EPYMT TDG 2025 Group 1 Tutorial

20 Aug 2025 Clive

Example 1 (Cycloid).

$$\gamma(t) = (t - \sin t, 1 - \cos t)$$

for $t \in (0, 2\pi)$. To find its curvature κ , we notice that

$$\gamma'(t) = (1 - \cos t, \sin t)$$

and

$$|\gamma'|^2 = 2 - 2\cos t.$$

Hence, the unit vector is

$$T = \frac{1}{\sqrt{2}}(\sqrt{1-\cos t}, \frac{\sin t}{\sqrt{1-\cos t}}) = (\sin \frac{t}{2}, \cos \frac{t}{2}).$$

It follows that

$$\frac{1}{2} = \left| \frac{\mathrm{d}T}{\mathrm{d}t} \right| = \left| \frac{\mathrm{d}s}{\mathrm{d}t} \right| \kappa = |\gamma'|\kappa.$$

Therefore,

$$\kappa = \frac{1}{2|\gamma'|} = \frac{1}{2^{\frac{3}{2}}\sqrt{1-\cos t}}.$$

Example 2 (Helix).

$$\gamma(t) = (\cos t, \sin t, t)$$

for $t \in \mathbb{R}$. To find its curvature κ , we notice that

$$\gamma'(t) = (-\sin t, \cos t, 1)$$

and $|\gamma'| = \frac{1}{\sqrt{2}}$. Hence,

$$T = \frac{\gamma'}{|\gamma'|} = \frac{1}{\sqrt{2}}(-\sin t, \cos t, 1).$$

Finally,

$$\kappa = \frac{1}{\sqrt{2}|\gamma'|} = \frac{1}{2}.$$

Example 3 (Catenary).

$$\gamma(t) = (t, \cosh t)$$

for $t \in \mathbb{R}$. To find its curvature κ , notice that $|\gamma'| = \cosh t$ and

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \left(-\frac{\sinh t}{\cosh^2 t}, \operatorname{sech} t\right).$$

Hence,

$$\kappa = \frac{1}{|\gamma'|} \left| \frac{\mathrm{d}T}{\mathrm{d}t} \right| = \frac{1}{\cosh^2 t}.$$

Tutorial Template

2

Example 4 (Tractrix).

$$\gamma(t) = (\operatorname{sech} t, t - \tanh t)$$

for t > 0. Alternatively, we can also parametrize by

$$\gamma(t) = \left(\sin t, \ln\left(\cot\frac{t}{2}\right) - \cos t\right)$$

for $t \in (0, \frac{\pi}{2})$.

For the first parametrization, we have

$$\gamma' = \tanh t(-\operatorname{sech} t, \tanh t)$$

and

$$|\gamma'| = \tanh t.$$

Hence,

$$T = (-\operatorname{sech} t, \tanh t)$$

and

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \mathrm{sech}\,t(\tanh t,\mathrm{sech}\,t).$$

Finally,

$$\kappa = \frac{1}{\cosh t} \frac{\cosh t}{\sinh t} = \frac{1}{\sinh t}.$$

Alternatively, the second parametrization gives

$$\gamma'(t) = \left(\cos t, -\frac{\cos^2 t}{\sin t}\right)$$

and

$$|\gamma'| = \left| \frac{\cos t}{\sin t} \right|.$$

These combined gives $T = (\sin t, -\cos t)$ and therefore

$$1 = \left| \frac{\mathrm{d}T}{\mathrm{d}t} \right| = \kappa \left| \frac{\cos t}{\sin t} \right|.$$

So,

$$\kappa = |\tan t|$$
.

