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Abstract The Kaczmarz method for solving linear systems of equations is an itera-
tive algorithm that has found many applications ranging from computer tomography
to digital signal processing. Despite the popularity of this method, useful theoretical
estimates for its rate of convergence are still scarce. We introduce a randomized ver-
sion of the Kaczmarz method for consistent, overdetermined linear systems and we
prove that it converges with expected exponential rate. Furthermore, this is the first
solver whose rate does not depend on the number of equations in the system. The
solver does not even need to know the whole system but only a small random part of
it. It thus outperforms all previously known methods on general extremely overdeter-
mined systems. Even for moderately overdetermined systems, numerical simulations
as well as theoretical analysis reveal that our algorithm can converge faster than the
celebrated conjugate gradient algorithm. Furthermore, our theory and numerical sim-
ulations confirm a prediction of Feichtinger et al. in the context of reconstructing
bandlimited functions from nonuniform sampling.
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1 Introduction and State of the Art

We study a consistent linear system of equations

Ax = b, (1)

where A is a full rank m × n matrix with m ≥ n, and b ∈ C
m. One of the most

popular solvers for such overdetermined systems is Kaczmarz’s method [26], which
is a form of alternating projection method. This method is also known under the
name Algebraic Reconstruction Technique (ART) in computer tomography [22, 27],
and, in fact, it was implemented in the very first medical scanner [25]. It can also
be considered as a special case of the POCS (Projection onto Convex Sets) method,
which is a prominent tool in signal and image processing [3, 31].

We denote the rows of A by a∗
1 , . . . , a∗

m and let b = (b1, . . . , bm)T. The classical
scheme of Kaczmarz’s method sweeps through the rows of A in a cyclic manner,
projecting in each substep the last iterate orthogonally onto the solution hyperplane
of 〈ai, x〉 = bi and taking this as the next iterate. Given some initial approximation
x0, the algorithm takes the form

xk+1 = xk + bi − 〈ai, xk〉
‖ai‖2

2

ai, (2)

where i = k mod m + 1, and ‖ · ‖ denotes the Euclidean norm in C
n. Note that we

refer to one projection as one iteration, thus one sweep in (2) through all m rows of
A consists of m iterations.

While conditions for convergence of this method are readily established, useful
theoretical estimates of the rate of convergence of the Kaczmarz method (or more
generally of the alternating projection method for linear subspaces) are difficult to
obtain, at least for m > 2. Known estimates for the rate of convergence are based on
quantities of the matrix A that are hard to compute and difficult to compare with con-
vergence estimates of other iterative methods (see, e.g., [6, 7, 14] and the references
therein).

What numerical analysts would like to have is estimates of the convergence rate in
terms of a condition number of A. No such estimates have been known prior to this
work. The difficulty stems from the fact that the rate of convergence of (2) depends
strongly on the order of the equations in (1), while condition numbers do not depend
on the order of the rows of a matrix.

It has been observed several times in the literature that using the rows of A in
Kaczmarz’s method in random order, rather than in their given order, can greatly im-
prove the rate of convergence, see, e.g., [3, 23, 27]. While this randomized Kaczmarz
method is thus quite appealing for applications, no guarantees of its rate of conver-
gence have been known.

In this paper, we propose the first randomized Kaczmarz method with exponential
expected rate of convergence, see Sect. 2. Furthermore, this rate depends only on the
scaled condition number of A and not on the number of equations m in the system.
The solver does not even need to know the whole system but only a small random
part of it. Thus our solver outperforms all previously known methods on general
extremely overdetermined systems.

We analyze the optimality of the proposed algorithm as well as of the derived
estimate, see Sect. 3. Section 4 contains various numerical simulations. In one set
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of experiments, we apply the randomized Kaczmarz method to the reconstruction of
bandlimited functions from nonuniformly spaced samples. In another set of numer-
ical simulations, accompanied by theoretical analysis, we demonstrate that even for
moderately overdetermined systems, the randomized Kaczmarz method can outper-
form the celebrated conjugate gradient algorithm.

Condition Numbers For a matrix A, its spectral norm is denoted by ‖A‖2, and its
Frobenius norm by ‖A‖F . Thus the spectral norm is the largest singular value of A,
and the Frobenius norm is the square root of the sum of the squares of all singular
values of A.

