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Abstract
The present paper studies so-called deep image prior (DIP) techniques in the context of ill-posed inverse problems. DIP
networks have been recently introduced for applications in image processing; also first experimental results for applying
DIP to inverse problems have been reported. This paper aims at discussing different interpretations of DIP and to obtain
analytic results for specific network designs and linear operators. The main contribution is to introduce the idea of viewing
these approaches as the optimization of Tikhonov functionals rather than optimizing networks. Besides theoretical results,
we present numerical verifications.
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1 Introduction

Deep image priors (DIP) were recently introduced in deep
learning for some tasks in image processing [19]. Usually,
deep learning approaches to inverse problems proceed in two
steps. In a first step (training), the parameters Θ of the deep
neural network ϕΘ are optimized by minimizing a suitable
loss function using large sets of training data. In a second step
(application), new data are fed into the network for solving
the desired task.

DIP approaches are radically different; they are based on
unsupervised training using only a single data point yδ . More
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precisely, in the context of inverse problems, where we aim
at solving ill-posed operator equations Ax ∼ yδ , the task
of DIP is to train a network ϕΘ(z) with parameters Θ by
minimizing the simple loss function

min
Θ

‖AϕΘ(z) − yδ‖2. (1.1)

The minimization is with respect to Θ, the random input z is
kept fixed. After training, the solution to the inverse problem
is approximated directly by x̂ = ϕΘ(z).

In image processing, common choices for A are the iden-
tity operator (denoising) or a projection operator to a subset
of the image domain (inpainting). For these applications, it
has been observed that minimizing the functional iteratively
by gradient descent methods in combination with a suitable
stopping criterion leads to amazing results [19].

Training with a single data point is the most striking
property, which separates DIP from other neural network
concepts. One might argue that the astonishing results
[10,19,23,32] are only possible if the network architecture
is fine-tuned to the specific task. This is true for obtaining
optimal performance; nevertheless, the presented numerical
results perform well even with somewhat generic network
architectures such as autoencoders.

We are interested in analyzing DIP approaches for solving
ill-posed inverse problems. As a side remark, we note that
the applications (denoising, inpainting) mentioned above are
modeled by either identity or projection operators, which are
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not ill-posed in the functional analytical setting [13,21,28].
Typical examples of ill-posed inverse problems correspond
to compact linear operators such as a large variety of
tomographic measurement operators or parameter-to-state
mappings for partial differential equations.

We aim at analyzing a specific network architecture ϕΘ

and at interpreting the resulting DIP approach as a regu-
larization technique in the functional analytical setting, and
also at proving convergence properties for the minimizers of
(1.1). In particular,we are interested in network architectures,
which themselves can be interpreted as a minimization algo-
rithm that solves a regularized inverse problem of the form

x(B) = argminx
1

2
‖Bx − yδ‖2 + αR(x), (1.2)

where R is a given convex function and B a learned operator.
In general, deep learning approaches for inverse prob-

lems have their own characteristics, and naive applications
of neural networks can fail for even the most simple inverse
problems, as shown in [22]. However, there is a grow-
ing number of compelling numerical experiments using
suitable network designs for some of the toughest inverse
problems such as photo-acoustic tomography [17] or X-ray
tomographywith very fewmeasurements [2,18]. Concerning
networks based on deep prior approaches for inverse prob-
lems, first experimental investigations have been reported,
as shown in [19,23,32]. Similar as for the above-mentioned
tasks in image processing, DIPs for inverse problems rely on
two ingredients:

1. A suitable network design, which leads to our phrase
“regularization by architecture.”

2. Training algorithms for iteratively minimizing (1.1) with
respect to Θ in combination with a suitable stopping cri-
terion.

In this paper,wepresent differentmathematical interpreta-
tions ofDIP approaches, andwe analyze twonetwork designs
in the context of inverse problems in more detail. It is orga-
nized as follows: In Sect. 2, we discuss some relations to
existing results and make a short survey of the related lit-
erature. In Sect. 3, we then state different interpretations of
DIP approaches and the network architectures that we use,
as a basis for the subsequent analysis. We start with a first
mathematical result for a trivial network design, which yields
a connection to Landweber iterations. We then consider a
fully connected feedforward network with L identical layers,
which generates a proximal gradient descent for a modified
Tikhonov functional. In Sect. 4, we use this last connection to
define the notion of analytic deep prior networks, for which
one can strictly analyze its regularization and convergence
properties. The key to the theoretical findings is a change of

view, which allows for the interpretation of DIP approaches
as optimizing families of Tikhonov functionals. Finally, we
exemplify our theoretical findings with numerical examples
for the standard linear integration operator.

2 Deep Prior and Related Research

We start with a description of general deep prior concepts.
Afterward, we address similarities and differences to other
approaches, such as LISTA [16], in more detail.

2.1 The Deep Prior Approach

Present results on deep prior networks utilize feedforward
architectures. In general, a feedforward neural network is an
algorithm that starts with input x0 = z, computes iteratively

xk+1 = φ
(
Wkx

k + bk
)

for k = 0, . . . , L − 1 and outputs

ϕΘ(z) = x L .

The parameters of this system are denoted by

Θ = {W0, . . . ,WL−1, b0, . . . , bL−1}

and φ denotes a nonlinear activation function.
In order to highlight one of the unique features of deep

image priors, let us first refer to classical generative networks
that require training on large data sets.

In this classical setting, we are given an operator A : X →
Y between Hilbert spaces X ,Y , as well as a set of training
data (xi , yδ

i ), where yδ
i is a noisy version of Axi satisfying

‖yδ
i − Axi‖ ≤ δ. Here, the usual deep learning approach is

to use a network for direct inversion and the parameters Θ

of the network are obtained by minimizing the loss function

min
Θ

N∑
i=1

‖ϕΘ(yδ
i ) − xi‖2 . (2.1)

After training, Θ is fixed and the network is used to approxi-
mate the solution of the inverse problem with new data yδ by
computing x = ϕΘ(yδ). For a recent survey on this approach
and more general deep learning concepts for inverse prob-
lems see [5].

In general, this approach relies on the underlying assump-
tion that complex distributions of suitable solutions x , e.g.,
the distribution of natural images, can be approximated by
neural networks [6,8,33]. The parameters Θ are trained for
the specific distribution of training data and are fixed after
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training. One then expects that choosing a new data set as
input, i.e., z = yδ will generate a suitable solution to Ax ∼ yδ

[7]. Hence, after training, the distribution of solutions is
parametrized by the inputs z.

In contrast, DIP is an unsupervised approach using only
a single data point for training. That means, for given data
yδ and fixed z, the parameters Θ of the network ϕΘ are
obtained by minimizing the loss function (1.1). The solution
to the inverse problem is then denoted by x̂ = ϕΘ(z). Hence,
deep image priors keep z fixed and aim at parameterizing
the solution with Θ . It has been observed in several works
[10,19,23,32] that this approach indeed leads to remarkable
results for problems such as inpainting or denoising.

