

Note that \scrG (A) \in \scrB Y , since \scrG  - 1 is continuous. Hence, according to Theorem A.1,
we have \BbbP (\theta \in \cdot | \scrG (\theta ) = y\dagger ) = \delta 

\bigl( 
\cdot  - \scrG  - 1(y\dagger )

\bigr) 
for \BbbP (y \in \cdot )-a.e. y\dagger \in Y . Moreover, we

have \BbbP (y \in \cdot ) = \mu prior(\scrG \in \cdot ).
Proof of Theorem 3.6. Hellinger well-posedness follows from Lemma 3.7. There,

we show existence and uniqueness on P := Prob(X,\mu prior). According to Theorem 2.5,
we again obtain existence and uniqueness of the posterior measure also on P :=
Prob(X), as required for weak and tv well-posedness. By [32], we have

dProk(\mu , \mu 
\prime ) \leq dtv(\mu , \mu 

\prime ) \leq 
\surd 
2dHel(\mu , \mu 

\prime ) (\mu , \mu \prime \in Prob(X,\mu prior)).

Hence, dProk and dtv are coarser than dHel. By Proposition 3.9, (BIP) is weakly and
tv well-posed.

Proof of Lemma 3.7. Note that existence and uniqueness of the measure \mu \dagger 
post are

results of Theorem 2.5 which hold since (A1)--(A2) are satisfied. We proceed as follows:
we show that the likelihood is continuous as a function from Y to L1(X,\mu prior) and
that at the same time y\dagger \mapsto \rightarrow Z(y\dagger ) is continuous. This implies that y\dagger \mapsto \rightarrow L(y\dagger | \cdot )1/2 \in 
L2(X,\mu prior) is continuous as well. Then, we collect all of this information and show
the continuity in the Hellinger distance, which is the desired result.
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1. We now show continuity in y\dagger \in Y when integrating L(y\dagger | \cdot ) with respect to
\mu prior. This is a standard application of Lebesgue's dominated convergence theorem
(DCT): let (yn)

\infty 
n=1 \in Y \BbbN be a sequence converging to y\dagger , as n \rightarrow \infty . Assumption

(A4) implies that limn\rightarrow \infty L(yn| \cdot ) = L(y\dagger | \cdot ) pointwise in X. We obtain by the DCT

lim
n\rightarrow \infty 

\int 
L(yn| \cdot )d\mu prior =

\int 
lim
n\rightarrow \infty 

L(yn| \cdot )d\mu prior =

\int 
L(y\dagger | \cdot )d\mu prior,

since the sequence (L(yn| \cdot ))\infty n=1 is bounded from above by g \in L1(X,\mu prior) and
bounded from below by 0; see (A1) and (A3). Hence, the functions

Y \ni y\dagger \mapsto \rightarrow 
\int 

L(y\dagger | \cdot )d\mu prior = Z(y\dagger ) \in \BbbR , Y \ni y\dagger \mapsto \rightarrow L(y\dagger | \cdot ) \in L1(X,\mu prior)

are continuous. Moreover, note that Theorem 2.5 implies that Z(y\dagger ) is finite and
strictly larger than 0.

2. The continuity in L1(X,\mu prior) implies that for every y\dagger \in Y , we have for
\varepsilon 1 > 0 some \delta 1(\varepsilon 1) > 0, such that

\| L(y\dagger | \cdot ) - L(y\ddagger | \cdot )\| \bfL 1(X,\mu prior) \leq \varepsilon 1 (y\ddagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta 1(\varepsilon 1)).

Using this, we can show that y\dagger \mapsto \rightarrow L(y\dagger | \cdot )1/2 is continuous in L2(X,\mu prior). Let
y\dagger \in Y and \varepsilon 1, \delta 1(\varepsilon 1), y

\ddagger be chosen as above. We have

\| L(y\dagger | \cdot )1/2  - L(y\ddagger | \cdot )1/2\| 2\bfL 2(X,\mu prior)

=

\int \bigm| \bigm| L(y\dagger | \cdot )1/2  - L(y\ddagger | \cdot )1/2
\bigm| \bigm| 2d\mu prior

\leq 
\int \bigm| \bigm| L(y\dagger | \cdot )1/2  - L(y\ddagger | \cdot )1/2

\bigm| \bigm| \times \bigm| \bigm| L(y\dagger | \cdot )1/2 + L(y\ddagger | \cdot )1/2
\bigm| \bigm| d\mu prior

=

\int \bigm| \bigm| L(y\dagger | \cdot ) - L(y\ddagger | \cdot )
\bigm| \bigm| d\mu prior \leq \varepsilon 1.