The left inverse of A (which we always assume to exist) is denoted by A−1. Thus
‖A−1‖2 is the smallest constant M such that the inequality ‖Ax‖2 ≥ 1

M
‖x‖2 holds

for all vectors x.
The usual condition number of A is

k(A) := ‖A‖2‖A−1‖2.

A related version is the scaled condition number introduced by Demmel [5]:

κ(A) := ‖A‖F ‖A−1‖2.

One easily checks that

1 ≤ κ(A)√
n

≤ k(A). (3)

Estimates on the condition numbers of some typical (i.e., random or Toeplitz-type)
matrices are known from a large body of literature, see [1, 5, 8–10, 29, 30, 33, 34]
and the references therein.

2 Randomized Kaczmarz Algorithm and Its Rate of Convergence

It has been observed in numerical simulations [3, 23, 27] that the convergence rate of
the Kaczmarz method can be significantly improved when the algorithm (2) sweeps
through the rows of A in a random manner, rather than sequentially in the given order.
In fact, the improvement in convergence can be quite dramatic. Here we propose a
specific version of this randomized Kaczmarz method, which chooses each row of
A with probability proportional to its relevance—more precisely, proportional to the
square of its Euclidean norm. This method of sampling from a matrix was proposed
in [13] in the context of computing a low-rank approximation of A; see also [28] for
subsequent work and references. Our algorithm thus takes the following form:

Algorithm 1 (Random Kaczmarz algorithm) Let Ax = b be a linear system of equa-
tions as in (1), and let x0 be arbitrary initial approximation to the solution of (1). For
k = 0,1, . . . , compute

xk+1 = xk + br(i) − 〈ar(i), xk〉
‖ar(i)‖2

2

ar(i), (4)

where r(i) is chosen from the set {1,2, . . . ,m} at random, with probability propor-
tional to ‖ar(i)‖2

2.
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Our main result states that xk converges exponentially fast to the solution of (1),
and the rate of convergence depends only on the scaled condition number κ(A).

Theorem 2 Let x be the solution of (1). Then Algorithm 1 converges to x in expec-
tation, with the average error

E‖xk − x‖2
2 ≤ (

1 − κ(A)−2)k · ‖x0 − x‖2
2. (5)

Proof There holds

m∑

j=1

∣∣〈z, aj 〉
∣∣2 ≥ ‖z‖2

2

‖A−1‖2
2

for all z ∈ C
n. (6)

Using the fact that ‖A‖2
F = ∑m

j=1 ‖aj‖2
2, we can write (6) as

m∑

j=1

‖aj‖2
2

‖A‖2
F

∣
∣∣∣

〈
z,

aj

‖aj‖2

〉∣∣∣∣

2

≥ κ(A)−2‖z‖2 for all z ∈ C
n. (7)

The main point of the proof is to view the left-hand side in (7) as the expectation
of some random variable. Namely, recall that the solution space of the j th equation
of (1) is the hyperplane {y : 〈y, aj 〉 = bj }, whose normal is

aj

‖aj ‖2
. Define a random

vector Z whose values are the normals to all the equations of (1), with probabilities
as in our algorithm:

Z = aj

‖aj‖2
with probability

‖aj‖2
2

‖A‖2
F

, j = 1, . . . ,m. (8)

Then (7) says that

E
∣∣〈z,Z〉∣∣2 ≥ κ(A)−2‖z‖2

2 for all z ∈ C
n. (9)

The orthogonal projection P onto the solution space of a random equation of (1) is
given by Pz = z − 〈z − x,Z〉Z.

Now we are ready to analyze our algorithm. We want to show that the error
‖xk − x‖2

2 reduces at each step in average (conditioned on the previous steps) by
at least the factor of (1 − κ(A)−2). The next approximation xk is computed from
xk−1 as xk = Pkxk−1, where P1,P2, . . . are independent realizations of the random
projection P . The vector xk−1 − xk is in the kernel of Pk . It is orthogonal to the solu-
tion space of the equation onto which Pk projects, which contains the vector xk − x

(recall that x is the solution to all equations). The orthogonality of these two vectors
then yields

‖xk − x‖2
2 = ‖xk−1 − x‖2

2 − ‖xk−1 − xk‖2
2.

