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Abstract
We show that Nesterov acceleration is an optimal-order iterative regulariza-
tion method for linear ill-posed problems provided that a parameter is chosen
accordingly to the smoothness of the solution. This result is proven both for an
a priori stopping rule and for the discrepancy principle under Hölder source
conditions. Furthermore, some converse results and logarithmic rates are veri-
fied. The essential tool to obtain these results is a representation of the residual
polynomials via Gegenbauer polynomials.
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(Some figures may appear in colour only in the online journal)

1. Introduction

One option to calculate a regularized solution to a linear ill-posed problem Ax = y, with
A : X → Y linear and bounded and X, Y being Hilbert spaces, when only noisy data yδ with
‖y − yδ‖ = δ are available is to employ iterative regularization schemes. Here, approximate
solutions xδk are calculated iteratively combined with a stopping rule as regularization param-
eter choice. The simplest one being Landweber iteration (cf, e.g. [7]), which has the downside
of being rather slow. To speed up convergence, acceleration schemes may be used such as the
following Nesterov acceleration:
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xδk+1 = zδk + A∗(yδ − Azδk), k � 1

zδk = xδk + αk(xδk − xδk−1), x0 = 0, x1 = A∗yδ ,
(1)

where ‖A∗A‖ � 1 is assumed and where the sequence αk is chosen, for instance, as

αk =
k − 1
k + β

, k � 1, β > −1. (2)

Here, β is a parameter; common choices are, for example, β = 1 or β = 2. We remark that
other alternatives for the sequence αk are possible as well, but for the main analysis of this
paper we only consider (2).

This iteration (in a general nonlinear context) was suggested by Yurii Nesterov for general
convex optimization problems [14]. It is an instance of a method that achieves the best rate of
convergence (in the sense of objective function decrease) that is generally possible for a first-
order method. Nesterov acceleration can be employed to speed up convergence of gradient
methods in nonlinear or convex optimization. A particular successful instance is the FISTA
algorithm of Beck and Teboulle [3] for nondifferentiable convex optimization.

In the realm of ill-posed problems, Hubmer and Ramlau [12] performed a convergence
analysis for the nonlinear case, and showed the efficiency of the method.

We note that although the main field of application of Nesterov acceleration lies in non-
linear optimization, in the paper we only treat the case of linear operator equations and the
acceleration properties of the method for linear ill-posed problems. Other recent acceleration
schemes proposed in the literature use, e.g., Hilbert scale preconditioning [6], the continuous
version of Nesterov’s scheme [4, 9], or fractional asymptotical regularization [17].

The background and main motivation of the present article is the recent interesting work
of Neubauer [15] for ill-posed problems in the linear case. He showed that (1) is an iterative
regularization scheme and, more important, proved convergence rates, which are of optimal
order only for a priori parameter choices and in case of low smoothness of the solution while
being suboptimal otherwise. What is puzzling is that the method shows a quite unusual ‘semi-
saturation’ phenomenon (we explain this term below in section 3.1).

Our contribution in this article is twofold: at first, we prove a formula for the residuals of the
iteration (1) involving Gegenbauer polynomials. On this basis, we can build a convergence rate
analysis, which improves and extends the results of Neubauer. In particular, we show that the
method can always be made an optimal-order method if the parameter β is chosen accordingly
to the (Hölder-)smoothness index of the solution. This result holds for both an a priori stopping
rule and for the discrepancy principle.

Our analysis also explains the quite nebulous role that this parameter plays in the iteration;
it turns out that it is related to the index of the orthogonal polynomials appearing in the residual
formula.

Moreover, the above mentioned residual representation also clearly elucidates the semi-
saturation phenomenon because the iteration can be interpreted as a mixture of a saturating
iteration (Brakhage’s ν-method) and a non-saturating one (Landweber method).

In the following we employ some standard notation of regularization theory as in [7]:
δ = ‖Ax† − yδ‖ is the noise level and x† denotes the minimum-norm solution to the operator
equation Ax = y with exact data y = Ax†. The index δ of yδ indicates noisy data, and analo-
gous, xδk denotes the iterates of (1) with noisy data yδ, while the lack of δ indicates exact data
y and correspondingly the iteration xk with exact data y in place of yδ in (1).
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2. Residual polynomials for Nesterov acceleration

Our work follows the general theory of spectral filter-based regularization methods as in [7],
where the convergence analysis results from estimates of the corresponding filter function. The
first main result, theorem 1 is quite useful for this purpose as it represents the residual function
in terms of known polynomials.

The iteration (1) is a Krylov-space method, and the residual can be expressed as

yδ − Axδk =: rk(AA∗)yδ

with the residual polynomials satisfying the recurrence relation (cf [15])

rk+1(λ) = (1 − λ) [rk(λ) + αk(rk(λ) − rk−1(λ))] , k � 1,

r0(λ) = 1, r1(λ) = (1 − λ).
(3)

This is a simple consequence of the definition in (1). The kth iterate can be expressed via
spectral filter functions

xδk = gk(A∗A)A∗yδ, gk(λ) :=
1 − rk(λ)

λ
.

Observe that the three-term recursion (3) is not of the form to apply Favard’s theorem [8],
hence rk does not agree with any orthogonal polynomial with respect to some weight functions.
(Note that Favard’s theorem fully characterizes three-term recurrence relations that lead to
orthogonal polynomials).

Before we proceed, we may compare the residual polynomials with other well-known cases.
For classical Landweber iteration [7], which is obtained by setting αk = 0 and thus zδk = xδk ,
the corresponding residual functions rk =: r(LW)

k is

r(LW)
k (λ) = (1 − λ)k.