Now, we take the square-root on each side of this inequality. Then, for every \varepsilon 2 > 0,

choose \delta 2(\varepsilon 2) := \delta 1(\varepsilon 
1/2
2 ) > 0. Then

\| L(y\dagger | \cdot )1/2  - L(y\ddagger | \cdot )1/2\| \bfL 2(X,\mu prior) \leq \varepsilon 2 (y\ddagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta 2(\varepsilon 2))

gives us the desired continuity result.
3. Using the continuity result in item 1 and the composition of continuous func-

tions, we also know that y\dagger \mapsto \rightarrow Z(y\dagger ) - 1/2 \in (0,\infty ) is continuous. Hence, we have for
every y\dagger \in Y and every \varepsilon 3 > 0 a \delta 3(\varepsilon 3) > 0 with

| Z(y\dagger ) - 1/2  - Z(y\ddagger ) - 1/2| \leq \varepsilon 3 (y\ddagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta 3(\varepsilon 3)).

Given this and all of the previous results, we now employ a technique that is typically
used to prove the continuity of the product of two continuous functions. Let y\dagger \in Y ,
\varepsilon 2, \varepsilon 3 > 0, \delta 4 = min\{ \delta 2(\varepsilon 2), \delta 3(\varepsilon 3)\} , and y\dagger \in Y : \| y\dagger  - y\ddagger \| Y \leq \delta 4. We arrive at

dHel(\mu 
\dagger 
post, \mu 

\ddagger 
post) = \| Z(y\dagger ) - 1/2L(y\dagger | \theta )1/2  - Z(y\ddagger ) - 1/2L(y\ddagger | \theta )1/2\| \bfL 2(X,\mu prior)

\leq | Z(y\ddagger ) - 1/2| \times \| L(y\ddagger | \theta )1/2  - L(y\dagger | \theta )1/2\| \bfL 2(X,\mu prior)

+ \| L(y\dagger | \theta )1/2\| \bfL 2(X,\mu prior)| Z(y\ddagger ) - 1/2  - Z(y\dagger ) - 1/2| 

\leq Z(y\ddagger ) - 1/2\varepsilon 2 + Z(y\dagger )1/2\varepsilon 3

\leq (Z(y\dagger ) - 1/2 + \varepsilon 3)\varepsilon 2 + Z(y\dagger )1/2\varepsilon 3,
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where in the last step we have used | Z(y\dagger ) - 1/2  - Z(y\ddagger ) - 1/2| \leq \varepsilon 3. We now choose
some \varepsilon 4 > 0 and set \delta 4 = min\{ \delta 2(\varepsilon \prime 2), \delta 3(\varepsilon \prime 3)\} , where we set

\varepsilon \prime 2 :=
\varepsilon 4Z(y\dagger )1/2

\varepsilon 4 + 2
, \varepsilon \prime 3 :=

\varepsilon 4
2Z(y\dagger )1/2

.

Then we obtain that dHel(\mu 
\dagger 
post, \mu 

\ddagger 
post) \leq \varepsilon 4 for any y\ddagger \in Y , such that \| y\dagger  - y\ddagger \| Y \leq \delta 4.

This implies the continuity of the posterior measure in Hellinger distance.

Proof of Lemma 3.8. For every a \in A and \varepsilon > 0, there is a \delta (\varepsilon ) > 0, with

d2(f(a), f(a
\prime )) \leq \varepsilon (a\prime \in A : dA(a, a

\prime ) \leq \delta (\varepsilon )).

Hence, for the same a, a\prime , \varepsilon , and \delta , we have

d1(f(a), f(a
\prime )) \leq t(d2(f(a), f(a

\prime ))) \leq t(\varepsilon ).

