2.3 Curve curvature

Definition 2.3.1 (Unit tangent and normal vector). Let r(t) be a regular
parametrized curve.

1. The unit tangent vector to the curve at r(t) is defined by
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In particular if v(s) is an arc length parametrization, then

2. Suppose T'(t) # 0. We define the unit normal vector to the curve
at r(t) by

T'(t)
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In particular if v(s) is an arc length parametrization, then
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Figure 7: Unit tangent and unit normal vector
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Proposition 2.3.2. Let r(t) be a reqular parametrized curve and N(t) be the
unit normal vector. We have
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Definition 2.3.3 (Curve curvature). Let r(t) be a reqular parametrized curve

and T(t) be the unit tangent to the curve at r(t). Then the curvature of the
curve at r(t) is
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, particular if v(s) is an arc length parametrized curve, the curvature s
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Proposition 2.3.4. Let r(t) be a reqular parametrized curve. Then the cur-
vature satisfies k(t) = 0 for any a <t < b if and only if r(t) is a straight line
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Proposition 2.3.5 (Formulas for curvature). Let r(t) be a reqular parametrized

cCurve.
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1. Suppose r(t) = (x(t),y(t)) is a plane curve. Then
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2. Suppose r(t) = (x(t),y(t), z(t)) is a space curve. Then
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1. Suppose r(t) = (x(t),y(t)) s a plane curve. Then T |2 — (¢, v
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2. Suppose r(t) = (x(t),y(t), z(t)) is a space curve. Then T ‘
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Theorem 2.3.6. Suppose r(s) is an arc length parametrized curve. Then

1. k(s) =|r"(s)]l
2. T'(s) = £(s)N(s)
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Example 2.3.7 (Circle). Let r(6) = (rcosf,rsinf), 0 < 6 < 2m, be the
circle of radius v > 0 centered at the origin. Then
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Example 2.3.8 (Cycloid). The cycloid is the curve parametrized by

r(0) = (0 —sinf,1 — cos®), for 6 € (0,2m).
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Example 2.3.9 (Helix). Let a,b > 0 be constants. The space curve r(0) =
(acosf,asinf, b)), 6 € R, is called a helix. Then
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Proposition 2.3.10 (Curvature of graphs of functions).

1. (Rectangular coordinates): The curvature of the curve given by the
graph of function y = f(x) in rectangular coordinates is

k(x) = I

2. (Polar coordinates): The curvature of the curve given by the graph of

function r = r(0) in polar coordinates is
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Example 2.3.11 (Catenary). The catenary is the curve given by the graph
of the function y = coshx. Show that the curvature of the catenary is

Proof. Observe that

By Proposition

2.3.10
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the curvature of the catenary is
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Proposition 2.3.12. Let r(s) be an arc length parametrized plane curve and
6(s) be the angle between T and positive x-axis. Then
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Definition 2.3.13 (Signed curvature). Let r(t) = (x(t),y(t)) be a reqular
parametrized curve. The signed curvature, also denoted by Kk, of r is
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where 0 is the angle between the unit tangent vector T and the positive x-axis
so that T = (cosf,sinf).
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Definition 2.3.14 (Simple closed curve). A regular simple closed curve
in R? is a closed and bounded connected subset C' C R? such that for any
point p € C, we may find an open set U, C R? containing p such that Uu,NncC
s the image of a reqular parametrized curve.
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Theorem 2.3.15. Let r(t)
parametrization of a reqular simple closed curve C' such that r(t) is injec-
tive on (a,b) and r(a) = r(b). Let 0(t) be a continuous function such that
O(t) is the angle between the unit tangent vector T(t) and the positive x-axis
so that T = (cos#,sinf). Then 0(b) — 0(a) = 2.

,a <t < b, be a positively oriented reqular
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Signed curvature of a simple closed curve can be considered as the con-
tinuous version of exterior angles of a polygon. The following theorem is the
continuous version of the theorem for sum of exterior angles of polygon.

Theorem 2.3.16. Let C' be a simple closed curve and  be the signed cur-
vature defined by positively oriented parametrization. Then
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Proposition 2.3.17. Let r(t) be a reqular parametrized curve. Then
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where z' = |lv|| = ||I*'||.

Proof. First, we have
r'(t) = v(t)T(t).

Let s be an arc length parameter, that means s(¢) is a function such that
ds d A
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There is one more way to interpret the curvature of a curve. When we
consider r(t) as the displacement of a moving particle, we try to find a circle

which is closest to the trajectory of the particle at a certain point on the
curve. Then the curvature of the curve at that point can be interpreted as
the reciprocal of the radius of that circle.
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Proposition 2.3.18. Let r(t) be a regular parametrized curve. Let s(t) be

ds dr
an arc length parameter, that is, i lt’(t)|| or equivalently == 1. Let
ds

T and N be the unit tangent and normal vectors, which can be considered as
vector valued functions of t or s, respectively. The curvature k of the curve
is characterized by any of the following conditions.
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3. Ifr = (x,y) is a plane curve, we have
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4. Ifr = (x,y, 2) is a space curve, we have
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6. If r = (x,y) is a plane curve and 0 is the angle between T and the
positive x-axis, that is, T = (cosf,sinf), then we have
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