To complete the proof, we have to bound ‖xk−1 − xk‖2
2 from below. By the definition

of xk , we have

‖xk−1 − xk‖2 = 〈xk−1 − x,Zk〉,
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where Z1,Z2, . . . are independent realizations of the random vector Z. Thus

‖xk − x‖2
2 ≤

(
1 −

∣∣∣∣

〈
xk−1 − x

‖xk−1 − x‖2
,Zk

〉∣∣∣∣

2)
‖xk−1 − x‖2

2.

Now we take the expectation of both sides conditional upon the choice of the
random vectors Z1, . . . ,Zk−1 (hence we fix the choice of the random projections
P1, . . . ,Pk−1 and thus the random vectors x1, . . . , xk−1, and we average over the ran-
dom vector Zk). Then

E{Z1,...,Zk−1}‖xk − x‖2
2 ≤

(
1 − E{Z1,...,Zk−1}

∣∣∣∣

〈
xk−1 − x

‖xk−1 − x‖2
,Zk

〉∣∣∣∣

2)
‖xk−1 − x‖2

2.

By (9) and the independence,

E{Z1,...,Zk−1}‖xk − x‖2
2 ≤ (

1 − κ(A)−2)‖xk−1 − x‖2
2.

Taking the full expectation of both sides, we conclude that

E‖xk − x‖2
2 ≤ (

1 − κ(A)−2)
E‖xk−1 − x‖2

2.

By induction, we complete the proof. �

2.1 Quadratic Time

Theorem 2 yields a simple bound on the expected computational complexity of the
randomized Kaczmarz Algorithm 1 to compute the solution within error ε, i.e.,

E‖xk − x‖2
2 ≤ ε2‖x0 − x‖2

2. (10)

The expected number of iterations (projections) kε to achieve an accuracy ε is

E kε ≤ 2 log ε

log(1 − κ(A)−2)
≈ 2κ(A)2 log

1

ε
, (11)

where f (n) ∼ g(n) means that f (n)/g(n) → 1 as n → ∞. (Note that κ(A)2 ≥ n by
(3), so the approximation in (11) becomes tight as the number of equations n grows.)

Each projection can be computed in O(n) time. If A is well conditioned, say
k(A) = O(1) (see Sect. 4 for examples), then κ(A)2 = O(n) by (3), and in this case
the algorithm will take O(n2) operations to converge to the solution. This should be
compared to the Gaussian elimination, which takes O(mn2) time (independently of
the condition number of A). Strassen’s algorithm and its improvements reduce the
exponent in Gaussian elimination, but these algorithms are, as of now, of no practical
use.

Of course, we have to know the (approximate) Euclidean lengths of the rows of A

before we start iterating; computing them takes O(nm) time. But the lengths of the
rows may in many cases be known a priori. For example, all of them may be equal to
one (as is the case for Vandermonde matrices arising in trigonometric approximation)
or tightly concentrated around a constant value (as is the case for random matrices).
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The number m of the equations is essentially irrelevant for our algorithm. The al-
gorithm does not even need to know the whole matrix but only O(n) random rows.
Such Monte-Carlo methods have been successfully developed for many problems,
even with precisely the same model of selecting a random submatrix of A (propor-
tional to the squares of the lengths of the rows), see [13] for the original discovery
and [28] for subsequent work and references.

3 Optimality

We discuss conditions under which our algorithm is optimal in a certain sense, as
well as the optimality of the estimate on the expected rate of convergence.

3.1 General Lower Estimate

For any system of linear equations, our estimate cannot be improved beyond a con-
stant factor, as shown by the following theorem.

Theorem 3 Consider the linear system of equations (1), and let x be its solution.
Then there exists an initial approximation x0 such that

E‖xk − x‖2
2 ≥ (

1 − 2k/κ(A)2) · ‖x0 − x‖2
2 (12)

for all k = 1,2, . . . .

