

Department of Mathematics

The Chinese University of Hong Kong

數學系

香港中文大學

Phone: (852) 3943 7988 • Fax: (852) 2603 5154 • Email: dept@math.cuhk.edu.hk (Math. Dept.) Room 220, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Seminar

Group actions, the Mattila integral and continuous sum-product problems

Mr. Bochen Liu University of Rochester

Date: May 11, 2017 (Thursday)

Time: 2:00pm − 3:00pm

Venue: Room 222, Lady Shaw Building,

The Chinese University of Hong Kong

Group actions, the Mattila integral and continuous sum-product problems

Bochen Liu University of Rochester bochen.liu@rochester.edu

Abstract

The Mattila integral,

$$\mathcal{M}(\mu) = \int \left(\int_{S^{d-1}} |\widehat{\mu}(r\omega)|^2 d\omega \right)^2 r^{d-1} dr,$$

developed by Mattila, is the main tool in the study of the Falconer distance problem. Recently this integral is interpreted by Greenleaf et al. in terms of the L^2 -norm of the natural measure on $E-gE, g \in O(d)$, the orthogonal group. Following this group-theoretic viewpoint, we develop an analog of the Mattila integral associated with arbitrary groups. As an application, we prove for any $E, F, H \subset \mathbb{R}^2$, $\dim_{\mathcal{H}}(E) + \dim_{\mathcal{H}}(F) + \dim_{\mathcal{H}}(H) > 4$, the set

$$E\cdot (F+H)=\{x\cdot (y+z):x\in E,y\in F,z\in H\}$$

has positive Lebesgue. In particular, it implies that for any $A \subset \mathbb{R}$,

$$|A(A+A)| > 0$$

whenever $\dim_{\mathcal{H}}(A) > \frac{2}{3}$. We also give a very simple argument to show that on \mathbb{R}^2 , $\dim_{\mathcal{H}}(E) > 1$ is sufficient for $|E \cdot (E \pm E)| > 0$, where the dimensional threshold is optimal. By taking $E = A \times A$, it follows that

$$|A(A+A) + A(A+A)| > 0$$

whenever $\dim_{\mathcal{H}}(A) > \frac{1}{2}$, which is also sharp. We therefore conjecture that $\frac{1}{2}$ is the best dimensional threshold for $A \subset \mathbb{R}$ to ensure |A(A+A)| > 0.