On the other hand, another class of well-known iteration methods for ill-posed problems that
are based on orthogonal polynomials are two-step semiiterative methods [10]. They have the
form

xδk+1 = xδk + μk+1(xk − xk−1) + ωk+1A∗(yδ − Axk), k > 1,

where μk and ωk are appropriately chosen sequences. The corresponding residual functions
satisfy the recurrence relation

rk+1(λ) = (1 − ωk+1λ)rk(λ) + μk+1(rk − rk−1), k > 1, (4)

and thus, rk(λ) form a sequence of orthogonal polynomials. Of special interest in ill-posed
problems are the ν-methods of Brakhage [5, 10], defined by the sequences, for k > 1,

μk+1 =
(k − 1)(2k − 2)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)
,

ωk+1 = 4
(2k + 2ν − 1)(k + ν − 1)
(k + 2ν − 1)(2k + 4ν − 1)

,

the initial values x0 = 0, x1 =
4ν+2
4ν+1 T∗yδ , and with ν > 0 a user-selected parameter. The asso-

ciated residual polynomials rk =: r(ν)
k related to (4) with r0 = 1, r1 = 1 − λ 4ν+2

4ν+1 , have the
representation [5]
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r(ν)
k (λ) =

C(2ν)
2k (

√
1 − λ)

C(2ν)
2k (1)

,

where C(α)
n denotes the Gegenbauer polynomials (aka. ultraspherical polynomials); cf [1].

We now obtain the corresponding representation for the Nesterov residual polynomials,
which is the basis of this article.

Theorem 1. Let β > −1. The residual polynomials for the Nesterov acceleration (1) with
(2) are

rk(λ) = (1 − λ)
k+1

2
C

(
β+1

2

)

k−1 (
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

, k � 1, (5)

with the Gegenbauer polynomials C(α)
n .

Proof. Defining hk(λ) = rk(λ)(1 − λ)−
k+1

2 and multiplying (3) by (1 − λ)−
k+2

2 leads to the
relation

hk+1(λ) = (1 + αk)
√

1 − λhk(λ) − αkhk−1(λ), k � 2, (6)

h1(λ) = 1, h2(λ) =
√

1 − λ.

We note that C
( β+1

2 )
n (x) satisfy the recursion relation (cf [1, p 782])

C

(
β+1

2

)

k (x) = xckC

(
β+1

2

)

k−1 (x) − dkC

(
β+1

2

)

k−2 (x), k � 2

C

(
β+1

2

)

0 (x) = 1, C

(
β+1

2

)

1 (x) = (β + 1)x

(7)

with

ck =
2k + β − 1

k
, dk =

k + β − 1
k

.

Using the recurrence relation with x = 1, leads to

C

(
β+1

2

)

k (1) = ckC

(
β+1

2

)

k−1 (1)
(
1 − θ−1

k

)
= dkC

(
β+1

2

)

k−2 (1) (θk − 1)

with

θk :=
ckC

(
β+1

2

)

k−1 (1)

dkC

(
β+1

2

)

k−2 (1)

.

Dividing (7) by C
( β+1

2 )
k (1) and using this relation yields

C

(
β+1

2

)

k (x)

C

(
β+1

2

)

k (1)

=
C

(
β+1

2

)

k−1 (x)

C

(
β+1

2

)

k−1 (1)

1

1 − θ−1
k

− C

(
β+1

2

)

k−2 (x)

C

(
β+1

2

)

k−2 (1)

1
θk − 1

. (8)

By induction (or by well-known formulae [1, 16]), it can easily be verified that
C

( β+1
2 )

k−1 (1)

C
( β+1

2 )

k−2 (1)

=

k+β−1
k−1 , from which it follows that θk − 1 = α−1

k as well as 1 − θ−1
k = (1 + αk)−1. Thus,
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C
( β+1

2 )

k (x)

C
( β+1

2 )

k (1)

satisfies the same recursion as hk+1(λ), and the corresponding initial values for

k = 0, 1 agree when setting x =
√

1 − λ. This allows us to conclude that

hk(λ) =
C

(
β+1

2

)

k−1 (
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

,

which proves the theorem. �

This theorem relates the residual function of Nesterov acceleration to other known itera-
tions. In particular, the residual rk is roughly the product of that of k

2 Landweber iterations and
that of k

2 iterations of a ν-method with ν = β+1
4 .

Remark 1. Gegenbauer polynomials are special cases of Jacobi polynomials and they them-
selves embrace several other orthogonal polynomials as special cases. Certain values of β in
(1) yield various specializations in (5): the choice β = 0 leads to Legendre polynomials, the
often encountered choice β = 1 leads to Chebyshev polynomials of the second kind [1].

We note that the result of theorem 1 even holds for β = −1. In this case, onlyα1 is not well-
defined, but it is always 0 forβ > −1. Thus, we may extend the definition of the iteration to β =
−1 by setting xδk := limβ→−1 xδk . (This just amounts to slightly modifying (2) by setting α1 = 0
for k = 1; the remaining iteration is well-defined by (1) and (2).) In this case, we may use [1,
equation (22.5.28)] to conclude that the resulting polynomials are Chebyshev polynomials of
the first kind.

Before we proceed with the convergence analysis, we state for generality the corresponding
theorem for the Nesterov acceleration (1) with a general sequence αk.

Theorem 2. Consider the iteration (1) with a positive sequenceαk. Then the corresponding
residual function can be expressed as

rk(λ) = (1 − λ)
k
2

Pk(
√

1 − λ)
Pk(1)

, k � 1, (9)

where Pk is a sequence of orthogonal polynomials obeying the recurrence relation

Pk+1(x) = ckxPk(x) − dkPk−1(x), k � 1

P0(x) = 1, P1(x) = c0x
(10)

with cn and dn recursively defined to satisfy

c1c0

d1
= 1 +

1
α1

ckck−1

dk
=

(
1 +

1
αk

)
(αk−1 + 1) k � 2.

(11)

Conversely, given a sequence of orthogonal polynomials defined by the recurrence relation
(10) with given sequences cn, dn. Then there exists a sequence αk (defined via (11)) such that
the corresponding Nesterov iteration (1) has a residual function as in (9).

5
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Proof. The function hk(λ) := rk(λ)(1 − λ)−
k
2 satisfies the recursion (6) with h0(λ) = 1 and

h1(λ) =
√

1 − λ and for k � 1. As in the proof of theorem 1, we may conclude that (10) leads
to a similar recursion as (8):

Pk+1(x)
Pk+1(1)

=
Pk(x)
Pk(1)

1
1 − θ−1

k

− Pk−1(x)
Pk−1(1)

1
θk − 1

, k � 1.

with

θk =
ckPk(1)

dkPk−1(1)
, k � 1.

