2.3Curve curvature

Definition 2.3.1 (Unit tangent and normal vector). Let $\mathbf{r}(t)$ be a regular parametrized curve.

1. The unit tangent vector to the curve at $\mathbf{r}(t)$ is defined by

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}.$$

In particular if $\mathbf{r}(s)$ is an arc length parametrization, then

$$\mathbf{T}(s) = \mathbf{r}'(s).$$

2. Suppose $\mathbf{T}'(t) \neq 0$. We define the unit normal vector to the curve at $\mathbf{r}(t)$ by

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}.$$

In particular if $\mathbf{r}(s)$ is an arc length parametrization, then

$$\mathbf{N}(s) = \frac{\mathbf{T}'(s)}{\|\mathbf{T}'(s)\|} = \frac{\mathbf{r}''(s)}{\|\mathbf{r}''(s)\|}.$$

$$\langle T(t), N(t) \rangle = \langle T(t), \frac{T'(t)}{||T'(t)||} \rangle$$

$$= \frac{1}{||T'(t)||} \langle T(t), T'(t) \rangle$$

$$= 0$$

Figure 7: Unit tangent as
$$\frac{d}{dE} \left(\frac{\langle T, T \rangle = ||T||^2}{\langle T, T \rangle + \langle T, T \rangle} = 0 \quad \Rightarrow \langle T, T' \rangle = 0$$

$$r'(t) = ||r'(t)|| \frac{r'(t)}{||r'(t)||}$$

$$= ||r'(t)|| T(t)$$

Figure 7: Unit tangent and unit normal vector

Proposition 2.3.2. Let $\mathbf{r}(t)$ be a regular parametrized curve and $\mathbf{N}(t)$ be the unit normal vector. We have

1.
$$\frac{d}{dt} \|\mathbf{r}'\| = \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|}$$

2.
$$\mathbf{T}' = \frac{\mathbf{r}''}{\|\mathbf{r}'\|} - \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|^3} \mathbf{r}'$$

$$\frac{\text{Pf}}{\text{O}} \frac{d}{dt} \| r' \| = \frac{d}{dt} | \overline{\langle r', r' \rangle}$$

$$= \frac{\langle r', r' \rangle + \langle r', r'' \rangle}{2 | \overline{\langle r', r' \rangle}}$$

$$= \frac{\langle r', r'' \rangle}{| \overline{\langle r', r' \rangle}}$$

$$T = \frac{r'}{\|r'\|}$$

$$T' = \frac{\|r'\| r'' - \|r'\|' r'}{\|r'\|^2}$$

$$= \frac{\|r'\| r'' - \frac{\langle r', r'' \rangle}{\|r'\|} r'}{\|s'\|^2} = RHS.$$

Definition 2.3.3 (Curve curvature). Let $\mathbf{r}(t)$ be a regular parametrized curve and $\mathbf{T}(t)$ be the unit tangent to the curve at $\mathbf{r}(t)$. Then the curvature of the curve at $\mathbf{r}(t)$ is

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}. \qquad \begin{aligned} \mathbf{T}'(t) &= \det \mathbf{z} \text{ rate of change of direction} \\ \mathbf{r}'(t) &= \det \mathbf{z} \text{ rate of change of displacement} \end{aligned}$$

In particular if $\mathbf{r}(s)$ is an arc length parametrized curve, the curvature is

$$\kappa(s) = \|\mathbf{T}'(s)\|$$
 $T'(s) = \frac{dT}{ds} = \text{change of direction relative}$ to arclength

Proposition 2.3.4. Let $\mathbf{r}(t)$ be a regular parametrized curve. Then the curvature satisfies $\kappa(t) = 0$ for any $a \le t \le b$ if and only if $\mathbf{r}(t)$ is a straight line segment joining \mathbf{r}_0 and \mathbf{r}_1 , where $\overrightarrow{r}_0 = \overrightarrow{r}(a)$, $\overrightarrow{r}_1 = \overrightarrow{r}(b)$

$$\Rightarrow \frac{\Gamma'(t)}{\|\Gamma'(t)\|} = \frac{1}{U}$$
unit vector \vec{u}

$$\Rightarrow \gamma(t) = \left(\int_{a}^{t} ||r'(x)|| dx\right) \overrightarrow{u} + \overrightarrow{v}$$

