
Derivatives
Definition.
We say that a function  is differentiable at  if the limit:

exists. The limit , if it exists, is called the derivative
of  at .

+

We say that a function  is differentiable if it is differentiable
at every point in its domain.

Exercise.
Let . Is  differentiable at ? If so, find .

Theorem.
If a function  is differentiable at , then it is also
continuous at .
(The converse is false in general.)

Exercise.
Let  be the function defined by

Suppose  differentiable at , find the values of 
and .

Tangent Line
If the derivative , if it exists, then there exists a tangent
line to the graph  of  at .
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Moreover, the slope of the tangent line is , and the
tangent line is the graph of the equation:

Given , the correspondence  defines the
derivative function , where  is the set of all
points  at which  is differentiable.

Some Common Derivative Identities:

constant

Leibniz Notation
If  is defined in terms of an independent variable , we often

denote  by . Under this notation, for a given  the

value  is denoted by:
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Rules of Differentiation
Let ,  be functions differentiable at . Then:
+

Sum/Difference Rule
 is differentiable at , with:

+
Product Rule

 is differentiable at , with:

+
Quotient Rule

 is differentiable at  provided that , in which case
we have:

Chain Rule
Theorem.
Suppose  is differentiable at  and  is differentiable at 

, then  is differentiable at , with:

+

In the Leibniz notation, the chain rule says that if  is a
differentiable function of  and  is a differentiable function of
, then:
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Exercise.
Let  be the function defined by

Find . Is  continuous at ?

Implicit Differentiation
Example.
For ,

Proof.
+

Consider the equation:

Differentiating both sides with respect to , and
applying the Chain Rule, we have:

Hence, . 

◼

Exercise.
Consider the curve .

1. Find . Express your answer in terms of  only.

2. Let .

Verify that the point  lies on the curve .

Find the equation of the normal to the curve  at
the point .

f : R → R

f(x) = { x2 sin( )  if  x ≠ 0;
0  if x = 0.
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Theorem.
Let  be an injective function differentiable at . If 

, then  is differentiable at , with:

Example.
Consider the injective function:

Then,  for . In particular,  is
nonzero on . The inverse of  is:

For any , we have  for a unique 
 in . Hence,

By the Pythagorean Theorem, we know that:

Moreover, since , we have , so:

In conclusion, for , we have:
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