From (10) we can conclude by some algebraic manipulations that

θk =
ckck−1

dk

(
1 − θ−1

k−1

)
, k � 2.

If (11) holds, then from the recursion for θk, it follows that we can perform an induction step
following that θ−1

k−1 = 1 + α−1
k−1 implies θ−1

k = 1 + α−1
k . Since θ−1

1 = 1 + α−1
1 by definition,

we obtain that hk(λ) and Pk(x)
Pk (1) satisfy identical recursions and have identical initial conditions

with the setting x =
√

1 − λ.
Conversely, if (10) is given and the sequenceαk is recursively defined by (11), then it follows

in a similar manner that Pk(x)
Pk(1) has the same recursion and initial conditions as hk(λ) and thus

both functions agree. �

The polynomials Pk(x) in this theorem correspond to xC
β+1

2
k−1 (x) in theorem 1. As an illus-

tration, we may consider the peculiar choice of αk in Nesterov’s original paper [14], which is
also used in the well-known FISTA iteration [3]: first, a sequence is defined recursively,

tk+1 =
1
2

(
1 +

√
1 + 4t2

k

)
, t1 = 1,

and then the sequence αk is given by

αk =
tk − 1
tk+1

.

Note that tk+1 is the positive root of the equation tk+1(tk+1 − 1) = t2
k . Using this identity, we

may calculate that(
1 +

1
αk

)
(αk−1 + 1) =

tk
tk−1

(
1 +

tk
tk+1

)(
1 +

tk−1

tk

)
.

Thus, coefficients for a recurrence formula for orthogonal polynomials that correspond to such
an iteration are

ck = 1 +
tk

tk+1
, dk = ck−1 − 1.

However, this does not seem to be related to any common polynomial family, to the knowledge
of the author.

6
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On the other hand, we may design Nesterov iterations from the recurrence relation of clas-
sical polynomials. For instance, the Hermite polynomials obey a relation (10) with ck = 2,
dk = 2k. Thus, the sequence αk has to satisfy the recursion

αk :=
1 + αk−1

2
k − αk−1 − 1

.

3. Convergence analysis

We consider the iteration (1) with the usualαk-sequence (2) and show that it is an optimal-order
regularization methods (of course, when combined with a stopping rule).

3.1. Convergence rates and semi-saturation

In the classical analysis of regularization schemes [7], one tries to bound the error in terms of
the noise level δ: ‖xδk(δ) − x†‖ � ψ(δ), where ψ is some function decreasing to 0 with δ → 0.

Often, Hölder-type rates are considered withψ(δ) = Cδξ . For such estimates, one has to impose
smoothness conditions in form of a source condition

x† = (A∗A)μω, ‖ω‖ < ∞, μ > 0. (12)

It is also well-known [7] that the optimal rate of convergence under (12) is of the form

‖xδk(δ) − x†‖ � O
(
δ

2μ
2μ+1

)
,

and a regularization scheme that achieves this bound is called of optimal order.
The phenomenon of saturation is the effect that for certain regularization method, the con-

vergence rate ψ(δ) does not improve even when the smoothness is higher, i.e., μ is larger. This
happens, for instance for Tikhonov regularization at μ = 1 or for the ν-methods at μ = ν;
see [7].

For the Nesterov acceleration (1), a detailed analysis has been performed by Neubauer [15]
with the result that, assuming a usual source condition (12) and an appropriate a priori stopping
rule, the resulting iterative regularization scheme is of optimal order for μ � 1

2 , and, for μ > 1
2 ,

the convergence rates improve with μ but in a suboptimal way. More precisely, the convergence
rates proven in [15] are

‖xδk(δ) − x†‖ =

⎧⎪⎨
⎪⎩

O
(
δ

2μ
2μ+1

)
μ � 1

2
,

O
(
δ

2μ+1
2μ+3

)
μ >

1
2
.

Thus, contrary to saturating methods, the order still improves beyond the ‘saturation index’
μ = 1

2 but in a suboptimal way. This is what we call ‘semi-saturation’, and, to the knowledge
of the author, this has not been observed yet for a classical regularization method. A further
result of [15] is that using the discrepancy principle as stopping rule, convergence rates are
proven, which are, however, always suboptimal.

Our second main contribution is an improvement of Neubauer’s result in the sense that we
show that the Nesterov iteration is of optimal order for a smoothness index μ � β+1

4 with an
a priori stopping rule. Moreover, contrary to [15], we also obtain optimal-order rates with
the discrepancy principle provided that μ � β−1

4 . These findings allow one to always achieve
optimal-order convergence provided that β is chosen sufficiently large.

7



Inverse Problems 37 (2021) 065002 S Kindermann

Moreover, the phenomenon of semi-saturation is made transparent by referring to the rep-
resentation in theorem 1: the residual is a product of Landweber-type and ν-type residuals,
and keeping in mind that Landweber iteration does not show saturation for Hölder indices
while the ν-method do, it is clear that a product as in (5) leads to the above described
semi-saturation.

3.2. Convergence analysis

In this section we perform a convergence analysis for the iteration (1). By theorem 1, we may
base our investigation on the known results for Landweber iteration and the ν-methods.