Theorem 1. Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Then, its curvature is

$$\kappa = \frac{||\gamma'' \times \gamma'||}{||\gamma'||^3}.$$

Tutorial Template 3

Proof. Let γ' be derivative with respect to t and s(t) be the arc-length element. By chain rule,

$$\frac{d^2 \gamma}{ds^2} = \frac{d}{ds} \frac{d\gamma}{ds}$$

$$= \frac{d}{ds} \left(\frac{dt}{ds} \frac{d\gamma}{dt} \right)$$

$$= \frac{d}{ds} \frac{dt}{ds} \cdot \frac{d\gamma}{dt} + \left(\frac{dt}{ds} \right)^2 \frac{d^2 \gamma}{dt^2}$$

$$= \frac{d}{ds} \frac{1}{|\gamma'|} \cdot \frac{d\gamma}{dt} + \frac{1}{|\gamma'|^2} \frac{d^2 \gamma}{dt^2}.$$

For the derivative of $|\gamma'|^{-1}$, notice that it is well-defined because the curve is regular.

$$\frac{\mathrm{d}}{\mathrm{d}s} \frac{1}{|\gamma'|} = \frac{1}{|\gamma'|^2} \left(-\frac{\mathrm{d}}{\mathrm{d}s} |\gamma'| \right)$$

$$2|\gamma'| \frac{\mathrm{d}}{\mathrm{d}s} |\gamma'| = \frac{\mathrm{d}}{\mathrm{d}s} |\gamma'|^2 = 2 \frac{\mathrm{d}}{\mathrm{d}s} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}t}$$

$$\therefore \frac{\mathrm{d}}{\mathrm{d}s} |\gamma'| = \frac{1}{|\gamma'|} \frac{\mathrm{d}}{\mathrm{d}s} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}t}$$

$$= \frac{1}{|\gamma'|} \frac{\mathrm{d}t}{\mathrm{d}s} \frac{\mathrm{d}^2\gamma}{\mathrm{d}t^2} \frac{\mathrm{d}\gamma}{\mathrm{d}t}$$

$$= \frac{1}{|\gamma'|^2} \frac{\mathrm{d}^2\gamma}{\mathrm{d}t^2} \frac{\mathrm{d}\gamma}{\mathrm{d}t}.$$

Combine all,

$$\frac{\mathrm{d}}{\mathrm{d}s} \frac{1}{|\gamma'|} = -\frac{1}{|\gamma'|^4} \frac{\mathrm{d}^2 \gamma}{\mathrm{d}t^2} \frac{\mathrm{d}\gamma}{\mathrm{d}t},$$

and hence,

$$\frac{\mathrm{d}^2 \gamma}{\mathrm{d}s^2} = -\frac{1}{|\gamma'|^4} \langle \gamma'', \gamma' \rangle \gamma' + \frac{1}{|\gamma'|^2} \gamma''$$
$$= \frac{1}{|\gamma'|^4} \left(-\langle \gamma'', \gamma' \rangle \gamma' + \langle \gamma', \gamma \rangle \gamma'' \right).$$

Recall that by brute force calculation there is the identity

$$a \times b \times c = \langle a, c \rangle b - \langle a, b \rangle c$$

for vector triple products. Hence,

$$\gamma' \times \gamma'' \times \gamma' = \langle \gamma', \gamma' \rangle \gamma'' - \langle \gamma', \gamma' \rangle \gamma'.$$

Now, we arrive at

$$\frac{\mathrm{d}^2 \gamma}{\mathrm{d}s^2} = \frac{\gamma' \times \gamma'' \times \gamma'}{|\gamma'|^4}.$$

Since in general we have $|a||b||\sin\theta| = |a\times b|$, we deduce $|\gamma'\times\gamma'| = |\gamma'||\gamma''\times\gamma'|$ because $\gamma'\perp\gamma''\times\gamma'$. Simplifying the fraction, by the definition of κ we can see that

$$\kappa = \frac{|\gamma'' \times \gamma'|}{|\gamma'|^3}.$$

Tutorial Template 4

 $\it Remarks.$ For more exercises, read Shifrin's book. It is available online.

Exercise 1. Find the Frenet frame for

$$\gamma(t) = \frac{1}{\sqrt{3}} (e^t, e^t \cos t, e^t \sin t),$$

for $t \in \mathbb{R}$.

Exercise 2. Chapter 2 exercises in the lecture notes.