To some extent, the success of deep image priors is rooted
in the careful design of network architectures. For exam-
ple, [19] uses aU-Net-like “hourglass” architecturewith skip
connections, and the amazing results show that such an archi-
tecture implicitly captures some statistics of natural images.
However, in general, the DIP learning process may con-
verge toward noisy images or undesirable reconstructions.
Thewhole success relies on a combination of the architecture
with a suitable optimization method and stopping criterion.
Nevertheless, the authors claim the architecture has a positive
impact on the exploration of the solution space during the iter-
ative optimization of Θ . They show that the training process
descends quickly to “natural-looking” images but requires
much more steps to produce noisy images. This is also sup-
ported by the theoretical results of [29] and the observations
of [35], which shows that deep networks can fit noise very
well but need more training time to do so. Another paper that
hints in this direction is [4], which analyzes whether neu-
ral networks could have a bias toward approximating low
frequencies.

There are already quite a few works that deal with deep
prior approaches. Following, we mention the most relevant
ones to our work. The original deep image prior article
[19] introduces the DIP concept and presents experimen-
tal evidence that today’s network architectures are in and
of themselves conducive to image reconstruction. Another
work [32] explores the applicability of DIP to problems in
compressed sensing. Also, [23] discusses how to combine
DIP with the regularization by denoising approach and [10]
explores DIP in the context of stationary Gaussian processes.
All of these introduce and discuss variants of DIP concepts;
however, neither of them addresses the intrinsic regulariz-
ing properties of the network concerning ill-posed inverse
problems.

2.2 Deep Prior and Unrolled Proximal Gradient
Architectures

A major part of this paper is devoted to analyzing the DIP
approach in combination with an unrolled proximal gradient

network ϕΘ . Hence, there is a natural connection to the well-
established analysis of LISTA schemes. Before we sketch the
state of research in this field, we highlight the two major dif-
ferences (loss function, training data) to the present approach.
LISTA is based on a supervised training using multiple data
points (xi , yδ

i ), i = 1, . . . N where yδ
i is a noisy representa-

tion of Axi . The loss function is (2.1). DIP, however, is based
on unsupervised learning using the loss function (1.1) and a
single data point yδ . Hence, DIP with the unrolled proximal
gradient network shares the architecture with LISTA, but its
concept, as well as its analytic properties, is different. Nev-
ertheless, the analysis we will present in Sect. 4 will exhibit
structures similar to the ones appearing in the LISTA-related
literature. Hence, we shortly review the major contributions
in this field.

Similarities are most visible when considering algorithms
and convergence analysis for sparse coding applications
[20,25,30,31,34]. The field of sparse coding makes heavy
use of proximal splitting algorithms and, since the advent
of LISTA, of trained architectures inspired by truncated ver-
sions of these algorithms. In the broadest sense, all of these
methods are expressions of “Learning to learn by gradient
descent” [3]. Once more, we would like to emphasize that
these results utilize multiple data points while DIP does not
require any training data but only one measurement. Another
key difference is that we approach the topic from an ill-posed
inverse problem perspective, which (a) grounds our approach
in the functional analytic realm and (b) considers ill-posed
(not only ill-conditioned) problems in the Nashed sense, i.e.,
allows the treatment of unstable inverses [13]. These two
points fundamentally differentiate the present approach from
traditional compressed sensing considerations which usually
deal with (a) finite dimensional formulations and (b) forward
operators given by well-conditioned, carefully hand-crafted
settings or dictionaries, which are optimized using large sets
of training data [30].

Coming back to LISTA for sparse coding applications,
there aremany excellent papers [15,24,25]which are devoted
to a strict mathematical analysis of different aspects of
LISTA-like approaches. In [25], the authors show under
which conditions sparse coding can benefit from LISTA-
like trained structures and ask how good trained sparsity
estimators can be given a computational budget. The arti-
cle [15] deals with a similar trade-off proposing the quite
exciting, “inexact proximal gradient descent.” The paper [9]
proposes, based on theoretically founded considerations, a
sibling architecture to LISTA. Moreover, [27] argues that
deep learning architectures, in general, can be interpreted as
multistage proximal splitting algorithms.

Finally, we want to point at publications, which address
deep learning with only a few data points for training, see,
e.g., [14] and the references therein. However, they do not
address the architectures relevant for our publication, and
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Fig. 1 A simple network with scalar input, a single layer and no activa-
tion function. For any arbitrary input z one obtains ϕΘ(z) = Θ (Color
figure online)

they do not refer to the specific complications of inverse
problems.

3 Deep Prior Architectures and
Interpretations

In this section, we discuss different perspectives on deep
prior networks, which open the path to provable mathemat-
ical results. The first two subsections are devoted to special
network architectures, and the last two subsections deal with
more general points of view.

3.1 A Trivial Architecture

We aim at solving ill-posed inverse problems. For a given
operator A, the general task in inverse problems is to recover
an approximation for x† from measured noisy data

yδ = Ax† + τ,

where τ , with ‖τ‖ ≤ δ, describes the noise in the measure-
ment.

The deep image prior approach to inverse problems asks to
train a network ϕΘ(z)with parametersΘ and fixed input z by
minimizing ‖AϕΘ(z) − yδ‖2 with an optimization method
such as gradient descent with early stopping. After training,
a final run of the network computes x̂ = ϕΘ(z) as an approx-
imation to x†.

We consider a trivial single-layer network without activa-
tion function, as shown inFig. 1. This network simply outputs
Θ, i.e., ϕΘ(z) = Θ . In this case, the network parameter Θ

is a vector, which is chosen to have the same dimension as
x . That means, that training the network by gradient descent
of ‖AϕΘ(z) − yδ‖2 = ‖AΘ − yδ‖2 with respect to Θ is
equivalent to the classical Landweber iteration, which is a
gradient descent method for ‖Ax − yδ‖2 with respect to x .

Landweber iterations are slowly converging. However, in
combination with a suitable stopping rule, they are optimal
regularization schemes for diminishing noise level δ → 0,
[13,21,28]. Despite the apparent trivialization of the neu-
ral network approach, this shows that there is potential in
training such networks with a single data point for solving
ill-posed inverse problems.

Fig. 2 Unrolled proximal gradient network with L = 2 (Color figure
online)

3.2 Unrolled Proximal Gradient Architecture

In this section, we aim at rephrasing DIP, i.e., the minimiza-
tion of (1.1) with respect to Θ , as an approach for learning
optimized Tikhonov functionals for inverse problems. This
change of view, i.e., regarding deep inverse priors as opti-
mization of functionals rather than networks, opens the way
for analytic investigations in Sect. 4.

We use the particular architecture, which was introduced
in [16], i.e., a fully connected feedforward network with L
layers of identical size,

ϕΘ(z) = x L , (3.1)

where

xk+1 = φ
(
Wxk + b

)
(3.2)

The affine linear map Θ = (W , b) is the same for all layers.
ThematrixW is restricted to obey I−W = λB∗B (I denotes
the identity operator) for some B and the bias is determined
via b = λB∗yδ , as shown in Fig. 2. If the activation function
of the network is chosen as the proximal mapping of a reg-
ularizing functional λαR, then ϕΘ(z) is identical to the Lth
iterate of a proximal gradient descent method for minimizing

JB(x) = 1

2
‖Bx − yδ‖2 + αR(x), (3.3)

see [12] or “Appendix 1”.

Remark 3.1 Restricting activation functions to be proximal
mappings is not as severe as it might look at first glance. For
example, ReLU is the proximal mapping for the indicator
function of positive real numbers, and soft shrinkage is the
proximal mapping for the modulus function.