We collect some useful known estimates:∣∣∣∣∣∣∣
C

(
β+1

2

)

k−1 (
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

∣∣∣∣∣∣∣ � 1, 0 � λ � 1, β > −1. (13)

This is well-known and follows from [16, equations (7.33.1) and (4.73)]. From this we
immediately obtain that

|rk(λ)| � 1, 0 � λ < 1, β > −1, (14)

which has already been shown in [15]. Moreover, we may conclude from (13) and (5) as well
that

lim
k→∞

rk(λ) → 0, 0 < λ < 1. (15)

Recall that we denote by xk the iteration with yδ replaced by the exact data. As usual, this
allows one to split the total error into an approximation and stability term. We estimate the
stability term:

Proposition 1. Let ‖A∗A‖ � 1 and define xδk by (1) and (2) with β > −1. Let xk be the
corresponding noise-free iteration with yδ replaced by y = Ax†. Then we have the estimate

‖xδk − xk‖ �
√

2

√
(k − 1)2 +

k + 1
2

δ �
√

2 kδ. (16)

Proof. Following [7], it is enough to estimate

gk(λ) =
1 − rk(λ)

λ
= r′k(λ̃),

where we used the mean value theorem with λ̃ ∈ (0,λ). The derivative may be calculated from
(5) as

r′k(λ)=
k + 1

2
(1 − λ)

k−1
2

C

(
β+1

2

)

k−1 (
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

− 1
2

(1 − λ)
k
2

[
C

(
β+1

2

)

k−1

]′

(
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

.

8
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We use Markov’s inequality (cf [7, equation (6.16)]) and (13) to conclude that∣∣∣∣∣∣∣∣∣∣

[
C

(
β+1

2

)

k−1

]′

(
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

∣∣∣∣∣∣∣∣∣∣
� 2(k − 1)2 max

0�λ�1

∣∣∣∣∣∣∣
C

(
β+1

2

)

k−1 (
√

1 − λ)

C

(
β+1

2

)

k−1 (1)

∣∣∣∣∣∣∣ � 2(k − 1)2.

Thus,

|gk(λ)| � k + 1
2

+ (k − 1)2. (17)

The result now follows with [7, theorem 4.2] and (14). �
Note that this estimate is a slight improvement compared to the corresponding estimate in

[15, equation (3.2)], which has 2kδ on the right-hand side, similar as for the ν-methods.

From this we may conclude convergence:

Theorem 3. Let ‖A∗A‖ � 1 and β > −1. If the iteration is stopped at a stopping index k(δ)
that satisfies k(δ)δ → 0 and k(δ) →∞ as δ → 0, then the iteration (1) is convergent:

xδk(δ) → x†, as δ → 0.

Proof. We estimate

‖xδk(δ) − x†‖ � ‖xδk(δ) − xk(δ)‖+ ‖xk(δ) − x†‖ �
√

2k(δ)δ + rk(δ)(A∗A)x†.

The first term converges to 0 by the assumption on k(δ), and the second term does so because
k(δ) →∞ and by the dominated convergence theorem using (14), (15) as in [7]. �

We now consider convergence rates, and for this, the following rather deep estimate for
orthogonal polynomials is needed. It was derived by Brakhage [5] as well as by Hanke [7,
appendix A.2], [10] on basis of Hilb-type estimates for Jacobi polynomials.

Proposition 2. Let β > −1. Then there is a constant cβ with∣∣∣∣∣∣∣λ
β+1

4
C

(
β+1

2

)

k (
√

1 − λ)

C

(
β+1

2

)

k (1)

∣∣∣∣∣∣∣ � cβk−2 β+1
4 , 0 � λ � 1. (18)

Proof. For k even, this is [7, equation (6.22)] (with k there meaning 2k here), or [10,
theorem 4.1]. However, the result there is based on the Hilb-type formula ([16, theo-
rems 8.21.12, 8.21.13] which holds for all k as in [5, p 170]. Thus, by following the steps
in [7, appendix A.2], the result is obtained. �

Note that in case −1 < β < 1, the constant cβ may be explicitly calculated from [16,
equation (7.33.5)].

The corresponding estimates for the residuals of Landweber iteration are standard; cf [7,
equation (6.8)]:

|λμ(1 − λ)k| � cμ(k + 1)−μ, μ > 0. (19)

As a consequence, we may state our main convergence rate result for an a priori stopping
rule:

Theorem 4. Let ‖A∗A‖ � 1 and β > −1, and suppose that a source condition (12) is
satisfied with some μ > 0.

9
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(a) If μ � β+1
4 and the stopping index is chosen as

k(δ) = O
(
δ−

1
2μ+1

)
,

then optimal order convergence is obtained:

‖xδk(δ) − x†‖ � O
(
δ

2μ
2μ+1

)
.

(b) If μ > β+1
4 and the stopping index is chosen as

k(δ) = O

(
δ
− 1

μ+
β+1

4 +1

)
, (20)

then the following suboptimal order convergence is obtained:

‖xδk(δ) − x†‖ � O

(
δ

μ+ β+1
4

μ+
β+1

4 +1

)
.

Proof. For λ � 1, the estimate (18) yields (by interpolation) and (1 − λ)
k+1

2 � 1 that

|rk(λ)λμ| � Ck−2μ, μ � β + 1
4

. (21)

In case of μ > β+1
4 , we have with additionally using (19)

|rk(λ)λμ| � |(1 − λ)
k+1

2 λμ− β+1
4 |cβk−2 β+1

4 (22)

� cμ,β

∣∣∣∣∣∣
(

k + 1
2

)−
(
μ− β+1

4

)∣∣∣∣∣∣ cβk−2 β+1
4 � Ck

−
(
μ+ β+1

4

)
.

The result now follows by standard means:

‖xδk − x†‖ � ‖xδk − xδk‖+ ‖xδk − x†‖ �
√

2kδ + ‖rk(A∗A)(A∗A)μω‖

�

⎧⎪⎨
⎪⎩
√

2kδ + Ck−2μ μ � β + 1
4

,

kδ + Ck
−

(
μ+ β+1

4

)
μ >

β + 1
4

.