Proof For this proof, we can assume without loss of generality that the system (1)
is homogeneous: Ax = 0. Let x0 be a vector which realizes κ(A), that is, κ(A) =
‖A‖F ‖A−1x0‖2 and ‖x0‖2 = 1. As in the proof of Theorem 2, we define the ran-
dom normal Z associated with the rows of A by (8). Similarly to (9), we have
E|〈x0,Z〉|2 = κ(A)−2. We thus see span(x0) as an “exceptional” direction, so we
shall decompose R

n = span(x0) ⊕ (x0)
⊥, writing every vector x ∈ R

n as

x = x′ · x0 + x′′, where x′ ∈ R, x′′ ∈ (x0)
⊥.

In particular,

E|Z′|2 = κ(A)−2. (13)

We shall first analyze the effect of one random projection in our algorithm. To this
end, let x ∈ R

n, ‖x‖2 ≤ 1, and let z ∈ R
n, ‖z‖2 = 1. (Later, x will be the running

approximation xk−1, and z will be the random normal Z.) The projection of x onto
the hyperplane whose normal is z equals

x1 = x − 〈x, z〉z.
Since

〈x, z〉 = x′z′ + 〈x′′, z′′〉, (14)
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we have
∣∣x′

1 − x′∣∣ = ∣∣〈x, z〉z′∣∣ ≤ |x′||z′|2 + ∣∣〈x′′, z′′〉z′∣∣ ≤ |z′|2 + ∣∣〈x′′, z′′〉z′∣∣, (15)

because |x′| ≤ ‖x‖2 ≤ 1. Next,

∥
∥x′′

1

∥
∥2 − ‖x′′‖2 = ∥

∥x′′ − 〈x, z〉z′′∥∥2
2 − ‖x′′‖2

2

= −2〈x, z〉〈x′′, z′′〉 + 〈x, z〉2‖z′′‖2
2 ≤ −2〈x, z〉〈x′′, z′′〉 + 〈x, z〉2,

because ‖z′′‖2 ≤ ‖z‖2 = 1. Using (14), we decompose 〈x, z〉 as a +b, where a = x′z′
and b = 〈x′′, z′′〉 and use the identity −2(a + b)b + (a + b)2 = a2 − b2 to conclude
that

∥∥x′′
1

∥∥2
2 − ‖x′′‖2

2 ≤ |x′|2|z′|2 − 〈x′′, z′′〉2 ≤ |z′|2 − 〈x′′, z′′〉2, (16)

because |x′| ≤ ‖x‖2 ≤ 1.
Now we apply (15) and (16) to the running approximation x = xk−1 and the next

approximation x̃ = xk obtained with a random z = Zk . Denoting pk = 〈x′′
k−1,Z

′′
k 〉, we

have by (15) that |x′
k − x′

k−1| ≤ |Z′
k|2 + |pkZ

′
k| and by (16) that ‖x′′

k ‖2
2 − ‖x′′

k−1‖2
2 ≤

|Z′
k|2 − |pk|2. Since x′

0 = 1 and x′′
0 = 0, we have

∣∣x′
k − 1

∣∣ ≤
k∑

j=1

∣∣x′
j − x′

j−1

∣∣ ≤
k∑

j=1

∣∣Z′
j

∣∣2 +
k∑

j=1

∣∣pjZ
′
j

∣∣ (17)

and

∥∥x′′
k

∥∥2
2 =

k∑

j=1

(∥∥x′′
j

∥∥2
2 − ∥∥x′′

j−1

∥∥2
2

) ≤
k∑

j=1

∣∣Z′
j

∣∣2 −
k∑

j=1

|pj |2.

Since ‖x′′
k ‖2

2 ≥ 0, we conclude that
∑k

j=1 |pj |2 ≤ ∑k
j=1 |Z′

j |2. Using this, we apply
Cauchy–Schwartz inequality in (17) to obtain

∣
∣x′

k − 1
∣
∣ ≤

k∑

j=1

∣
∣Z′

j

∣
∣2 +

(
k∑

j=1

∣
∣Z′

j

∣
∣2

)1/2( k∑

j=1

∣
∣Z′

j

∣
∣2

)1/2

= 2
k∑

j=1

∣
∣Z′

j

∣
∣2

.