This allows the interpretation that every weight update,
i.e., everygradient step forminimizing (1.1)with respect toΘ

or B, changes the functional JB . Hence, DIP can be regarded
as optimizing a functional, which in-turn is minimized by
the network. This view is the starting point for investigating
convergence properties in Sect. 4.
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3.3 Two Perspectives Based on Regression

The following subsections address more general concepts,
which open the way to further analytic investigations, which,
however, are not considered further in this paper. The reader
interested in the regularization properties for DIP approaches
for inverse problems only may jump directly to Sect. 4.

In this subsection,wepresent twodifferent perspectives on
solving inverse problems with the DIP via the minimization
of a functional as discussed in the subsection above. The first
perspective is based on a reinterpretation of theminimization
of the functional (1.1) in the finite, real setting, i.e., A ∈
R
m×n . This setting allows us to write

min
Θ

‖AϕΘ(z) − yδ‖2 = min
x∈R(ϕ·(z))

‖Ax − yδ‖2 (3.4)

= min
x∈R(ϕ·(z))

m∑
i=1

(x∗ai − yδ
i )

2, (3.5)

whereR(ϕ·(z)) denotes the range of the network with regard
to Θ for a fixed z and ai the rows of the matrix A as well
as yδ

i the entries of the vector yδ . This setting allows for
the interpretation that we are solving a linear regression,
parameterized by x , which is constrained by a deep learn-
ing hypothesis space and given by data pairs of the form
(ai , yδ

i ).
The second perspective is based on the rewriting of the

optimization problem via the method of Lagrange multi-
pliers. We start by considering the constrained optimization
problem

min
x∈X ,Θ

‖Ax − yδ‖2 s.t. ‖x − ϕΘ(z)‖2 = 0. (3.6)

If we now assume that ϕ has continuous first partial deriva-
tives with regard to Θ , the Lagrange functional

L (Θ, x, λ) = ‖Ax − yδ‖2 + λ‖x − ϕΘ(z)‖2, (3.7)

with the correct Lagrange multiplier λ = λ0, has a stationary
point at eachminimumof the original constraint optimization
problem. This gives us a direct connection to unconstrained
variational approaches like Tikhonov functionals.

3.4 The Bayesian Point of View

The Bayesian approach to inverse problems focuses on com-
puting MAP (maximum a posteriori probability) estimators,
i.e., one aims for

x̂ = argmaxx∈X p(x |yδ), (3.8)

where p : X × Y → R+ ∪ {0} is a conditional PDF. From
standard Bayesian theory, we obtain

x̂ = argminx∈X
{− log[p(yδ|x)] − log[p(x)]} . (3.9)

The setting for inverse problems, i.e., Ax + τ = yδ with
τ ∼ Normal(0, σ 21Y ), yields (λ = 2σ 2)

x̂ =: argminx∈X ‖Ax − yδ‖2 − λ log[p(x)] .

We now decompose x into x⊥ := PN (A)⊥(x), and xN :=
PN (A)(x), where N (A) denotes the nullspace of A and
where PN (A)(x), resp. PN (A)⊥(x), denotes the orthogonal
projection ontoN (A), resp.N (A)⊥. Setting x̂ = (xN , x⊥)

yields

x̂ = argminx∈X ‖Ax⊥ − yδ‖2 − λ log p(xN , x⊥)

= argminx∈X ‖Ax⊥ − yδ‖2−λ log p(x⊥)−λ log p(xN |x⊥).

= argminx∈X

(I )︷ ︸︸ ︷
‖Ax⊥ − yδ‖2 −λ log p(x⊥)−λ log p(xN |x⊥)︸ ︷︷ ︸

(I I )

.

The data yδ only contain information about x⊥, which in
classical regularization is exploited by restricting any recon-
struction to N (A)⊥.

However, if available, p(xN |x⊥) is a measure on how to
extend x⊥ with an x⊥ ∈ N (A)⊥ to a suitable x = (xN , x⊥).
The classical regularization of inverse problems uses the
trivial extension by zero, i.e., x = (0, x⊥), which is not
necessarily optimal. If we accept the interpretation that a
network can be a meaningful parametrization of the set of
suitable solutions x , then p(x) ≡ 0 for all x not in the range
of the network and optimizing the network will indeed yield
a non-trivial completion x = (xN , x⊥). More precisely (I)
can be interpreted to be a deep prior on the measurement and
(II) to be a deep prior on the nullspace part of the problem.

4 Deep Priors and Tikhonov Functionals

In this section, we consider the particular network architec-
ture given by unrolled proximal gradient schemes, as shown
in Sect. 3.2. We aim at embedding this approach into the
classical regularization theory for inverse problems. For a
strict mathematical analysis, we will introduce the notion of
an analytic deep prior network, which then allows interpret-
ing the training of the deep prior network as an optimization
of a Tikhonov functional. The main result of this section
is Theorem 4.2, which states that analytic deep priors in
combination with a suitable stopping rule are indeed order
optimal regularization schemes. Numerical experiments in
Sect. 4.2 demonstrate that such deep prior approaches lead to
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smaller reconstruction errors when compared with standard
Tikhonov reconstructions. The superiority of this approach
can be proved, however, only for the rather unrealistic case,
that the solution coincides with a singular function of A.

4.1 Unrolled Proximal Gradient Networks as Deep
Priors for Inverse Problems

In this section, we consider linear operators A and aim at
rephrasing DIP, i.e., the minimization of (1.1) with respect
to Θ , as a constrained optimization problem. This change of
view, i.e., regarding deep inverse priors as an optimization
of a simple but constrained functional, rather than net-
works, opens the way for analytic investigations. We will use
an unrolled proximal gradient architecture for the network
ϕΘ(z) in (1.1). The starting point for our investigation is the
common observation, as shown in [11,16] or “Appendix 1”,
that an unrolled proximal gradient scheme as defined in
Sect. 3.2 approximates a minimizer x(B) of (3.3). Assuming
that a unique minimizer x(B) exists as well as neglecting
the difference between x(B) and the approximation ϕΘ(z)
achieved by the unrolled proximal gradient motivates the fol-
lowing definition of analytic deep priors.

Definition 4.1 Let us assume that measured data yδ ∈ Y , a
fixed α > 0, a convex penalty functional R : X → R and a
measurement operator A ∈ L (X ,Y ) are given. We consider
the minimization problem

min
B

F(B) = min
B

1

2
‖Ax(B) − yδ‖2, (4.1)

subject to the constraint

x(B) = argminx JB(x)

= argminx
1

2
‖Bx − yδ‖2 + αR(x). (4.2)

We assume that for every B ∈ L (X ,Y ), there is a unique
minimizer x(B).We call this constrainedminimization prob-
lem an analytic deep prior and denote by x(B) the resulting
solution to the inverse problems posed by A and yδ .

We can also use this technical definition as the starting
point of our consideration and retrieve the neural network
architecture by considering the following approach for solv-
ing the minimization problem stated in the above definition.
Assuming that R has a proximal operator, we can compute
x(B), given B, via proximal gradient method. That is, via the
(for a suitable choice of λ > 0 and an arbitrary x0 = z ∈ X )
converging iteration

xk+1 = ProxλαR

(
xk − λB∗(Bxk − yδ)

)
. (4.3)

Following this iteration for L steps can be seen as the forward
pass of a particular architecture of a fully connected feedfor-
ward network with L layers of identical size as described in
(3.1) and (3.2). The affine linear map given by Θ = (W , b)
is the same for all layers. Moreover, the activation function
of the network is given by the proximal mapping of λαR, the
matrixW is given via I −W = λB∗B (I denotes the identity
operator), and the bias is determined by b = λB∗yδ .