Solving for k by equating the two terms in the last bounds yields the a priori parameter choice
and the corresponding rates. �

By a slight refinement, we may even show o(.)-rates as in [15]:

Corollary 1. With the same assumptions as in theorem 4, if the stopping index is chosen
such that

‖xk(δ) − x†‖
k(δ)

� τδ <
‖xk − x†‖

k
1 � k � k(δ),

10
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(cf, [15, equation (3.1)] ), then the same rates for k(δ) as in theorem 4 hold for the stopping
index and we obtain the convergence rates

‖xδk(δ) − x†‖ � o
(
δ

2μ
2μ+1

)
if μ � β + 1

4

‖xδk(δ) − x†‖ � o

(
δ

μ+
β+1

4
μ+

β+1
4 +1

)
if μ >

β + 1
4

Proof. Following [15], we only have to improve the approximation rates ‖xk − x†‖ to o(.)-
rates. From (21), it follows that for μ � β+1

4

lim
k→∞

|rk(λ)λμ|
k−2μ

= 0 pointwisely for allλ ∈ (0, 1]. (23)

In case of μ > β+1
4 , we note that for all λ ∈ (0, 1] and ξ > 0, limk→∞(1 − λ)

k+1
2 kξ = 0.

Thus, we may conclude from (22) that for all λ ∈ (0, 1],

lim
k→∞

|rk(λ)λμ|

k
−

(
μ+ β+1

4

) � lim
k→∞

∣∣∣(1 − λ)
k+1

2

∣∣∣ kμ−
β+1

4 cβ
∣∣∣λμ− β+1

4

∣∣∣ = 0. (24)

Thus, by the theorem of dominated convergence, we obtain o(.)-rates for the approximation
error:

‖xδk − x†‖ = ‖rk(A∗A)(A∗A)μω‖ �

⎧⎪⎪⎨
⎪⎪⎩

k−2μ ‖rk(A∗A)(A∗A)μω‖
k−2μ

μ � β + 1
4

,

k
−

(
μ+ β+1

4

) ‖rk(A∗A)(A∗A)μω‖

k
−

(
μ+ β+1

4

) μ >
β + 1

4

=

⎧⎪⎨
⎪⎩

o(k−2μ) μ � β + 1
4

,

o

(
k
−

(
μ+ β+1

4

))
μ >

β + 1
4

.

The result now follows in exactly the same way as in [15]. �
These results correspond to those of Neubauer when β = 1. However, for β > 1 this is

an improvement as we obtain optimal-order convergence if β is chosen larger than 4μ− 1.

We note that in the optimal-order case, the number of iteration needed is O(δ−
1

2μ+1 ), which is
the same order as for semiiterative methods and for the conjugate gradient method. The corre-

sponding number of iteration for the Landweber methods is O(δ−
2

2μ+1 ), cf, e.g. [7, theorem 6.5].
Since 1

μ+ β+1
4 +1

< 2
2μ+1 , the number of iterations is, in general, smaller than for the Landweber

method even in the suboptimal case. Thus, the Nesterov acceleration certainly qualifies being
called a fast method.

3.3. Converse results and logarithmic rates

We present some further contributions to the regularization theory of Nesterov acceleration,
namely converse results and logarithmic rates. In this section, we denote by Eλ the spectral
family of A∗A (cf [7]).

11
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Converse results are statements that certain rates for the approximation error ‖xk − x†‖
imply some regularity of the true solution x† in form of source conditions. These are converse
to standard convergence rates result as, e.g., in theorem 4, where a decay of the approximation
error follows from a regularity condition. The results of (21) and (22) state that a given rate of
approximation

‖xk − x†‖ = O

(
1
kξ

)
, (25)

for some ξ > 0, is obtained for a smoothness index of with μ = μ∗, where

μ∗ =

⎧⎪⎨
⎪⎩

ξ

2
if

ξ

2
� β + 1

4
ξ

2
+

ξ

2
− β + 1

4
, if

ξ

2
>

β + 1
4

.

(26)

Now, concerning converse results for Nesterov acceleration, we may verify similar to [7,
proposition 4.13], that a given rate of approximation requires a certain smoothness index, such
that our convergence results are rather sharp in that respect. Unfortunately, we can prove this
only for the optimal-order range of indices.

Theorem 5. Let ‖A∗A‖ � 1. For β > −1 fixed, assume that the approximation error obeys
a certain rate (25) for some ξ > 0. Then x† has to satisfy a source condition

x† = (A∗A)μ
∗−εω, ‖ω‖ < ∞,

for any ε > 0, with μ∗ = ξ
2 .

Proof. In (17), we established the bound |gk(λ)| � k2 for k � 1. This yields that

|rk(λ)| � 1 − λ|gk(λ)| � 1 − λk2 � 1
2

for λ ∈
[

0,
1

2k2

]
.

Using spectral theory, it follows that

‖xk − x†‖2 =

∫ 1

0
rk(λ)2d‖Eλx†‖2 �

∫ 1
2k2

0
rk(λ)2d‖Eλx†‖2

� 1
4

∫ 1
2k2

0
d‖Eλx†‖2 =

1
4
‖E 1

2k2
‖2.

Thus, a convergence rate of ‖xk − x†‖ = O(k−ξ) implies ‖E 1
2k2

‖2
)
= O(

(
1
k2

) ξ
2 ), which implies

the source condition with μ � ξ
2 − ε for any positive ε by [7, lemma 4.12] (see also [2]). This

proves the result. �

Remark 2. The result of theorem 5 is comparable to well-known result in the optimal-order
situation. It is an open problem whether it can be verified that for a rate ξ

2 > β+1
4 , i.e., in the

suboptimal case, also a higher smoothness index as in (26) (second line) is needed. We could
not establish results in that direction, mainly because it is difficult to find lower bounds for the
Gegenbauer polynomials (which may have zeros in the spectrum).

12
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Some more general rates and converse results have been established in [2]. There (see also
[4]), the so-called best worst case error has been defined as (adopted to our notation)

bwc(δ) := sup
‖yδ−y‖�δ

inf
k
‖xδk − x†‖2,

which represents the best δ-rate that one can get for x† satisfying certain smoothness conditions.
What has been found in [2] (cf proposition 3.3) and [4, theorem 2.16] is that, for certain meth-
ods, a convergence rate of ‖xk − x†‖2 � φ(k) is equivalent to a convergence rate for the best
worst case error bwc(δ) � ψ(δ) and also equivalent to a decay rate of ‖Etx†‖2 = φ(t) (which
is related to a source condition). These results are established for a general class of mono-
tone regularization schemes. However, in our case, this monotonicity (and various positivity
assumptions) are not necessarily satisfied as the Gegenbauer polynomials are not monotone in
k. Thus, a further investigation of such equivalences and converse results is an open problem.

