THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 Mathematics Garden
 Fall, 2013

If you have spotted any typo/errors, please send us an email at:

mathclinic@math.cuhk.edu.hk

Deng Yongzhe Suppose $f(x)$ is twice differentiable in $[0,1]$ and $\left|f^{\prime \prime}(x)\right| \leqslant$ M, and $f(x)$ get its maxima in $(0,1)$.Try to show: $\left|f^{\prime}(0)\right|+\left|f^{\prime}(1)\right| \leqslant M$.

Lam Chi Yeung Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Show that f is a constant.
Ng Tsz Ching Integrate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
Chen Yu What is $1-1+1-1+1-1+\cdots=$?

Chen Teng rove the following properties of traces.

1. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B) ;$
2. $\operatorname{tr}(k A)=k \operatorname{tr}(A)$;
3. $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$;
4. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Liu Beibei Function f satisfies functional equation $f(x+y)=f(x)+$ $f(y) \quad(\forall x, y \in \mathbb{R})$, and f is continuous at $x=0$, then there is only one solution $f(x)=a x$ satisfying the equation (a is a constant).

Li Hangfan Here are two problems:

1. Integrate $\int \frac{\ln }{x^{5}} d x$.
2. Integrate $\int \frac{2+\sqrt{x}}{3-\sqrt{x}} d x$.

Xu Ang Show that: $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$

Choi Ki Kit Answer the following questions:

1. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is not analytic at 0 .
2. Evaluate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$.
3. Let A be a $n \times n$ self-adjoint matrix. Suppose $R(x)=\frac{\langle A x, x\rangle}{\|x\|^{2}}$, then $\max _{x \neq 0} R(x)$ is the largest eigenvalue of A.

Chan Ho Yuan Answer the following questions:

1. Let

$$
A=\left[\begin{array}{rrrr}
1 & -1 & -2 & 0 \\
-1 & 1 & 3 & 1 \\
-2 & 2 & 7 & 3 \\
2 & -2 & -6 & -2
\end{array}\right]
$$

(a) Find $u_{1}, u_{2} \in \mathbb{R}^{4}$ such that $\operatorname{span}\left\{u_{1}, u_{2}\right\}=\mathrm{N}(A)$, where $\mathrm{N}(A)$ is the null space of A.
(b) Find a $u_{3} \in \mathbb{R}^{4}$ such that $A u_{3}=b$, where $b=(3,-4,-9,8)$.
(c) Find a $u_{4} \in \mathbb{R}^{4}$ such that $A u_{4}=b$, where $b=(-2,3,7,-6)$.
(d) Show that every $x \in \mathbb{R}^{4}$ can be written uniquely as a linear combination of $u_{1}, u_{2}, u_{3}, u_{4}$.
2. (A First Course in Linear Algebra by Robert A. Beezer, P.56, T40)
Suppose $A x=b$ is a consistent system of linear equations in which two columns of A are equal. Prove that the system has infinitely many solutions.

Zuo Cheng Show that Let M be a subspace of the Hilbert space H. Let $v \in H$
M and define $\delta:=\inf \{\|v-w\|: w \in M\}$.(Note that $\delta>0$ since M is closed in H) Then there exists $w_{0} \in M$ such that:
$(i)\left\|v-w_{0}\right\|=\delta$, i.e., there exists a closest point $w_{0} \in M$ tov, and (ii) $v-w_{0} \in M^{\perp}$.

Cheng Siu Hong This is to show $\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\frac{\pi}{2}$ by computing a double integral (using Fubini's Theorem) and elementary calculus techniques such as integration by parts.

Define the improper integral of an improperly integrable function $f(x)$ by

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

(a) Show that $\int_{0}^{\infty} \exp (-x y) \sin (x) d y=\frac{\sin (x)}{x}$.
(b) Evaluate $\int_{0}^{a} \exp (-x y) \sin (x) d x$.
(c) By using Fubini's theorem and the result of (a) and(b), show that $\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\frac{\pi}{2}$.

Wang Chuiji Show that A, B are commutative matrices, and they both can be diagonalized ,then they can be diagonalized simultaneously.

Choi Chi Po For $m=1,2,3, \ldots, n=1,2,3, \ldots$, let

$$
s_{m, n}=\frac{m}{m+n} .
$$

Compute

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} s_{m, n}
$$

and

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} s_{m, n} .
$$

Do they have the same value? Explain your answer.
Wen Jia Find the first five derivatives of the following functions:

1. $f(x)=\frac{1}{2-x}$
2. $f(x)=\ln (3+x)$

Yin Guojian Answer the following questions:

1. Using L'Hospital's Rule to evaluate $\lim _{x \rightarrow 0} \frac{(1-\cos x) \sin 4 x}{x^{3} \cos x}$.
2. Find $\int e^{2 x} \sin x d x$.

