

Department of Mathematics

The Chinese University of Hong Kong

Phone: 39437988 Fax no.: 26035154 Email: dept@math.cuhk.edu.hk

WORKSHOP IN HARMONIC ANALYSIS

August 10, 2016 (Wednesday) Room 220, Lady Shaw Building, CUHK

The Frobenius Theorem: From Geometry to Analysis

Dr. Brian Street

University of Wisconsin, Madison

11:00a.m. - 12:00noon

Abstract: We present a quantitative version of the classical Frobenius theorem from differential geometry. This theorem can be seen as providing scaling maps which can be used to study a range of problems in analysis. We present two such applications: a theory of singular Radon transforms (joint with E. M. Stein) and a theory of multi-parameter singular integrals which has applications to PDEs and several complex variables.

Hilbert transforms and maximal functions along variable curves

Dr. Joris Roos University of Bonn

2:30p.m. - 3:30p.m.

Abstract: The talk will be about on work in progress with Shaoming Guo and Victor Lie. Consider the maximal operator along a variable curve in \mathbb{R}^2 ,

$$\mathcal{M}f(x) = \sup_{1 \ge \varepsilon > 0} \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} |f(x - \Gamma_x(t))| dt$$

and the corresponding singular integral operator,

$$\mathcal{H}f(x) = p.v. \int_{\mathbb{R}} f(x - \Gamma_x(t)) \frac{dt}{t}.$$

In the vector field case, $\Gamma_x(t) = (t, u(x)t)$, it is a long-standing open question to determine whether Lipschitz regularity of u suffices for these operators to satisfy weak L^2 bounds.

While we cannot answer that question, we can provide some answers for certain variants that feature curvature. Specifically, we prove L^p , $1 bounds for <math>\mathcal{H}$ in the one-variable case $\Gamma_x(t) = (t, u(x_1)|t|^{\alpha})$ for measurable u and real, positive $\alpha \neq 1$. Also we can show L^p bounds for the maximal operator \mathcal{M} in the two-variable case $\Gamma_x(t) = (t, u(x)|t|^{\alpha})$ with u Lipschitz and $\alpha \neq 1$ real, positive.

In ongoing work we focus on recovering these results for the operators arising from replacing the monomial $|t|^{\alpha}$ by a more general curve.

(Multi-linear) Restriction Estimates and (Multi-linear) Decoupling Inequalities

Dr. Shaoming Guo Indiana University, Bloomington

4:00p.m. - 5:00p.m.

Abstract: I will present the proof of the two dimensional restriction estimate (by Cordoba). This further implies the sharp $l^2 L^p$ decoupling inequalities of the parabola for $2\ell p \ell 4$ (by Bourgain). If time allows, I will show how to pass from p = 4 to the sharp exponent p = 6 by an iteration argument (by Bourgain and Demeter).

Workshop Banquet 6:00p.m. – 8:00p.m.