Since all Zj are copies of the random vector Z, we conclude by (13) that
E|x′

k − 1| ≤ 2k E|Z′|2 ≤ 2k/κ(A)2. Thus E‖xk‖ ≥ E|x′
k| ≥ 1 − 2k/κ(A)2. This

proves the theorem, actually with the stronger conclusion

E‖xk − x‖2 ≥ (
1 − 2k/κ(A)2) · ‖x0 − x‖2.

The actual conclusion follows by Jensen’s inequality. �

3.2 The Upper Estimate is Attained

If k(A) = 1 (equivalently, if κ(A) = √
n by (3)), then the estimate in Theorem 2

becomes an equality. This follows directly from the proof of Theorem 2.
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Furthermore, there exist arbitrarily large systems with arbitrarily large condition
numbers k(A) for which the estimate in Theorem 2 becomes an equality. Indeed, let
n and m ≥ n be arbitrary numbers. Let also κ ≥ √

n be any number such that m/κ2

is an integer. Then there exists a system (1) of m equations in n variables and with
κ(A) = κ , for which the estimate in Theorem 2 becomes an equality for every k.

To see this, we define the matrix A with the help of any orthogonal set e1, . . . , en

in R
n. Let the first m/κ2 rows of A be equal to e1, the other rows of A be equal to one

of the vectors ej , j > 1, so that every vector from this set repeats at least m/κ2 times
as a row (this is possible because κ2 ≥ n). Then κ(A) = κ (note that (6) is attained
for z = e1).

Let us test our algorithm on the system Ax = 0 with the initial approximation
x0 = e1 to the solution x = 0. Every step of the algorithm brings the running ap-
proximation to 0 with probability κ−2 (the probability of picking the row of A equal
to e1 in uniform sampling) and leaves the running approximation unchanged with
probability 1 − κ−2. By the independence, for all k, we have

E‖xk − x0‖2
2 = (1 − κ−2)k · ‖x0 − x‖2

2.

4 Numerical Experiments and Comparisons

4.1 Reconstruction of Bandlimited Signals from Nonuniform Sampling

The reconstruction of a bandlimited function f from its nonuniformly spaced sam-
pling values {f (tk)} is a classical problem in Fourier analysis, with a wide range of
applications [2]. We refer to [11, 12] for various efficient numerical algorithms. Stay-
ing with the topic of this paper, we focus on the Kaczmarz method, also known as
POCS (Projection Onto Convex Sets) method in signal processing [36].

As an efficient finite-dimensional model, appropriate for a numerical treatment of
the nonuniform sampling problem, we consider trigonometric polynomials [18]. In
this model, the problem can be formulated as follows: Let f (t) = ∑r

l=−r xle
2πilt ,

where x = {xl}rl=−r ∈ C
2r+1. Assume that we are given the nonuniformly spaced

nodes {tk}mk=1 and sampling values {f (tk)}mk=1. Our goal is to recover f (or equiva-
lently x).

The solution space for the j th equation is given by the hyperplane
{
y : 〈y,Dr(· − tj )

〉 = f (tj )
}
,

where Dr denotes the Dirichlet kernel Dr(t) = ∑r
k=−r e2πikt . Feichtinger and

Gröchenig argued convincingly (see, e.g., [11]) that instead of Dr(· − tj ) one
should consider the weighted Dirichlet kernels

√
wjDr(· − tj ), where the weight

wj = tj+1−tj−1
2 , j = 1, . . . ,m. The weights are supposed to compensate for varying

density in the sampling set.
Formulating the resulting conditions in the Fourier domain, we arrive at the linear

system of equations [18]

Ax = b, where Aj,k = √
wje

2πiktj , bj = √
wjf (tj ), (18)
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with j = 1, . . . ,m; k = −r, . . . , r . Let use denote n := 2r + 1; then A is an m × n

matrix.
Applying the standard Kaczmarz method (the POCS method as proposed in [36])

to (18) means that we sweep through the projections in the natural order, i.e., we
first project on the hyperplane associated with the first row of A, then proceed to
the second row, the third row, etc. As noted in [11], this is a rather inefficient way
of implementing the Kaczmarz method in the context of the nonuniform sampling
problem. It was suggested in [3] that the convergence can be improved by sweeping
through the rows of A in a random manner, but no proof of the (expected) rate of
convergence was given. Reference [3] also proposed another variation of the Kacz-
marz method in which one projects in each step onto that hyperplane that provides
the largest decrease of the residual error. This strategy of maximal correction turned
out to provide very good convergence but was found to be impractical due to the
enormous computational overhead, since in each step all m projections have to be
computed in order to be able to select the best hyperplane to project on. It was also
observed in [3] that this maximal correction strategy tends to select the hyperplanes
associated with large weights more frequently than hyperplanes associated with small
weights.