Since t is continuous in 0, we find for every \varepsilon \prime > 0 some \delta \prime (\varepsilon \prime ) > 0, such that | t(x)| \leq \varepsilon \prime 

for x \in [0,\infty ) : | x| \leq \delta \prime (\varepsilon \prime ). Now, we choose \delta \prime \prime (\varepsilon \prime \prime ) := \delta (\delta \prime (\varepsilon \prime \prime )) for every a \in A and
\varepsilon \prime \prime > 0. Then

d1(f(a), f(a
\prime )) \leq t(d2(f(a), f(a

\prime ))) \leq t(\delta \prime (\varepsilon \prime \prime )) \leq \varepsilon \prime \prime (a\prime \in A : dA(a, a
\prime ) \leq \delta \prime \prime (\varepsilon \prime \prime )),

which results in continuity in (B, d1).

Proof of Proposition 3.9. By assumption the Bayesian inverse problem is (P, d2)-

well-posed. Hence, the posterior measure \mu \dagger 
post \in P exists and is unique. More-

over, the map Y \ni y\dagger \rightarrow \mu \dagger 
post \in (P, d2) is continuous. Since d1 is coarser than d2,

Lemma 3.8 implies that Y \ni y\dagger \rightarrow \mu \dagger 
post \in (P, d1) is continuous as well. Hence, the

Bayesian inverse problem is (P, d1)-well-posed.

Proof of Proposition 3.11. We show that (A3) and (A5) hold. Note that (A2) is
implied by (A3). We set g \equiv c. Then L \leq g. Since \mu prior is a probability measure, we
have \int 

X

gd\mu prior = c\mu prior(X) = c < \infty .

Hence, g \in L1(X,\mu prior), which implies that (A3) is satisfied. Next, we define g\prime (\theta \prime ) :=
c \cdot \| \theta \prime \| pX for \theta \prime \in X,\mu prior-a.s. By this definition, we have \| \cdot \| pX \cdot L(y\dagger | \cdot ) \leq g\prime for all
y\dagger \in Y . Moreover, \int 

X

g\prime d\mu prior = c

\int 
X

\| \theta \| pX\mu prior(d\theta ) < \infty ,

since \mu prior \in Probp(X), and thus
\int 
X
\| \theta \| pX\mu prior(d\theta ) < \infty . Hence, g\prime \in L1(X,\mu prior),

implying that (A5) holds.

Proof of Theorem 3.12. Let p \in [1,\infty ) and y\dagger \in Y . Since (A1)--(A4) hold, we

have existence and uniqueness of \mu \dagger 
post \in Prob(X) by Theorem 3.6. We first show

that \mu \dagger 
post \in Probp(X): we have\int 
X

\| \theta \| pX\mu \dagger 
post(d\theta ) =

\int 
X
L(y\dagger | \theta )\| \theta \| pX\mu prior(d\theta )\int 
X
L(y\dagger | \theta )\mu prior(d\theta )

\leq 
\int 
X
g\prime (\theta )\mu prior(d\theta )\int 

X
L(y\dagger | \theta )\mu prior(d\theta )

< \infty ,
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where the left-hand side is bounded by Theorem 2.5 (denominator) and by (A5)
(numerator). Hence, the posterior measure exists in Probp(X). Since Probp(X) \subseteq 
Prob(X), the posterior measure is also unique in Probp(X). Hence, existence and
uniqueness of the posterior are satisfied.

Now, we move on to stability. As in the proof of Lemma 3.7, the map Y \ni y\dagger \mapsto \rightarrow 
Z(y\dagger ) \in (0,\infty ) is continuous. By the DCT and (A5), the map

Y \ni y\dagger \mapsto \rightarrow 
\int 
X

L(y\dagger | \theta )\| \theta \| pX\mu prior(d\theta ) \in [0,\infty )

is continuous as well. Therefore,\int 
X

\| \theta \| pX\mu \dagger 
post(d\theta ) =

\int 
X
L(y\dagger | \theta )\| \theta \| pX\mu prior(d\theta )\int 
X
L(y\dagger | \theta )\mu prior(d\theta )

\rightarrow 
\int 
X
L(y\ddagger | \theta )\| \theta \| pX\mu prior(d\theta )\int 
X
L(y\ddagger | \theta )\mu prior(d\theta )

=

\int 
X

\| \theta \| pX\mu \ddagger 
post(d\theta )

as y\dagger \rightarrow y\ddagger . Hence, we have stability of the posterior measure in the pth moment.
Additionally, we have weak well-posedness due to Theorem 3.6, and thus stability in
the dProk. By (3.2), we have stability in dWas(p).