Luo Tianwen Compute the following limit

$$
\lim _{x \rightarrow 0^{+}} x \ln x
$$

Liu Xin Prove that: in an n-dimensional real Euclidean space, the operator $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ does not change under rotation.

Du Yangge Find the following limit by Riemann integral:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \frac{k}{n^{2}} \sin \left(\frac{k}{n}\right) .
$$

Kong Shilei Let a, b, c, d be some real numbers such that the limit

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x+a+b x+c x^{2}+d x^{3}}{x^{4}}
$$

exists. Find the values of a, b, c, d and the limit.

Mei Yu Find $\lim _{x \rightarrow 0} x^{\sin x}$.
Lee Man Chun Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(Hint: consider $\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} d x d y$).
Min Jie Let A be an $n * n$ matrix and $A * A=A * A^{t}$. Show that A is symmetric. (Hint: use induction on the dimension of A).

Tao Ran Show that if $x \in \mathbb{R}, y \in \mathbb{R}$, and $x<y$, then there exists a rational number $p \in \mathbb{Q}$ such that $x<p<y$.

Yuan Zhiri As we can see, for continuous functions, the existence of $\int_{0}^{\infty} f(x) d x$ and $\lim _{x \rightarrow \infty} f$ are somehow related. If $\lim _{x \rightarrow \infty} f$ does not equal to zero, then $\int_{0}^{\infty} f(x) d x$ makes no sense. So, will $\lim _{x \rightarrow \infty} f$ equal to zero if $\int_{0}^{\infty} f(x) d x<\infty$?

Yuan Yuan Considering $s_{n}=\sum_{k=1}^{n} \frac{1}{k!}$, it is easy to prove $s_{n}<2$. So we can define

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}=e \tag{1}
\end{equation*}
$$

Prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e . \tag{2}
\end{equation*}
$$

Zhang Pengfei Show that if A, B are two $n \times n$ matrices, then

$$
\operatorname{det}\left(\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\right)=\operatorname{det}(A+B) \cdot \operatorname{det}(A-B)
$$

Xiao Yao Calculate the integral of $\int_{-\infty}^{\infty} e^{-x^{2}} d x$
Chen Guanheng A certain ecological territory contains S thousands squirrels and R thousands rabbits. Currently, there are 4000 of each species, and the grow rates of the population with respect to time satisfies the following equations:

$$
\left\{\begin{array}{l}
\frac{d R}{d t}=63 R-3 R S \\
\frac{d S}{d t}=26 S-R S
\end{array}\right.
$$

Find the relationship of R and S.

Liu Haixia Function f satisfies functional equation $f(x+y)=f(x)+$ $f(y) \quad(\forall x, y \in \mathbb{R})$, and f is continuous at $x=0$, then there is only one solution $f(x)=a x$ satisfying the equation (a is a constant).

Liu Keji 1. Determine the domain of the given function

$$
f(t)=\frac{t+2}{\sqrt{9-t^{2}}}
$$

2. Find the composite function $f(g(x))$.

$$
\begin{aligned}
& \text { (1) } f(u)=3 u^{2}+2 u-6, \quad g(x)=x+2, \\
& \text { (2) } f(u)=(u-1)^{3}+2 u^{2}, \quad g(x)=x+1 .
\end{aligned}
$$

3. Find functions $h(x)$ and $g(u)$ such that $f(x)=g(h(x))$.
(1) $f(x)=(x-1)^{2}+2(x-1)+3$,
(2) $f(x)=\frac{1}{x^{2}+1}$.
4. Write an equation for the line with the given properties.
(1) Through $(5,-2)$ with slope $-\frac{1}{2}$.
(2) Through $(1,5)$ and $(3,5)$.
(3) Through $(3,5)$ and perpendicular to the line $x+y=4$.
5. Find the indicated limit if it exists.
(1) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}$.
(2) $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+3 x+2}$.
(3) $\lim _{x \rightarrow+\infty} \frac{x^{2}-2 x+3}{2 x^{2}+5 x+1}$.

Ruan Pengfei Prove

$$
\lim _{x \rightarrow 0} \frac{\sqrt[n]{1+x}-1}{\frac{1}{n} x}=1
$$

Fangqiong JIAN Compute $\int \sec x d x$.
Dai Lipeng Compute $\lim \frac{x^{2} y^{2}}{x^{3}+y^{3}}$ as $x \rightarrow 0, y \rightarrow 0$.

Zhao Rui A cyclic curve L is given by polar coordinate $r=1+\cos \theta, 0 \leq$ $\theta \leq \frac{\pi}{2}$ and segment $[0,2]$ on x axis and segment $[0,1]$ on y axis. Find the volume of the solid by rotating L around the x axis.