Equipped with the theory developed in Sect. 2, we can shed light on the obser-
vations mentioned in the previous paragraph. Note that the j th row of A in (18) has
squared norm equal to nwj . Thus our Algorithm 1 chooses the j th row of A with
probability wj . Hence Algorithm 1 can be interpreted as a probabilistic, computa-
tionally very efficient implementation of the maximal correction method suggested
in [3].

Moreover, we can give a bound on the expected rate of convergence of the al-
gorithm. Theorem 2 states that this rate depends only on the scaled condition num-
ber κ(A), which is bounded by k(A)

√
n by (3). The condition number k(A) for the

trigonometric system (18) has been estimated by Gröchenig [17]. For instance, we
have the following:

Theorem 4 (Gröchenig) If the distance of every sampling point tj to its neighbor
on the unit torus is at most δ < 1

2r
, then k(A) ≤ 1+2δr

1−2δr
. In particular, if δ ≤ 1

4r
, then

k(A) ≤ 3.

Furthermore we note that our algorithm can be straightforwardly applied to the ap-
proximation of multivariate trigonometric polynomials. We refer to [1] for condition
number estimates for this case.

In our numerical simulation, we let r = 50,m = 700 and generate the sampling
points tj by drawing them randomly from a uniform distribution in [0,1] and order-
ing them by magnitude. We apply the standard Kaczmarz method, the randomized
Kaczmarz method, where the rows of A are selected at random with equal probabil-
ity (labeled as simple randomized Kaczmarz in Fig. 1), and the randomized Kaczmarz
method of Algorithm 1 (where the rows of A are selected at random with probability
proportional to the 2-norm of the rows). We plot the least squares error ‖x − xk‖2
versus the number of projections, see Fig. 1. Clearly, Algorithm 1 significantly out-
performs the other Kaczmarz methods, demonstrating not only the power of choosing
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Fig. 1 Comparison of rate of convergence for the randomized Kaczmarz method described in Algorithm 1
and other Kaczmarz methods applied to the nonuniform sampling problem described in the main text

the projections at random but also the importance of choosing the projections accord-
ing to their relevance.

4.2 Comparison to Conjugate Gradient Algorithm

In recent years, conjugate gradient (CG) type methods have emerged as the leading
iterative algorithms for solving large linear systems of equations, since they often
exhibit remarkably fast convergence [16, 19]. How does Algorithm 1 compare to the
CG algorithms?

The rate of convergence of CGLS applied to Ax = b is bounded by [16]

‖xk − x‖A∗A ≤ 2‖x0 − x‖A∗A

(
k(A) − 1

k(A) + 1

)k

, (19)

where1 ‖y‖A∗A := √〈Ay,Ay〉.
It is known that the CG method may converge faster when the singular values of A

are clustered [35]. For instance, take a matrix whose singular values, all but one, are
equal to one, while the remaining singular value is very small, say 10−8. While this
matrix is far from being well conditioned, CGLS will nevertheless converge in only
two iterations, due to the clustering of the spectrum of A, see [35]. In comparison,
the proposed Kaczmarz method will converge extremely slowly in this example by
Theorem 3, since κ(A) ≈ 108.

1Note that since we either need to apply CGLS to Ax = b or CG to A∗Ax = A∗b, we indeed have to use
k(A) = √

k(A∗A) here and not
√

k(A). The asterisk ∗ denotes complex transpose here.
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On the other hand, Algorithm 1 can outperform CGLS on problems for which
CGLS is actually quite well suited, in particular, for random Gaussian matrices A, as
we show below.