Therefore, we also have Wasserstein(p) well-posedness of (BIP).

Proof of Corollary 3.13. According to Proposition 2.6, the posterior measure \mu \dagger 
post

is well defined and unique. Let f : X \rightarrow \BbbR be bounded and continuous. Then

(B.4) lim
y\ddagger \rightarrow y\dagger 

\int 
fd\mu \ddagger 

post = lim
y\ddagger \rightarrow y\dagger 

f \circ \scrG  - 1(y\ddagger ) = f \circ \scrG  - 1(y\dagger ) =

\int 
fd\mu \dagger 

post,

since f \circ \scrG  - 1 is continuous. Therefore, Y \ni y\dagger \mapsto \rightarrow \mu \dagger 
post \in (Prob(X),dProk) is continu-

ous. Thus, we have weak well-posedness. If now X is a normed space and p \in [1,\infty ),
the mapping \| \cdot \| pX : X \rightarrow \BbbR is continuous. Note that when setting f := \| \cdot \| pX in (B.4),
the equation still holds. Thus, we have stability in the pth moment and therefore also
Wasserstein(p) well-posedness according to (3.2).

Proof of Theorem 4.3. First, note that (A1)--(A4) imply the existence and unique-
ness of the posterior measure, as well as the continuity of y\dagger \mapsto \rightarrow Z(y\dagger ). Let y\dagger \in Y
and y\ddagger \in Y , with \| y\dagger  - y\ddagger \| Y \leq \delta . \delta > 0 is chosen as in (A6). We have

DKL(\mu 
\dagger 
post\| \mu 

\ddagger 
post) =

\int 
log

\Biggl( 
d\mu \dagger 

post

d\mu \ddagger 
post

\Biggr) 
d\mu \dagger 

post

=

\int 
logL(y\dagger | \cdot ) - logL(y\ddagger | \cdot )d\mu \dagger 

post +
\bigl( 
logZ(y\ddagger ) - logZ(y\dagger )

\bigr) 
,

where the right-hand side of this equation is well defined since Z(y\dagger ), Z(y\ddagger ) \in (0,\infty )
by Lemma 3.7 and since (A6) holds. Moreover, the continuity in the model evidence
implies that

\bigl( 
logZ(y\ddagger ) - logZ(y\dagger )

\bigr) 
\rightarrow 0, as y\ddagger \rightarrow y\dagger . Also, note that logL(\cdot | \theta \prime ) is

continuous by (A4), which implies

lim
y\ddagger \rightarrow y\dagger 

\int 
X

logL(y\dagger | \cdot ) - logL(y\ddagger | \cdot )d\mu \dagger 
post =

\int 
X

lim
y\ddagger \rightarrow y\dagger 

logL(y\dagger | \cdot ) - logL(y\ddagger | \cdot )d\mu \dagger 
post = 0,

where we applied the DCT with 2h(\cdot , y\dagger ) as a dominating function.
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Proof of Corollary 5.1. We check (A1)--(A4).
(A1) By definition, the likelihood is a strictly positive pdf for any \theta \prime \in X.

(A2)--(A3) The likelihood is bounded above uniformly by g \equiv det(2\pi \Gamma ) - 1/2 which is
integrable with respect to any probability measure on (X,\scrB X).

(A4) The likelihood is continuous in y\dagger for any \theta \prime \in X.

Proof of Corollary 5.3. 1. The function L is indeed a correct likelihood, i.e., y\dagger \mapsto \rightarrow 
L(y\dagger | \theta \prime ) is a pdf for \mu prior-a.e. \theta 

\prime \in X. We refer the reader to the discussions of the
Cameron--Martin theorem in [9, section 2.4] and [76, section 2.7]. Moreover, we again
mention [74, Remark 3.8] and [47, section 2.1], which have discussed the modeling in
this case. Hence, (A1) is true.