(
$$\Leftarrow$$
) Suppose $r(t)$ is straight line

Then $r(t) = \vec{v} + \alpha(t) \vec{u}$, where

 $\alpha(t)$ is increasing function

 $r'(t) = \alpha'(t) \vec{u} \neq \vec{0} \implies \alpha' > 0$
 $T = \frac{r'}{\|r'\|} = \frac{\alpha'(t) \vec{u}}{\|\alpha'(t)\|} \vec{u}$
 $= \frac{\alpha'(t)}{|\alpha'(t)|} \vec{u} = \vec{u}$

$$K(t) = \frac{\|T'(t)\|}{\|r'(t)\|} = \frac{\|\vec{\sigma}\|}{\|r'(t)\|} = 0$$

Proposition 2.3.5 (Formulas for curvature). Let $\mathbf{r}(t)$ be a regular parametrized curve.

1. Suppose $\mathbf{r}(t) = (x(t), y(t))$ is a plane curve. Then

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

(c)) is a plane curve. Then
$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

$$\frac{\left|\det\begin{bmatrix} \times' & \downarrow'' \\ \times'' & \downarrow'' \end{bmatrix}\right|}{\left[\left|\Upsilon'\right|\right|^{\frac{3}{2}}}$$

2. Suppose $\mathbf{r}(t) = (x(t), y(t), z(t))$ is a space curve. Then

$$\kappa(t) = \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}.$$

RmK

1) can be considered as a special case of (2)

$$\kappa = \frac{\|\mathbf{T}'\|}{\|\mathbf{r}'\|} = \left\| \frac{\|\mathbf{r}'\|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}'}{\|\mathbf{r}'\|^4} \right\|$$

$$\frac{d}{dt} \|\mathbf{r}'\| = \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|}$$
$$\mathbf{T}' = \frac{\mathbf{r}''}{\|\mathbf{r}'\|} - \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|^3} \mathbf{r}'$$

1. Suppose $\mathbf{r}(t) = (x(t), y(t))$ is a plane curve. Then

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

$$\kappa = \frac{\|\mathbf{T}'\|}{\|\mathbf{r}'\|} = \left\| \frac{\|\mathbf{r}'\|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}'}{\|\mathbf{r}'\|^4} \right\|$$

 $\frac{Pf}{(r',r'')} = (x',y'')$ (r',r'') = x'x'' + y'y''

$$\| r' \|^{2} r'' - \langle r', r'' \rangle r' = (\chi'^{2} q'^{2}) [\chi'', q'') - (\chi' \chi'' + q' q'') [\chi', q'')$$

$$= [-q' (\chi')^{2} \chi'' + (\chi')^{2} \chi'' - (\chi')^{2} \chi'' - \chi'' q' q'' + (\chi')^{2} q'' - \chi'' \chi'' - (\chi')^{2} q'' - \chi'' q'')]$$

$$= (\chi' q'' - \chi'' q') (-q', \chi')$$

$$= (\chi' q'' - \chi'' q') (-q', \chi')$$

$$K = \frac{\| x_{i} \|_{4}}{\| (x_{i} A_{i} - x_{i} A_{i}) [-A_{i} (x_{i})]} = \frac{\| x_{i} \|_{2}}{\| (x_{i} A_{i} - x_{i} A_{i}) [-A_{i} (x_{i})]} = \frac{\| x_{i} \|_{2}}{\| (x_{i} A_{i} - x_{i} A_{i}) [-A_{i} (x_{i})]}$$

2. Suppose $\mathbf{r}(t) = (x(t), y(t), z(t))$ is a space curve. Then

$$\kappa(t) = \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}.$$

$$\kappa = \frac{\|\mathbf{T}'\|}{\|\mathbf{r}'\|} = \left\| \frac{\|\mathbf{r}'\|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}'}{\|\mathbf{r}'\|^4} \right\|$$

Suppose $\mathbf{r}(t) = (x(t), y(t), z(t))$ is a space curve. Then

$$\begin{aligned} & \left\| \| \mathbf{r}' \|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}' \right\|^2 \\ &= \left\langle \| \mathbf{r}' \|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}', \| \mathbf{r}' \|^2 \mathbf{r}'' - \langle \mathbf{r}', \mathbf{r}'' \rangle \mathbf{r}' \rangle \\ &= \left\| \mathbf{r}' \|^4 \| \mathbf{r}'' \|^2 - 2 \langle \mathbf{r}', \mathbf{r}'' \rangle^2 \| \mathbf{r}' \|^2 + \langle \mathbf{r}', \mathbf{r}'' \rangle^2 \| \mathbf{r}' \|^2 \\ &= \left\| \mathbf{r}' \|^4 \| \mathbf{r}'' \|^2 - \langle \mathbf{r}', \mathbf{r}'' \rangle^2 \| \mathbf{r}' \|^2 \\ &= \left\| \mathbf{r}' \|^2 (\| \mathbf{r}' \|^2 \| \mathbf{r}'' \|^2 - \langle \mathbf{r}', \mathbf{r}'' \rangle^2) \\ &= \| \mathbf{r}' \|^2 \| \mathbf{r}' \times \mathbf{r}'' \|^2. \end{aligned}$$