From now on we will assume that the difference between
x L and x(B) is negligible, i.e.,

x L = x(B). (4.4)

Remark 4.1 The task in the DIP approach is to find Θ (net-
work parameters). Analogously, in the analytic deep prior,
we try to find the operator B.

We now examine the analytic deep image prior utilizing
the proximal gradient descent approach to compute x(B).
Therefore, we will focus on the minimization of (4.1) with
respect to B for given data yδ by means of gradient descent.

The stationary points are characterized by ∂F(B) = 0,
and gradient descent iterations with stepsize η are given by

B�+1 = B� − η∂F(B�). (4.5)

Hence, we need to compute the derivative of F with respect
to B.

Lemma 4.1 Consider an analytic deep prior with the proxi-
mal gradient descent approach as described above.We define

ψ(x, B) = ProxλαR
(
x − λB∗(Bx − yδ)

) − x . (4.6)

Then,

∂F(B) = ∂x(B)∗A∗(Ax(B) − yδ) (4.7)

with

∂x(B) = −ψx (x(B), B)−1ψB(x(B), B), (4.8)

which leads to the gradient descent

B�+1 = B� − η∂F(B�). (4.9)

This lemma allows to obtain an explicit description of the
gradient descent for B, which in turn leads to an iteration of
functionals JB andminimizers x(B). Wewill now exemplify
this derivation for a rather academic example, which however
highlights in particular the differences between a classical
Tikhonov minimizer, i.e.,

x(A) = argminx
1

2
‖Ax − yδ‖2 + α

2
‖x‖2,

and the solution of the DIP approach.
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4.1.1 Example

In this example, we examine analytic deep priors for linear
inverse problems A : X → Y , i.e., A, B ∈ L (X ,Y ), and

R(x) = 1

2
‖x‖2. (4.10)

The rather abstract characterization of the previous section
can be made explicit for this setting. Since JB(x) is the clas-
sical Tikhonov regularization, which can be solved by

x(B) = (B∗B + α I )−1B∗yδ, (4.11)

we can rewrite the analytic deep prior reconstruction as x(B),
where B is minimizing

F(B) = 1

2
‖A(B∗B + α I )−1B∗yδ − yδ‖2. (4.12)

Lemma 4.2 Following Lemma 4.1, assuming B0 = A and
computing one step of gradient descent to minimize the func-
tional with respect to B, yields

B1 = A − η∂F(A) (4.13)

with

∂F(A) = ∂x(A)∗A∗(Ax(A) − yδ)

= αAA∗yδ(yδ)∗A
(
A∗A + α I

)−3 (4.14)

+ αA
(
A∗A + α I

)−3
A∗yδ(yδ)∗A

− αyδ(yδ)∗A
(
A∗A + α I

)−2
. (4.15)

This expressionnicely collapses if yδ(yδ)∗ commuteswith
AA∗. For illustration, we assume the rather unrealistic case
that x+ = u, where u is a singular function for A with sin-
gular value σ . The dual singular function is denoted by v,
i.e., Au = σv and A∗v = σu and we further assume that the
measurement noise in yδ is in the direction of this singular
function, i.e., yδ = (σ + δ)v, as shown in Fig. 3. In this
case, the problem is indeed one-dimensional and we obtain
an iteration restricted to the span of u, resp. the span of v.

Lemma 4.3 The setting described above yields the following
gradient step for the functional in (4.12):

B�+1 = B� − c�vu
∗ (4.16)

with

c� = c(α, δ, σ, η) = ησ(σ + δ)2(α + β2
� − σβ�)

β2
� − α

(β2
� + α)3

,

Fig. 3 Example of yδ = (σ + δ)v where v is a singular function of A
(integral operator) (Color figure online)

Fig. 4 Comparison of the Tikhonov reconstruction (orange broken
line), the result obtained in (4.17) (blue continuous line) and the direct
inverse. In this example, we considered α = 10−3 (Color figure online)

and the iteration (4.16) in-turn results in the sequence x(B�)

with the unique attractive stationary point

x =
{

1
2
√

α
(σ + δ)u, σ < 2

√
α

1
σ
(σ + δ)u, otherwise.

(4.17)

For comparison, the classical Tikhonov regularization
would yield σ

σ 2+α
(σ + δ)u. This is depicted in Fig. 4.

4.1.2 Constrained System of Singular Functions

In the previous example, we showed that if we do gradient
descent starting from B0 = A and assume the rather simple
case yδ = (σ + δ)v, we obtain the iteration B�+1 = B� −
c�vu∗, i.e., B�+1 has the same singular functions as A and
only one of the singular values is different.

We now analyze the optimization from a different per-
spective. Namely, we focus on finding directly a minimizer
of (4.1) for a general yδ ∈ Y ; however, we restrict B to be an
operator such that B∗B commutes with A∗A, i.e., A and B
share a common system of singular functions. Hence, B has
the following representation.

B =
∑
i

βivi u
∗
i , βi ∈ R+ ∪ {0}, (4.18)

where {ui , σi , vi } is the singular value decomposition of A.
That means, we restrict the problem to finding optimal sin-
gular values βi for B. In this case, we show that a global
minimizer exists and that it has interesting properties.
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Theorem 4.1 For any yδ ∈ Y , there exist a global minimizer
(in the constrained singular functions setting) of (4.1) given
by Bα = ∑

βα
i vi u∗

i with

βα
i (σ ) =

⎧⎨
⎩

σi
2 +

√
σ 2
i
4 − α σ ≥ 2

√
α√

α σ < 2
√

α
. (4.19)

Remark 4.2 The singular values obtained in Theorem 4.1
match the ones obtained in the previous section for general
B but simple yδ = (σ + δ)v.

Remark 4.3 The minimizer from Theorem 4.1 does not
depend on yδ , i.e., ∀ : yδ ∈ Y it holds that Bα is a mini-
mizer of (4.1). The solution to the inverse problem does still
depend on yδ since

x(Bα) = argminx
1

2
‖Bαx − yδ‖2 + αR(x). (4.20)

Remark 4.4 In the original DIP approach, some of the param-
eters of the network may be similar for different yδ , for
example, the parameters of the first layers of the encoder part
of the UNet. Other parameters may strongly depend on yδ .
In this particular case of the analytic deep prior (constrained
system of singular functions), we have a explicit separation
of which parameters (b = λB∗yδ) depend on yδ and which
do not (W = I − λB∗B).

From now on we consider the notation x(B, yδ) to incor-
porate the dependency of x(B) on yδ . Following the clas-
sical filter theory for order optimal regularization schemes,
[13,21,28], we obtain the following theorem.

Theorem 4.2 The pseudoinverse Kα : Y → X defined as

Kα(yδ) := x(Bα, yδ) (4.21)

is an order optimal regularization method given by the filter
functions

Fα(σ ) =
{
1 σ ≥ 2

√
α

σ
2
√

α
σ < 2

√
α

. (4.22)

The regularized pseudoinverse Kα is quite similar to the
truncated singular value decomposition (TSVD) but is a
softer version because it does not have a jump (see Fig. 5).
We call this method Soft TSVD.