As an illustration of this theory and as an example of convergence rates under general
smoothness classes similar as in, e.g. [2, 4, 13], we can verify logarithmic rates for the Nes-
terov acceleration scheme. We define the logarithmic (monotone) rate function (cf [2, 4]) for
some ν > 0:

ϕν(t) :=

{
| log(t)|−ν 0 < t < e−(1+ν),

(1 + ν)−ν e−(1+ν) � t � 1,

with the continuous extension ϕν(0) = 0.

Proposition 3. Let ‖A∗A‖ � 1 and β > −1. Suppose that the following logarithmic source
condition holds:

‖Etx
†‖2 � ϕν(t), 0 < t < 1. (27)

Then Nesterov acceleration shows a logarithmic best worst case rate

bwc(δ) = O(| log δ|−ν).

for δ → 0.

Proof. From log(x) � x − 1, for x � 0, it follows that log(1 − λ) � −λ forλ ∈ [0, 1], hence

(1 − λ)
k+1

2 = e
k+1

2 log(1−λ) � e−
k+1

2 λ.

Combining this with (5) and (13) yields the bound

|rk(λ)| � e−
k+1

2 λ � e−
k
2 λ λ ∈ [0, 1], k � 1.

We may proceed similar as in [4]. Using [4, estimate (4.6)] with α = k−1 yields

ϕν(λ)
ϕν(k−1)

� λk for 0 � k−1 � λ � e−(1+ν).

Thus,

|rk(λ)|2 � e−kλ � e
− ϕν (λ)

ϕν (k−1) 0 � k � λ � e−(1+ν).

13
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As in [4, (2.18)] we find with (27) that

∫ e−(1+ν)

k−1
|rk(λ)|2d‖Eλx†‖2 �

∫ e−(1+ν)

k−1
e
− ϕν (λ)

ϕν (k−1) d‖Eλx†‖2

�
∫ e−(1+ν)

k−1
e
− ‖Eλx†‖2

ϕν (k−1) d‖Eλx†‖2 � ϕν(k−1)
∫ e−(1+ν)

k−1
e
−‖Eλx†‖2

ϕν (k−1) d

(
‖Eλx†‖2

ϕν(k−1)

)

� ϕν(k−1)
∫ 1

0
e−zdz.

Furthermore, ∫ 1

e−(1+ν)
|rk(λ)|2d‖Eλx†‖2 �

∫ 1

e−(1+ν)
e−λkd‖Eλx†‖2

� ϕν(k−1)
∫ 1

e−(1+ν)

e−e−(1+ν)k

ϕν(k−1)
d‖Eλx†‖2 � ϕν (k−1)‖x†‖ sup

s�e−(1+ν)

e−e−(1+ν)s

ϕν (s−1)
.

Since the supremum is easily seen to be bounded, it follows that this integral can be bounded
by O(ϕν(k−1)). Altogether, we find for k−1 � e−(1+ν) with some generic constant C that

‖xk − x†‖2

�
∫ k−1

0
|rk(λ)|2d‖Eλx†‖2 +

∫ e−(1+ν)

k−1
|rk(λ)|2‖Eλx†‖2

+

∫ 1

e−(1+ν)
|rk(λ)|2d‖Eλx†‖2

�
∫ k−1

0
d‖Eλx†‖2 + Cϕν (k−1) � Cϕν (k−1),

where we used (27). Since additionally ϕν(k−1) � 2νϕν(k−2), we observe with a different
constant C that

‖xδk − x†‖2 � 2‖xδk − xk‖2 + 2‖xk − x†‖2 � C(k2δ2 + ϕν(k−2)).

By balancing the two term, we obtain an equation for k, which, when put back into the bound
yields as in [2, p 533] (with k−2 playing the role of α) the upper bound

‖xδk − x†‖2 � O(log(|δ|−ν)),

for δ sufficiently small. Taking the inf and sup on the left-hand side establishes the result. �

3.4. Discrepancy principle

With the improved estimates, we can as well strengthen the result of [15] when the iteration is
combined with the well-known discrepancy principle. Recall that it defines a stopping index
k(δ) a posteriori by the first (smallest) k that fulfils the inequality

‖Axδk − yδ‖ � τδ, (28)

14
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where τ > 1 is fixed. The corresponding convergence rates can be obtained by a slight
modification of the proof in [15] and the general theory in [7].

Theorem 6. Let ‖A∗A‖ < 1, β > −1, and assume a source condition (12) satisfied. If the
iteration (1) is stopped by the discrepancy principle (28), then the following convergence rates
are obtained:

(a) If μ+ 1
2 � β+1

4 , then optimal order convergence rates is achieved

‖xδk(δ) − x†‖ � o
(
δ

2μ
2μ+1

)
with a stopping index k(δ) being of the same order as in (20).

(b) μ+ 1
2 � β+1

4 , then it holds that

k(δ) = O

(
δ
− 1

1
2 +μ+ β+1

4

)

and a rate of

‖xδk(δ) − x†‖ � o

⎛
⎝δ

μ+ β+1
4 − 1

2
μ+

β+1
4 + 1

2

⎞
⎠ .

is achieved.