Solving Random Linear Systems Let A be an m × n matrix whose entries are in-
dependent N(0,1) random variables. Condition numbers of such matrices are well
studied, when the aspect ratio y := n/m < 1 is fixed and the size n of the matrix
grows to infinity. Then the following almost sure convergence was proved by Geman
[15] and Silvestein [32], respectively:

‖A‖2√
m

→ 1 + √
y; 1/‖A−1‖2√

m
→ 1 − √

y.

Hence

k(A) → 1 + √
y

1 − √
y

. (20)

Also, since ‖A‖F√
mn

→ 1, we have

κ(A)√
n

→ 1

1 − √
y

. (21)

For estimates that hold for each finite n rather than in the limit, see, e.g., [10] and [9].
Now we compare the expected computation complexities of the randomized Kacz-

marz algorithm proposed in Algorithm 1 and CGLS to compute the solution within
error ε for the system (1) with a random Gaussian matrix A.

We estimate the expected number of iterations (projections) kε for Algorithm 1 to
achieve an accuracy ε in (11). Using bound (21), we have

E kε ≈ 2n

(1 − √
y)2

log
1

ε

as n → ∞. Since each iteration (projection) requires n operations, the total expected
number of operations is

Complexity of randomized Kaczmarz ≈ 2n2

(1 − √
y)2

log
1

ε
. (22)

The expected number of iterations k′
ε for CGLS to achieve the accuracy ε can be

estimated using (19). First note that the norm ‖ · ‖A∗A is on average proportional to
the Euclidean norm ‖z‖2. Indeed, for any fixed vector z, one has E‖z‖2

A∗A = E‖Az‖2
2

= m‖z‖2
2. Thus, when using CGLS for a random matrix A, we can expect that the

bound (19) on the convergence also holds for the Euclidean norm.
Consequently, the expected number of iterations k′

ε in CGLS to compute the solu-
tion within accuracy ε as in (10) is

Ekε ≈ log 2
ε

logK(A)
, where K(A) = k(A) + 1

k(A) − 1
.
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Fig. 2 Comparison of the computational complexities (22) (randomized Kaczmarz method) and (23)
(conjugate gradient algorithm) as functions of the ratio y = n

m (the common factors n2 and log(1/ε)

in (22) and (23) are ignored in the two curves)

By (20), for random matrices A of growing size. We have K → 1/
√

y almost surely.
Thus

Ekε ≈ 2 log 2
ε

log 1
y

.

The main computational task in each iteration of CGLS consists of two matrix vector
multiplications, one with A and one with A∗, each requiring m × n = n2/y opera-
tions. Hence the total expected number of operations is

Complexity of CGLS ≈ 4n2

y log 1
y

· log
2

ε
. (23)

It is easy to compare the complexities (22) and (23) as functions of y, since n2 and
log(1/ε) are common terms in both (using the approximation log(2/ε) ≈ log(1/ε)

for small ε), see also Fig. 2. A simple computation shows that (22) and (23) are
essentially equal when y ≈ 1

3 . Hence, for Gaussian matrices, our analysis predicts that
Algorithm 1 outperforms CGLS in terms of computational efficiency when m > 3n.

While the computational cost of Algorithm 1 decreases as n
m

decreases, this is not
the case for CGLS. Therefore it is natural to ask for the optimal ratio n

m
for CGLS

for Gaussian matrices that minimizes its overall computational complexity. It is easy
to see that, for given ε, the expression in (23) is minimized if y = 1/e, where e is
Euler’s number. Thus if we are given an m × n Gaussian matrix (with m > en), the
most efficient strategy to employ CGLS is to first select a random submatrix A(e) of
size en × n from A (and the corresponding subvector b(e) of b) and apply CGLS to
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Fig. 3 Comparison of rate of convergence for the randomized Kaczmarz method described in Algorithm 1
and the conjugate gradient least squares algorithm for a system of equations with a Gaussian matrix of size
300 × 100

the subsystem A(e)x = b(e). This will result in the optimal computational complexity
4en2 log 2

ε
for CGLS.

Thus, for a fair comparison between the randomized Kaczmarz method and CGLS,
we will apply CGLS in our numerical simulations to both the “full” system Ax = b

as well as to a subsystem A(e)x = b(e), where A(e) is an en × n submatrix of A,
randomly selected from A.