The disadvantage of Tikhonov, in this case, is that it damps
all singular values, and the disadvantage of TSVD is that
it throws away all the information related to small singular
values. On the other hand, the Soft TSVD does not damp the
higher singular values (similar to TSVD) and does not throw
away the information related to smaller singular values but
does damp it (similar to Tikhonov). For a comparison of the
filter functions, see Table 1. Moreover, what is interesting

Fig. 5 Filter response of TSVD, Tikhonov and the Soft TSVD (Color
figure online)

Table 1 Values of ν for which TSVD, Tikhonov and the Soft TSVD
are order optimal

Method Fα(σ ) γ ν

Tikhonov σ 2

σ 2+α
1/2 2 > ν > 0

TSVD

{
1 σ ≥ α

0 σ < α
1 ν > 0

Soft TSVD

{
1 σ ≥ 2

√
α

σ
2
√

α
σ < 2

√
α

1/2 ν > 0

For more details see the Proof of Theorem 4.2 in “Appendix 2”

is how this method comes out from Definition 4.1, which is
stated in terms of the Tikhonov pseudoinverse, and that the
optimal singular values do not depend on yδ .

At this point, the relation to the original DIP approach
becomes more abstract. We considered a simplified network
architecture where all layers share the same weights that
come from an iterative algorithm for solving inverse prob-
lems. That means, we let the solution to the original inverse
problem be the solution of another problem with different
operator B. The DIP approach in this case is transformed
to finding an optimal B and allows us to do the analysis in
the functional analysis setting. What we learn from the pre-
vious results is that we can establish interesting connections
between the DIP approach and the classical inverse problems
theory. This is important because it shows that deep inverse
priors can be used to solve really ill-posed inverse problems.

Remark 4.5 In the original DIP, the input z to the network
is chosen arbitrarily and is of minor importance. However,
once the weights have been trained for a given yδ , z cannot
be changed because it would affect the output of the network,
i.e., it would change the obtained reconstruction. In the ana-
lytic deep prior, the input to the unrolled proximal gradient
method is completely irrelevant (assuming an infinite num-
ber of layers). After finding the “weights” B, a different input
will still produce the same solution x̂ = x(B) = ϕΘ(z).

Remark 4.5 tells us that there is still a gap between the
original DIP and the analytic one. This was expected because
of the obvious trivialization of the network architecture but
serves as motivation for further research.
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Fig. 6 Example of yδ for x† = u (singular function) with a SNR of
17.06 db (Color figure online)

Fig. 7 Example of a more general yδ with a SNR of 18.97 db (Color
figure online)

4.2 Numerical Experiments

We now use the analytic deep inverse prior approach for
solving an inverse problem with the following integration
operator A : L2 ([0, 1]) → L2 ([0, 1])

(Ax) (t) =
∫ t

0
x(s) ds. (4.23)

A is a linear and compact operator, hence the inverse problem
is ill-posed. Let An ∈ R

n×n be a discretization of A and
x† ∈ R

n to be one of its discretized singular vectors u. We
set the noisy data yδ = Anx† + δτ with τ ∼ Normal(0,1n),
as shown in Fig. 6. A more general example, i.e., where x†

is not restricted to be a singular function, is also included
(Fig. 7).

We aim at recovering x† from yδ considering the setting
established in Definition 4.1 for R(·) = 1

2‖ · ‖2. That means
that the solution x is parametrized by the operator B. Solving
the inverse problem is now equivalent to finding optimal B
that minimizes the loss function (1.1) for the single data point
(z, yδ).

To find such a B, we go back to the DIP and the neu-
ral network approach. We write x(B) as the output of the
network ϕΘ defined in (3.1) with some randomly initialized
input z. We optimize with respect to B, which is a matrix in
the discretized setting, and obtain a minimizer Bopt of (1.1).
For more details, please refer to “Appendix 3.”

In Fig. 8, we show some reconstruction results. The first
plot of each row contains the true solution x†, the standard

Tikhonov solution x(A) and the reconstruction obtainedwith
the analytic deep inverse approach x(Bopt) after B converged.
For each case, we provide additional plots depicting:

– The true error of the network’s output x(B) after each
update of B in a logarithmic scale.

– The squared Frobenius norm of Bk − Bk+1 after each
update of B.

– The matrix Bopt.

For all choices ofα, the training of B converges to amatrix
Bopt, such that x(Bopt) has a smaller true error than x(A).
In the third plot of each row, one can check that B indeed
converges to some matrix Bopt, which is shown in the last
plot. The networks were trained using gradient descent with
0.05 as learning rate.

The theoretical findings of the previous subsections allow
us to compute, either the exact update (4.16) for B in
the rather unrealistic case that yδ = (σ + δ)v , or the
exact solution x(Bα, yδ) if we restrict B to have the same
system of singular functions as A (Theorem 4.1). In the
numerical experiments, we do not consider any of these
restrictions, and therefore, we cannot directly apply our the-
oretical results. Instead, we implement the network approach
(see “Appendix 3”) to be able to find Bopt in a more general
scenario. Nevertheless, as it can be observed in the last plot
of each row in Fig. 8, Bopt contains some patterns that reflect,
to some extent, that B keeps the same singular system but
with different singular values. Namely, B is updated in a sim-
ilar way as in (4.16). With the current implementation, we
could also use more complex regularization functionals R,
in order to reduce the gap between our analytic approach and
the originalDIP. This is also amotivation for further research.

5 Summary and Conclusion

In this paper, we investigated the concept of deep inverse
priors/regularization by architecture. This approach neither
requires massive amounts of ground truth/surrogate data, nor
pretrained models/transfer learning. The method is based on
a single measurement. We started by giving different qualita-
tive interpretations of what regularization is and specifically
how regularization by architecture fits into this context.

We followed up with the introduction of the analytic deep
prior by explicitly showing how unrolled proximal gradient
architectures, allow for a somewhat transparent regulariza-
tion by architecture. Specifically, we showed that their results
can be interpreted as solutions of optimized Tikhonov func-
tionals and proved precise equivalences to regularization
techniques. We further investigated this point of view with
an academic example, where we implemented the analytic
deep inverse prior and tested its numerical applicability.

123



Journal of Mathematical Imaging and Vision (2020) 62:456–470 465

Fig. 8 Reconstructions corresponding to yδ as in Fig. 6 (first and sec-
ond row) and Fig. 7 (third and fourth row) for different values of α. The
broken line in the second plot of each row indicates the true error of

the standard Tikhonov solution x(A). The horizontal axis in the second
and third plots indicates the number of weights updates (Color figure
online)

The results confirmed our theoretical findings and showed
promising results.