Proof. The proof [15, theorem 4.1] only needs minor modifications. The estimate [15,
equation (4.3)]

‖xk(δ) − x†‖ � ‖rk(δ)(T∗T)w‖
1

2μ+1 ((τ + 1)δ)
2μ

2μ+1

is valid independent of our new rate results, hence it follows as in [15, equation (4.4)] that

‖xk(δ) − x†‖ � o(δ
2μ

2μ+1 ). It remains to estimate ‖xδk(δ) − x†‖ by (16) combined with an upper
bound for k(δ). Estimate [15, equation (4.2)] and the discrepancy principle yields

τδ � δ + ‖(T∗T)
1
2+μrk(T∗T)w‖

for k = k(δ).
To obtain o(.)-estimates, we slightly refine the bound (21). By interpolation, we obtain from

(18) and (13) that

k2μ

∣∣∣∣∣∣∣λ
μ C

(
β+1

2

)

k (
√

1 − λ)

C

(
β+1

2

)

k (1)

∣∣∣∣∣∣∣ � c 0 � λ � 1, μ � β + 1
4

. (29)

Thus,

k2μrk(λ)λμ �

⎧⎪⎨
⎪⎩

C(1 − λ)
k+1

2 μ � β + 1
4

Ck
2
(
μ− β+1

4

)
λμ− β+1

4 (1 − λ)
k+1

2 μ � β + 1
4

=:

⎧⎪⎨
⎪⎩
γ1(k,λ), μ � β + 1

4
kμ−

β+1
4 γ2(k,λ), μ � β + 1

4

15
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and where limk→∞ γ1(k,λ) = limk→∞ γ2(k,λ) = 0, pointwise for λ ∈ [0, 1). Thus, in case that
μ+ 1

2 � β+1
4 , we obtain by the theorem of dominated convergence that

‖(T∗T)
1
2+μrk(T∗T)w‖ � k(δ)−2

(
1
2+μ

)
‖γ1(k(δ), T∗T)ω‖

= k(δ)−2
(

1
2+μ

)
o(k) as k →∞.

Hence,

(τ − 1)δ � Ck(δ)−2
(

1
2+μ

)
o(k(δ)),

which yields (20), and with (16) we obtain ‖xδk(δ) − x†‖ = o(δ
2μ

2μ+1 ), which proves the result in
the optimal case.

In case that μ+ 1
2 > β+1

4 , since γ2(k,λ) = o(k), the corresponding estimate is

(τ − 1)δ � Ck(δ)
−

(
1
2+μ+ β+1

4

)
o(k(δ)),

from which the result in the second case follows. �
These rates agree with those of [15] when setting β = 1. There, however, only the subop-

timal case 2 was possible. Our improvement is to show that we may achieve optimal order
results even with the discrepancy principle provided β is sufficiently large.

Remark 3. It is clear that in practice β should be selected in the regime of optimal rates, i.e.
β > 4μ− 1 for a prior choices and β > 4μ+ 1 for the discrepancy principle. However, it is a
rule of thumb to choose such parameter also as small as possible, or more precisely, in such a
way to come close to the saturation point, i.e., β ∼ 4μ− 1, respectively, β ∼ 4μ+ 1.

Remark 4. For semiiterative methods, a modified discrepancy principle [7, 10] has been
defined, where the residual in (28) is replaced by an expression of the form (yδ , sk(AA∗)yδ)
with a constructed function sk. This yields an order-optimal method as for the a priori stopping
rule. An adaption of this strategy for Nesterov iteration is certainly possible and this should
yield order-optimal rates for all μ � β+1

4 . However, the strategy is quite involved and it is not
completely clear to us how to include this into the iteration efficiently. We thus do not intend
to investigate such modifications in this article.

4. Numerical results

In this section we present some small numerical experiments to illustrate the semi-saturation
phenomenon and to investigate the performance of Nesterov’s iteration, in particular, with
respect to the optimal-order results.

In a first example we consider a simple diagonal operator A = diag( 1
n2 ), for n = 1, . . . , 1000,

as well as an exact solution x† = ( 1
n4 (−1)n)1000

n=1 , which amounts to a source condition being
satisfied with indexμ = 0.75. Thus, we are in a case of higher smoothness, where the results of
the present article really improve those of [15]. We add standard normally distributed Gaussian
noise to the exact data and performed various iterative regularization schemes: Landweber
iteration, the ν-method, and the Nesterov iteration; the latter two with various settings of the
parameters ν and β, respectively.
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Figure 1. Log–log plot of the error ‖xδk(δ) − x†‖ versus the noise level δ for Nesterov
iteration (full line, blue), Landweber iteration (dotted line, black), and the ν-method
(dashed dotted line, red). Left: optimal stopping rule. Right: stopping by discrepancy
principle. The parameters β, ν are in an optimal-order regime.

We calculated the stopping index either by the discrepancy principle (28) with τ = 1.01
or, since we have the luxury of an available exact solution in this synthetic example, we also
calculate the oracle stopping index, which is defined as

kopt = arg min
k

‖xδk − x†‖.

In other words, kopt is the theoretically optimal possible stopping index.
In figure 1, we display the error ‖xδk(δ) − x†‖ against various noise levels on a log–log scale.

The curves correspond to convergence rates for Nesterov iteration (full line, blue), Landweber
iteration (dotted line, black), and the ν-method (dashed dotted line, red). The parameter were
chosen as β = 4 and ν = 1, i.e., we are in the optimal-order case covered by item 1 in theorem
4 and theorem 6. On the left-hand side we employ the oracle stopping rule using kopt and on
the right-hand side we use the discrepancy principle.

As can be observed, all three methods show a similar (optimal-order) rate, as stated in the-
orems 4 and 6. In particular, this verifies one of our findings that the discrepancy principle for
Nesterov’s iteration leads to an optimal-order method provided β is chosen appropriately.

In figure 2, we illustrate the semi-saturation phenomenon: here β and ν are deliberately
chosen as too small (β = 0, ν = 0.4 on the left-hand side and β = −0.5, ν = 0.3 on the right-
hand side). We observe that for small ν, the convergence rate of the ν-method is slow as a
result of its saturation. On the other hand, the Nesterov iteration also has a slower rate than
the non-saturating Landweber iteration, but, as can be expected from our residual polynomial
representation, it is in between the other two.

We remark that the ν-methods show some unpleasant behaviour when ν is chosen small. The
residual is highly oscillating and for small noise level we could not even reach the prescribed
discrepancy, and if we did, then the number of iteration was quite high, even higher than for
Landweber iteration. This might be attributed to our quite aggressive setting of the discrepancy
principle with τ = 1.01. In that respect, the Nesterov iteration was very well-behaved, and we
had no problem with a small β, which is probably due to the robust Landweber-component in
the representation (5).
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Figure 2. The similar plot as in figure 1 (left) for various iteration parameter in a
suboptimal-order regime. Left: ν = 0.4 and β = 0. Right: ν = 0.3 and β = −0.5.
Stopping by optimal stopping rule kopt.