In the first simulation, we let A be of dimension 300×100, the entries of x are also
drawn from a normal distribution. We apply both CGLS and Algorithm 1. We apply
CGLS to the full system of size 300×100 as well as to a randomly selected subsystem
of size 272 × 100 (representing the optimal size en × n, computed above). Since
we know the true solution, we can compute the actual least squares error ‖x − xk‖
after each iteration. Each method is terminated after reaching the required accuracy
ε = 10−14. We repeat the experiment 100 times and, for each method, average the
resulting least squares errors.

In Fig. 3, we plot the averaged least squares error (y-axis) versus the number of
floating point operations (x-axis), see Fig. 3. We also plot the estimated convergence
rate for both methods. Recall that our estimates predict essentially identical bounds
on the convergence behavior for CGLS and Algorithm 1 for the chosen parameters
(m = 3n). Since in this example the performance of CGLS applied to the full sys-
tem of size 300 × 100 is almost identical to that of CGLS applied to the subsystem
of size 272 × 100, we display only the results of CGLS applied to the original sys-
tem.

While CGLS performs somewhat better than the (upper) bound predicts, Algo-
rithm 1 shows a significantly faster convergence rate. In fact, the randomized Kacz-
marz method is almost twice as efficient as CGLS in this example.
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Fig. 4 Comparison of rate of convergence for the randomized Kaczmarz method described in Algorithm 1
and the conjugate gradient least squares algorithm for a system of equations with a Gaussian matrix of size
500 × 100

In the second example, we let m = 500, n = 100. In the same way as before,
we illustrate the convergence behavior of CGLS and Algorithm 1. In this example
we display the convergence rate for CGLS applied to the full system (labeled as
CGLS full matrix) of size 500 × 100 as well as to a random subsystem of size 272 ×
100 (labeled as CGLS submatrix). As is clearly visible in Fig. 4, CGLS applied to
the subsystem provides better performance than CGLS applied to the full system,
confirming our theoretical analysis. Yet again, Algorithm 1 is even more efficient
than predicted, this time outperforming CGLS by a factor of 3 (instead of a factor of
about 2 according to our theoretical analysis).

Remark An important feature of the conjugate gradient algorithm is that its compu-
tational complexity reduces significantly when the complexity of the matrix-vector
multiplication is much smaller than O(mn), as is the case, e.g., for Toeplitz-type ma-
trices. In such cases, conjugate gradient algorithms will outperform Kaczmarz type
methods.

5 Some Open Problems

In this final section, we briefly discuss a few loose ends and some open problems.

Kaczmarz Method with Relaxation It has been observed that the convergence of the
Kaczmarz method can be accelerated by introducing relaxation. In this case, the iter-
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Fig. 5 Comparison of the rate of convergence for the randomized Kaczmarz method with and without
relaxation parameter. We have used λ = 1 + n

m as relaxation parameter

ation rule becomes

xk+1 = xk + λk,i

bi − 〈ai, xk〉
‖ai‖2

2

ai, (24)

where the λk,i , i = 1, . . . ,m, are relaxation parameters. For consistent systems, the
relaxation parameters must satisfy [24]

0 < lim inf
k→∞ λk,i ≤ lim sup

k→∞
λk,i < 2 (25)

to ensure convergence.
We have observed in our numerical simulations that, for instance, for Gaussian

matrices, a good choice for the relaxation parameter is to set λk,i := λ = 1 + n
m

for
all k and i. While we do not have a proof for an improvement of performance or
even optimality, we provide the result of a numerical simulation that is typical for the
behavior we have observed, see Fig. 5.

Inconsistent Systems Many systems arising in practice are inconsistent due to noise
that contaminates the right-hand side. In this case, it has been shown that convergence
to the least squares solution can be obtained with (strong under) relaxation [4, 20].
We refer to [20, 21] for suggestions for the choice of the relaxation parameter as well
as further in-depth analysis for this case.

While our theoretical analysis presented in this paper assumes the consistency
of the system of equations, it seems quite plausible that the randomized Kaczmarz
method combined with appropriate underrelaxation should also be useful for incon-
sistent systems.
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