There is obviously, like in deep learning in general, much
work to be done in order to have a good understanding of
deep inverse priors, but we see much potential in the idea
of using deep architectures to regularize inverse problems;
especially since an enormous part of the deep learning com-
munity is already concerned with the understanding of deep
architectures.
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Appendix 1: A Reminder on Minimization of
TikhonovFunctionalsand theLISTAApproach

In this section, we consider only linear operators A and we
review thewell-known theory for the Iterative Soft Shrinkage
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Algorithm (ISTA) as well as the slightly more general Proxi-
mal Gradient (PG) [11,26] method for minimizing Tikhonov
functionals of the type

J (x) = 1

2
‖Ax − yδ‖2 + αR(x). (5.1)

We recapitulate themain steps in deriving ISTAandPG, as
far as we need it for our motivation. The necessary first-order
condition for a minimizer is given by

0 ∈ A∗(Ax − yδ) + α∂R(x). (5.2)

Multiplying with an arbitrary real positive number λ and
adding x plus rearranging yields

x − λA∗(Ax − yδ) ∈ x + λα∂R(x). (5.3)

For convex R, the term of the right hand side is inverted by
the (single valued) proximal mapping of λαR, which yields

ProxλαR
(
x − λA∗(Ax − yδ)

) = x . (5.4)

Hence, this is a fixed point condition, which is a necessary
condition for all minimizers of J . Turning the fixed point
condition into an iteration scheme yields the PG method

xk+1 = ProxλαR

(
xk − λA∗(Axk − yδ)

)
(5.5)

= ProxλαR

(
(I − λA∗A)xk + λA∗yδ

)
. (5.6)

This structure is also the motivation for LISTA [16]
approaches where fully connected networks with L internal
layers of identical size are used. Moreover, in some versions
of LISTA, the affine maps between the layers are assumed to
be identical. The values at the kth layer are denoted by xk ,
hence,

xk+1 = φ
(
Wxk + b

)
. (5.7)

LISTA then trains (W , b) on some given training data. More
precisely, it trains twomatricesW = I−λA∗A and S = λA∗
such that

xk+1 = φ
(
Wxk + Syδ

)
. (5.8)

This derivation can be rephrased as follows.

Lemma 5.1 Let ϕΘ , Θ = (W , b), denote a fully connected
network with input x0 and L-internal layers. Further assume
that the activation function is identical to a proximal map-
ping for a convex functional λαR : X → IR. Assume W

is restricted, such that I − W is positive definite, i.e., there
exists a matrix B such that

I − W = λB∗B. (5.9)

Furthermore, we assume that the bias term is fixed as b =
λB∗yδ . Then, ϕΘ(z) is the Lth iterate of an ISTA scheme
with starting value x0 = z for minimizing

JB(x) = 1

2
‖Bx − yδ‖2 + αR(x). (5.10)

Proof Follows directly from Eq. (5.5). ��

Appendix 2: Proofs

Proof of Lemma 4.1

F is a functional which maps operators B to real numbers,
hence, its derivative is given by

∂F(B) = [
∂x(B)∗

]
A∗(Ax(B) − yδ),

which follows from classical variational calculus, see, e.g.,
[13]. The derivative of x(B) with respect to B can be com-
puted using the fix point condition for a minimizer of JB ,
namely

ProxλαR
(
x(B) − λB∗(Bx − yδ)

) − x(B) = 0,

which is equivalent to

ψ(x(B), B) = 0.

Weapply the implicit function theorem and obtain the deriva-
tive

∂x(B) = −ψx (x(B), B)−1ψB(x(B), B). (5.11)

Combining ∂F(B) with ∂x(B) yields the required result.�

Proof of Lemma 4.2

We start with the explicit description of the iteration

B�+1 = B� − η∂F(B�) (5.12)

with

∂F(B) = ∂x(B)∗A∗(Ax(B) − yδ). (5.13)
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The derivative of x(B) with respect to B is a linear map
∂x(B) : L (X ,Y ) → X . For δB ∈ L (X ,Y ) we obtain

∂x(B)(δB) = − (
B∗B + α I

)−2 (
δB∗B + B∗δB

)
B∗yδ

+ (
B∗B + α I

)−1
δB∗yδ.

(5.14)

The adjoint operator is amapping from X toL (X ,Y ), which
can be derived from the defining relation

〈∂x(B)(δB), z〉X = 〈δB, [∂x(B)]∗ z〉L (X ,Y ) . (5.15)

Hence,

[∂x(B)]∗ z = − BB∗yδz∗
(
B∗B + α I

)−2

− B
(
B∗B + α I

)−2
z(yδ)∗B

+ yδz∗
(
B∗B + α I

)−1
.

(5.16)

Here, yδz∗ ∈ L (X ,Y ) denotes a linear map, which maps an
x ∈ X to 〈z, x〉X yδ .

First of all, we now aim at determining explicitly ∂F(B)

at the starting point of our iteration, i.e., with B0 = A.
From this follows the rather lengthy expression

∂F(A) = ∂x(A)∗A∗(Ax(A) − yδ) (5.17)

= αAA∗yδ(yδ)∗A
(
A∗A + α I

)−3

+ αA
(
A∗A + α I

)−3
A∗yδ(yδ)∗A

− αyδ(yδ)∗A
(
A∗A + α I

)−2
. (5.18)

This enables us to compute the update

B1 = A − η∂F(A) (5.19)

as well as the output of the analytic deep prior approach after
one iteration of updating B (assuming a suitably chosen η)

x(B1) = (B∗
1 B1 + α I )−1B∗

1 y
δ. (5.20)

Proof of Lemma 4.3

A lengthy computation exploiting B0 = A and β0 = σ

shows that the singular value β� of u in the spectral decom-
position of B� obeys the iteration

β�+1 = β� − ησ(σ + δ)2(α + β2
� − σβ�)

β2
� − α

(β2
� + α)3

, (5.21)

i.e.,

B�+1 = B� − c�vu
∗ (5.22)

with

c� = c(α, δ, σ, η) = ησ(σ + δ)2(α + β2
� − σβ�)

β2
� − α

(β2
� + α)3

.

We will now consider the stability of the fixed points of
the sequence x(B�), i.e., we will analyze the fixed points of
the iteration described in (5.21), that is,

β�+1 = β� − c(β�), (5.23)

where

c(β) = ησ(σ + δ)2(α + β2 − σβ)
β2 − α

(β2 + α)3
. (5.24)

This iteration in-turn gives you via the Tikhonov filter func-
tion, the sequence

x(β�) = β�

β2
� + α

(σ + δ)u (5.25)

of reconstructions. To find the fixed points of the iteration,
we analyze the real roots of c, which are

– β(1) = √
α,

– β(2) = −√
α,

– β(3) = σ
2 +

√
σ 2

4 − α, for σ ≥ 2
√

α and

– β(4) = σ
2 −

√
σ 2

4 − α, for σ ≥ 2
√

α.

Simple calculations show that

– ∂βc(β(1))

{
> 0, σ < 2

√
α

≤ 0, otherwise.

– ∂βc(β(2)) > 0
– ∂βc(β(3)) > 0, for σ ≥ 2

√
α and

– ∂βc(β(4)) > 0 for σ ≥ 2
√

α.

This leads to the single attractive fixed point β(1) for σ <

2
√

α and the two attractive fixed points β(3) and β(4) other-
wise. Since,

x(β(3)) = x(β(4)), (5.26)

we therefore have a unique reconstruction, namely

x =
{

1
2
√

α
(σ + δ)u, σ < 2

√
α

1
σ
(σ + δ)u, otherwise.