2. Now, we check (A2)--(A4). Note that (A4) is true by assumption. (A2) holds
since \scrG is bounded. (A3) cannot be shown easily. However, we can replace it by a

local version of this assumption; see Remark 4.4. Indeed, to show continuity of \mu \dagger 
post

in y\dagger \in Y , we only need to satisfy (A3) in B(y\dagger , \delta ) := \{ \| \cdot  - y\dagger \| Y \leq \delta \} := \{ y\ddagger :
\| y\ddagger  - y\dagger \| Y \leq \delta \} for \delta > 0. If we show this for any y\dagger \in Y and some \delta > 0, we
obtain stability as well. Note that we have used this idea to show Kullback--Leibler
well-posedness in Theorem 4.3.

3. Let y\dagger \in Y be arbitrary. Let c be chosen such that \| \scrG (\theta \prime )\| Y < c, which
exists since \scrG is bounded. Let y\ddagger \in B(y\dagger , \delta ). By the Cauchy--Schwarz and triangle
inequalities, we have

L(y\ddagger | \theta \prime ) = exp

\biggl( 
\langle \scrG (\theta \prime ), y\ddagger \rangle Y  - 1

2
\| \scrG (\theta \prime )\| 2Y

\biggr) 
\leq exp

\bigl( 
| \langle \scrG (\theta \prime ), y\ddagger \rangle Y | 

\bigr) 
\leq exp

\bigl( 
\| \scrG (\theta \prime )\| Y \| y\ddagger \| Y

\bigr) 
\leq exp(c\| y\ddagger \| Y )

= exp(c\| y\ddagger  - y\dagger + y\dagger \| Y ) \leq exp(c\| y\ddagger  - y\dagger \| Y + \| y\dagger \| Y )
\leq exp(c \cdot (\delta + \| y\dagger \| Y )) =: c\prime 

for \mu prior-a.e. \theta 
\prime \in X. Now, we choose g : X \rightarrow \BbbR to be g \equiv c\prime . Let now \mu prior \in 

Prob(X). Then, g \in L1(X,\mu prior) and L(y\ddagger | \theta \prime ) \leq g(\theta \prime ) for \mu prior-a.e. \theta 
\prime \in X. Since y\dagger 

is chosen arbitrarily, we obtain stability in the weak topology, the Hellinger distance,
and the tv distance. Hence, we have whtv well-posedness, and thus we have shown
(a).

4. Let p \in [1,\infty ). To show Wasserstein(p) well-posedness, we can again use a
local argument on the data space. Hence, we can satisfy (A5) locally on the data
space. This, on the other hand, is implied by a local version of Proposition 3.11.
Hence, we obtain stability in the Wasserstein(p) distance if \mu prior \in Probp(X) and if
for all y\dagger \in Y , we have some \delta > 0 and c\prime > 0 such that

L(y\ddagger | \theta \prime ) \leq c\prime (\| y\ddagger  - y\dagger \| Y \leq \delta ;\mu prior-a.e. \theta 
\prime \in X).

This, however, is what we have shown already in item 3. Thus, we have shown (b).

Proof of Theorem A.1. The theorem above holds if \Omega , X, Y are Radon spaces; see
[59, Theorem 3.1]. Y is a Radon space by definition. X and \Omega can be extended to
Radon spaces X \prime and \Omega \prime = X \prime \times Y , where \BbbP (\theta \in X \prime \setminus X) = 0 = \BbbP (\Omega \prime \setminus \Omega ). Moreover,
we set M(y,X \prime \setminus X) = 0 (y \in Y ).

Proof of Lemma A.2. Let A \in \scrB X. Note that

\BbbP (\theta \in A) = \BbbP ((\theta , y) \in A\times Y ) =

\int 
A\times Y

fd(\nu X \otimes \nu Y ) =

\int 
A

\int 
Y

f(\theta \dagger , y\dagger )\nu Y (dy
\dagger )\nu X(d\theta \dagger ),
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where the last equality holds due to Tonelli. Hence, indeed,

d\BbbP (\theta \in \cdot )
d\nu X

=

\int 
X

f(\cdot , y\dagger )\nu Y (dy\dagger ) (\nu X -a.e.).

The statement about the \nu Y -pdf of y can be shown by exchanging y and \theta , and X
and Y .

Proof of Lemma A.3. For a derivation in the case X := Y := \BbbR , see [2, Example
5.3.2 (b)]. The proof in our more general setting is analogous.
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