Table 1. Errors compared to Nesterov iteration:
‖xδmethod,k−x†‖

‖xδNesterov,kopt
−x†‖

.

δ

Method Stopping 10−5 10−4 10−3 10−2 10−1

Nesterov kopt 1 1 1 1 1
Landweber kopt 1.15 0.83 0.96 1.05 1.06
ν-method kopt 1.02 1.06 1.01 1.26 0.97
CGNE kopt 1.02 0.82 1.05 1.02 0.84
Nesterov Discrepancy 1.58 1.10 1.41 2.84 1.90
Landweber Discrepancy 2.23 1.17 1.41 2.80 1.98
ν-method Discrepancy 1.02 1.13 1.00 1.56 1.88
CGNE Discrepancy 1.81 1.19 1.05 2.51 1.97

The optimal-order convergence only partly illustrates the effective performance of the meth-
ods. In table 1 we therefore provide the ratio of errors values, i.e., the numbers in the table are
‖xδmethod,k−x†‖

‖xδNesterov,kopt
−x†‖

, where xδNesterov,kopt
denotes Nesterov iteration with the optimal stopping rule

and xδmethod,k the iteration of the respective method with the respective stopping rule. All results
correspond to an optimal-order regime of parameters (those of figure 1). The number of iter-
ations (both for the oracle stopping rule and the discrepancy principle) are given in table 2.
In these tables, we also include the corresponding results for the conjugate gradient iteration
CGNE [11].

In terms of the number of iteration, the Nesterov iteration is slightly slower than the ν-
methods (approximately by a constant factor of 1.5) but both have a similar modest increase
of iterations when δ is decreased. Both need more iteration than the CGNE-method, which, of
course, is the fastest one by design. The slightly higher number of iterations might be attributed
to the better error estimate in (16). (Note that the ν-methods have a 2 in place of

√
2 there.) It

might appear a little bit paradoxical that a better estimate leads to slower convergence, but this
is clear from the theory as the number of iteration is a decreasing function of δ and thus also of
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Table 2. Number of iterations for various methods; setting as in table 1.

δ

Method Stopping 10−5 10−4 10−3 10−2 10−1

Nesterov kopt 371 163 65 26 15
Landweber kopt 11 000 2193 512 145 36
ν-method kopt 190 82 33 22 9
CGNE kopt 10 6 4 3 2
Nesterov Discrepancy 260 111 39 13 1
Landweber Discrepancy 5106 1080 220 37 1
ν-method Discrepancy 190 96 33 10 1
CGNE Discrepancy 8 5 4 2 1

Figure 3. Convergence rates for the examples in [15]. Left: example 1, smoothness
index μ = 1

8 . Centre: example 2, smoothness index μ = 5
8 . Right: example 3, smooth-

ness index μ = 17
8 . Displayed are the errors versus the noise level on a logarithmic scale.

A marker ‘x’ indicates optimal choice of β, and ‘+’ indicates suboptimal choice β = 1.
The full line indicates the optimal order rate.

any factor in front of δ. This factor, however, pays off when considering the total error of the
method, and we observe that Nesterov iteration with the optimal choice kopt indeed has almost
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always a slightly smaller error than the ν-method. Surprisingly, it is in several instances also
better than the CGNE-method. However, the Nesterov method sometimes loses some of its
advantages against the ν-method, when using the discrepancy principle, but the performance
is still acceptable.

Some further experiments indicate that the results are rather insensitive to overestimating
β. As stated in remark 3, the best choice is usually related to the smoothness index, but there
arose no serious problems when β was larger.

Further numerical experiments have been performed in [15]: even though the value of β was
not reported there, the results are consistent with our theory with the choiceβ = 1. The forward
operator there was the Green’s function for the solution of the 1D boundary value problem
−u′′ = f with homogeneous boundary conditions. Exact solutions with various smoothness are
stated there: example 5.1 with μ = 1

8 , example 5.2 with μ = 5
8 , and example 5.3 with μ = 17

8 .
We used the same problem and the same examples, but we calculated A by using an FEM-
discretization of the boundary value problem and A as the corresponding solution operator.
For simplicity we ignored discretization errors and took the discretized (projected) solution
as x†.

The main purpose of this experiment is to verify that the discrepancy principle (τ = 1.1)
can be made an optimal-order method. We choose β = 3.5 for the first two examples and
β = 9.5 for the third, which should in any case lead to an optimal-order situation. In figure 3,
we plotted the error versus the relative noise level on a logarithmic scale for the three examples
with this choice of β, indicated by the marker ‘x’. As a comparison, we also indicated the
predicted optimal rate by a solid line. Furthermore, also shown and marked with ‘+’ are the
corresponding results for β = 1, i.e., in the suboptimal case.

These results clearly illustrate that for the discrepancy principle we may achieve the optimal
order rates with the correct choice of β and for a wrong choice of β the rate deteriorates. For
low-smoothness as in example 1 (left picture in figure 3, however, there seems to occur almost
no deterioration contrary to expectation.

5. Conclusion

We have provided a representation of the residual polynomials for Nesterov’s acceleration
method for linear ill-posed problems as a product of Gegenbauer polynomials and Landweber-
type residuals. This allowed us to prove optimal-order rates for an a priori stopping rule and
the discrepancy principle as long as β in (2) is sufficiently large. The number of iteration is
shown to be of the same order as for other fast methods such as the ν-method or the conjugate
gradients methods. Moreover, our representation clearly explains the observed semi-saturation
phenomenon.

Within the class of linear iterative methods, the Nesterov acceleration is an excellent choice,
as it is a fast method as well as a quite robust one. Although, it must be conceded, that it cannot
compete with the conjugate gradient method in terms of number of iterations. However, this is
compensated by its flexibility and simplicity of use, which also allows one to easily integrate
it into existing gradient methods and also to apply it in nonlinear cases.
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