(5.27)

�
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Proof of Theorem 4.1

Let B = ∑
βivi u∗

i . We want to find {βi } to minimize

F(B) = ‖Ax(B, yδ) − yδ‖2. (5.28)

The Tikhonov solution is given by

x(B) =
∑ βi

β2
i + α

〈yδ, vi 〉ui , (5.29)

the result of applying the operator A to x(B) is

Ax(B) =
∑ σiβi

β2
i + α

〈yδ, vi 〉vi (5.30)

and

yδ =
∑

〈yδ, vi 〉vi . (5.31)

Inserting (5.30) and (5.31) in (5.28) yields

F(B) =
∑ ∣∣∣∣∣

(
σiβi

β2
i + α

− 1

)
〈yδ, vi 〉

∣∣∣∣∣
2

. (5.32)

In order to minimize F(B), we should set σβi
β2
i +α

= 1 which

implies β2
i −σβi +α = 0. The roots of the previous equation

are βi = σi
2 ±

√
σ 2
i
4 − α and they are real only if

σ 2
i
4 ≥ α. If

it does not hold then αβi
β2
i +α

< 1 and the optimal choice is to

find its maximum value which is attained at βi = √
α.

Therefore, we set

βi =
⎧
⎨
⎩

σi
2 +

√
σ 2
i
4 − α σ ≥ 2

√
α√

α σ < 2
√

α
(5.33)

and we minimize every term in the sum (5.32), which means
we have found singular values {βi } that minimize F(B).

��

Proof of Theorem 4.2

In order to prove that Kα is a proper order optimal regulariza-
tion method, we need to check if the corresponding filters Fα

from (4.22) satisfy the three conditions of optimality [21,28].
These conditions state that a filter Fα : R → R is an order

optimal regularization filter if ∃ γ, c1, c2, c3 > 0 such that

1. supσ

∣∣Fα(σ )σ−1
∣∣ ≤ c1α−γ

2. supσ |1 − Fα(σ )| σν < c2αγν

3. ∀α > 0, σ > 0 : |Fα(σ )| ≤ c3

In the following, we show that they hold ∀ν > 0 with
γ = 1

2 , c1 = 1
2 , c2 = 2ν, c3 = 1:

i. If σ ≥ 2
√

α

1. supσ

∣∣Fα(σ )σ−1
∣∣ = supσ

∣∣σ−1
∣∣ ≤ 1

2α
− 1

2

2. supσ |1 − Fα(σ )| σν = 0 ≤ αν

3. ∀α > 0, σ > 0 : |Fα(σ )| = 1

ii. If σ < 2
√

α

1. supσ

∣∣Fα(σ )σ−1
∣∣ = 1

2α
− 1

2

2. supσ |1 − Fα(σ )| σν = sup
σ

∣∣∣∣
2
√

α − σ

2
√

α

∣∣∣∣ σν

≤ 2να
ν
2

3. ∀α > 0, σ > 0 : |Fα(σ )| = σ
2
√

α
≤ 1

��

Appendix 3: Numerical Experiments

In this section, we provide details about the implementation
of the analytic deep inverse prior and the academic example.
We start by discretizing the integration operator, which yields
the matrix An ∈ R

n×n , that has h
2 on the main diagonal, h

everywhere under the main diagonal and 0 above (here h =
1
n ). In our experiments, we use n = 200.

The analytic deep inverse prior network ϕL
Θ is imple-

mented using Python and Tensorflow [1]. Initially, we create
the matrix B ∈ R

n×n and add L fully connected layers to
the network, all having the same parameters Θ = (W , b),
with weight matrix W = I − λBTB, bias b = λBTyδ and
activation function given by the �2 proximal operator. That
means the network contains in total 4× 104 parameters (the
number of components in B). For the experiments shown in
the paper, the input z is randomly initialized with a small
norm and λ is 1

μ
, where μ is the biggest eigenvalue of ATA.

We follow the DIP approach and minimize (1.1) using
gradient descent. To guarantee that ϕL

Θ(z) = x(B) holds,
the network should have thousands of layers, because of the
slow convergence of the PGmethod. This is prohibitive from
the implementation point of view. Therefore, we consider
only a reduced network with a small number of layers, L =
10, and at each iteration we set the input of the network to
be the network’s output after the previous iteration. This is
equivalent to adding L new identical layers after each update
of B, with

Wi = I − λBT
i Bi (5.34)

and

bi = λBT
i y

δ, (5.35)
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Fig. 9 The implicit network with (k+1)L layers. Here, ϕL
Θk

refers to a
block of L identical fully connected layerswithweightsΘk = (Wk , bk)

where Bi refers to the value of B at the i th iteration. After k
iterations, we implicitly create a network that has (k + 1)L
layers (Fig. 9), however, each time we update B, we back-
propagate only through the last L layers.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on
heterogeneous systems (2015). https://www.tensorflow.org/. Soft-
ware available from tensorflow.org

2. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE
Trans. Med. Imaging 37(6), 1322–1332 (2018)

3. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau,
D., Schaul, T., Shillingford, B., De Freitas, N.: Learning to learn
by gradient descent by gradient descent. In: Advances in Neural
Information Processing Systems, pp. 3981–3989 (2016)

4. Anonymous: on the spectral bias of neural networks. In: Submitted
to International Conference on Learning Representations (under
review) (2019). https://openreview.net/forum?id=r1gR2sC9FX.
Accessed 28 Oct 2019

5. Arridge, S., Maass, P., Öktem, O., Schönlieb, C.B.: Solving inverse
problems using data-drivenmodels. Acta Numer. 28, 1–174 (2019)

6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1),
183–202 (2009). https://doi.org/10.1137/080716542

7. Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing
using generative models. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6–11 August 2017, pp. 537–546 (2017). http://
proceedings.mlr.press/v70/bora17a.html

8. Bruna, J., Mallat, S.: Invariant scattering convolution networks.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

9. Chen, X., Liu, J., Wang, Z., Yin, W.: Theoretical linear conver-
gence of unfolded ISTA and its practical weights and thresholds.
In: Advances inNeural Information Processing Systems, pp. 9061–
9071 (2018)

10. Cheng, Z., Gadelha, M., Maji, S., Sheldon, D.: A Bayesian per-
spective on the deep image prior. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019)

11. Combettes, P., Wajs, V.: Signal recovery by proximal forward–
backward splitting. Multiscale Model. Simul. 4(4), 1168–1200
(2005). https://doi.org/10.1137/050626090

12. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint.
Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). https://
doi.org/10.1002/cpa.20042

13. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse
Problems, Mathematics and Its Applications, vol. 375. Kluwer
Academic Publishers Group, Dordrecht (1996)

14. Forster, D., Sheikh, A.S., Lücke, J.: Neural simpletrons: learning
in the limit of few labels with directed generative networks. Neural
Comput. 8(30), 2113–2174 (2018)

15. Giryes, R., Eldar, Y.C., Bronstein, A.M., Sapiro, G.: Tradeoffs
between convergence speed and reconstruction accuracy in inverse
problems. IEEE Trans. Signal Process. 66(7), 1676–1690 (2018)

16. Gregor, K., LeCun, Y.: Learning fast approximations of sparse cod-
ing. In: ICML 2010—Proceedings, 27th International Conference
on Machine Learning, pp. 399–406 (2010)

17. Hauptmann, A., Lucka, F., Betcke, M., Huynh, N., Adler, J., Cox,
B., Beard, P., Ourselin, S., Arridge, S.: Model-based learning for
accelerated, limited-view 3-d photoacoustic tomography. IEEE
Trans. Med. Imaging 37(6), 1382–1393 (2018)

18. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolu-
tional neural network for inverse problems in imaging. IEEETrans.
Image Process. 26(9), 4509–4522 (2017)

19. Lempitsky,V.,Vedaldi, A., Ulyanov,D.:Deep image prior. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 9446–9454 (2018). https://doi.org/10.1109/CVPR.2018.
00984

20. Liu, J., Chen, X., Wang, Z., Yin, W.: ALISTA: analytic weights
are as good as learned weights in LISTA. In: International Confer-
ence on Learning Representations (2019). https://openreview.net/
forum?id=B1lnzn0ctQ

21. Louis, A.K.: Inverse und Schlecht Gestellte Probleme.
Vieweg+Teubner Verlag, Wiesbaden (1989)

22. Maass, P.: Deep Learning for Trivial Inverse Problems, pp. 195–
209. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
73074-5_6

23. Mataev, G., Elad,M.,Milanfar, P.: Deepred: deep image prior pow-
ered by red (2019). arXiv preprint arXiv:1903.10176

24. Meinhardt, T., Möller, M., Hazirbas, C., Cremers, D.: Learning
proximal operators: using denoising networks for regularizing
inverse imaging problems. In: IEEE International Conference on
Computer Vision, pp. 1781–1790 (2017)

25. Moreau, T., Bruna, J.: Understanding trainable sparse coding via
matrix factorization (2016). arXiv preprint arXiv:1609.00285

26. Nesterov, Y.: Lectures on Convex Optimization. Springer Opti-
mization and Its Applications. Springer(2019). https://books.
google.de/books?id=JSyNtQEACAAJ

27. Papyan, V., Romano, Y., Sulam, J., Elad, M.: Theoretical foun-
dations of deep learning via sparse representations: a multilayer
sparse model and its connection to convolutional neural networks.
IEEE Signal Process. Mag. 35(4), 72–89 (2018)

28. Rieder, A.: Keine Probleme mit inversen Problemen: eine Ein-
fühhrung in ihre stabile Lösung. Vieweg, Wiesbaden (2003)

29. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks
(2013). arXiv preprint arXiv:1312.6120

30. Sprechmann, P., Bronstein, A.M., Sapiro, G.: Learning efficient
sparse and low rankmodels. IEEETrans. PatternAnal.Mach. Intell.
37(9), 1821–1833 (2015)

31. Sulam, J., Aberdam, A., Beck, A., Elad, M.: On multi-layer basis
pursuit, efficient algorithms and convolutional neural networks.
IEEE Trans. Pattern Anal. Mach. Intell. (2019). arXiv preprint
arXiv:1806.00701

32. Van Veen, D., Jalal, A., Price, E., Vishwanath, S., Dimakis, A.G.:
Compressed sensing with deep image prior and learned regulariza-
tion (2018). arXiv preprint arXiv:1806.06438

33. Vonesch, C., Unser, M.: A fast iterative thresholding algorithm for
wavelet-regularized deconvolution - art. no. 67010d. In: Wavelets
Xii, Pts 1 And 2, vol. 6701, pp. D7010–D7010 (2007)

123

https://www.tensorflow.org/
https://openreview.net/forum?id=r1gR2sC9FX
https://doi.org/10.1137/080716542
http://proceedings.mlr.press/v70/bora17a.html
http://proceedings.mlr.press/v70/bora17a.html
https://doi.org/10.1137/050626090
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1109/CVPR.2018.00984
https://openreview.net/forum?id=B1lnzn0ctQ
https://openreview.net/forum?id=B1lnzn0ctQ
https://doi.org/10.1007/978-3-319-73074-5_6
https://doi.org/10.1007/978-3-319-73074-5_6
http://arxiv.org/abs/1903.10176
http://arxiv.org/abs/1609.00285
https://books.google.de/books?id=JSyNtQEACAAJ
https://books.google.de/books?id=JSyNtQEACAAJ
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1806.00701
http://arxiv.org/abs/1806.06438


470 Journal of Mathematical Imaging and Vision (2020) 62:456–470

34. Xin, B., Wang, Y., Gao, W., Wipf, D., Wang, B.: Maximal sparsity
with deep networks? In: Advances in Neural Information Process-
ing Systems, pp. 4340–4348 (2016)

35. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Under-
standing deep learning requires rethinking generalization (2016).
arXiv preprint arXiv:1611.03530

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Sören Dittmer is a Ph.D. stu-
dent and member of the Research
Training Group π3 at the Cen-
ter for Industrial Mathematics
(ZeTeM) at the University of Bre-
men, Germany. His current re-
search interests include deep learn-
ing, inverse problems, harmonic
analysis and signal processing.

Tobias Kluth is a mathemati-
cian by training and he did his
Ph.D. in computer science related
to neuroscience. He is currently a
postdoc at the Center for Indus-
trial Mathematics (ZeTeM) at the
University of Bremen. His major
research interests include the the-
oretical fields of nonlinear inverse
problems, partial differential equa-
tions, (nonlinear) signal process-
ing and applications in magnetic
particle imaging, electrical impe-
dance tomography, image process-
ing/encoding and computer/human

vision (neural behavior).

Peter Maass is a Professor for
Applied Mathematics and the Direc-
tor of the Center for Industrial
Mathematics (ZeTeM) at Univer-
sity of Bremen, Germany, since
2009. He held positions as Assis-
tant Professor at Tufts University,
Medford, MA, USA and Saarland
University, Saarbrücken, Germany,
before he was appointed as a Full
Professor of Numerical Analysis
at University of Potsdam, Ger-
many, in 1993. Peter Maass is
an Adjunct Professor at Clemson
University, SC, USA, since 2010.

He holds several patents in the field of image processing. His current
research interests include deep learning, inverse problems and wavelet
analysis with an emphasis on applications in medical imaging. Peter
Maass was awarded an honorary doctorate by the University of Saar-
land, Germany, in 2018.

Daniel Otero Baguer is a Ph.D.
student at the Center for Indus-
trial Mathematics (ZeTeM) at the
University of Bremen. He got a
Diploma in Computer Science at
the University of Havana in 2015.
His research interests include deep
learning, inverse problems and
applications in medical imaging.

123

http://arxiv.org/abs/1611.03530

	Regularization by Architecture: A Deep Prior Approach for Inverse Problems
	Abstract
	1 Introduction
	2 Deep Prior and Related Research
	2.1 The Deep Prior Approach
	2.2 Deep Prior and Unrolled Proximal Gradient Architectures

	3 Deep Prior Architectures and Interpretations
	3.1 A Trivial Architecture
	3.2 Unrolled Proximal Gradient Architecture
	3.3 Two Perspectives Based on Regression
	3.4 The Bayesian Point of View

	4 Deep Priors and Tikhonov Functionals
	4.1 Unrolled Proximal Gradient Networks as Deep Priors for Inverse Problems
	4.1.1 Example
	4.1.2 Constrained System of Singular Functions

	4.2 Numerical Experiments

	5 Summary and Conclusion
	Acknowledgements
	Appendix 1: A Reminder on Minimization of Tikhonov Functionals and the LISTA Approach
	Appendix 2: Proofs
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Appendix 3: Numerical Experiments
	References




