

Department of Mathematics The Chinese University of Hong Kong

Phone: (852) 3943 7988-9 • Fax: (852) 2603 5154 • Email: dept@math.cuhk.edu.hk Rm. 220, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Faster decay of the microscopic part of a solution to the Boltzmann equation by

Professor Shota SAKAMOTO Kyushu University

Abstract :

We show that the microscopic part of a solution to the Boltzmann equation without angular cutoff enjoys $t^{-1/2}$ -faster decay than the solution itself in $(L^1 cap L^p)_k (\operatorname{R}^3)$. In the previous work, the speaker and his collaborators showed that we have a global-in-time solution in this space, and it decays in time with the rate $(1+t)^{-3(1-1/p)/2} + \operatorname{varepsilon}$, where $\operatorname{varepsilon} 0$ is arbitrary small. Considering the estimate of higher derivatives, we can generalize this result as follows: if the L^1_k norm of the $\operatorname{alpha}(L^p)_2$, and the microscopic part decays with the rate $(1+t)^{-3(1-1/p)/2} - \operatorname{alpha}(2+ \operatorname{varepsilon})$, and the microscopic part decays with the rate $(1+t)^{-3(1-1/p)/2} - \operatorname{alpha}(2-1/2+ \operatorname{varepsilon})$ for any $\operatorname{alpha}(2-0)$. This is an adaptation of the result of [Strain, KRM, 2013], where the solution space is the usual Sobolev space, to the $(L^1cap L^p)_k$ setting.

Date :	September 27, 2023 (Wednesday)
Time :	4:00pm – 5:00pm (Hong Kong SAR)
Venue:	Room 204, 2/F, Lee Shau Kee Building,
	The Chinese University of Hong Kong, Shatin

All are Welcome