$$\kappa = \frac{\|\mathbf{r}'\|\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^4}$$
$$= \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}.$$

Theorem 2.3.6. Suppose $\mathbf{r}(s)$ is an arc length parametrized curve. Then

1.
$$\kappa(s) = ||\mathbf{r}''(s)||$$

2.
$$\mathbf{T}'(s) = \kappa(s)\mathbf{N}(s)$$

$$PF(0) T(s) = \frac{r'(s)}{|r'(s)|} = r'(s)$$

$$K(S) = \frac{\|T'(S)\|}{\|Y'(S)\|} = \|T'(S)\| = \|T''(S)\|$$

$$(2) \qquad N(S) = \frac{T'(S)}{\|T'(S)\|}$$

Example 2.3.7 (Circle). Let $\mathbf{r}(\theta) = (r \cos \theta, r \sin \theta)$, $0 < \theta < 2\pi$, be the circle of radius r > 0 centered at the origin. Then

$$X(\theta) = X = r\cos\theta$$

$$Y(\theta) = y = r\sin\theta$$

$$X' = -r\sin\theta$$

$$Y'' = -r\sin\theta$$

$$Y'' = -r\sin\theta$$

$$Y'' = -r\sin\theta$$

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

$$K = \frac{\left[x'y'' - x''y' \right]}{\left((x')^2 + (y')^2 \right)^{\frac{3}{2}}} = \frac{\left[\cot \left[x''y'' \right]}{\left\| r' \right\|^{\frac{3}{2}}}$$

$$= \frac{\left[r^2 \sin^2 \theta - (-r^2 \cos^2 \theta) \right]}{\left[r^2 \left(\sin^2 \theta + \cos^2 \theta \right) \right]^{\frac{3}{2}}}$$

$$= \frac{\left| r^2 \right|}{\left| r^2 \right|^{\frac{3}{2}}} = \frac{1}{r}$$

Example 2.3.8 (Cycloid). The cycloid is the curve parametrized by

$$\mathbf{r}(\theta) = (\theta - \sin \theta, 1 - \cos \theta), \text{ for } \theta \in (0, 2\pi).$$

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

$$\begin{cases} \mathbf{r}'(\theta) = (1 - \cos \theta, \sin \theta) \\ \mathbf{r}''(\theta) = (\sin \theta, \cos \theta) \end{cases} \qquad \kappa(\theta) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

$$= \frac{|(1 - \cos \theta)\cos \theta - \sin \theta \sin \theta|}{((1 - \cos \theta)^2 + (-\sin \theta)^2)^{\frac{3}{2}}}$$

$$= \frac{1 - \cos \theta}{(2 - 2\cos \theta)^{\frac{3}{2}}}$$

$$= \frac{1}{2^{\frac{3}{2}}\sqrt{1 - \cos \theta}}.$$

Example 2.3.9 (Helix). Let a, b > 0 be constants. The space curve $\mathbf{r}(\theta) = (a\cos\theta, a\sin\theta, b\theta), \ \theta \in \mathbb{R}$, is called a **helix**. Then

$$r'=r'(\theta)=(-\alpha \sin \theta, \alpha \cos \theta, b)$$
 $r''=(-\alpha \cos \theta, -\alpha \sin \theta, 0)$
 $r''xr''=\begin{vmatrix} i & j & k \\ -\alpha \sin \theta & \alpha \cos \theta & b \\ -\alpha \cos \theta & -\alpha \sin \theta & 0 \end{vmatrix}$

$$\mathbf{r}(t) = (x(t), y(t), z(t))$$
 is a space curve.
$$\kappa(t) = \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}.$$

$$||r'xr''|| = \int |a\cos b \, b|^2 + |-a\sin b \, b|^2 + |-a\cos b \, a\cos b|^2$$

$$= \int (ab\sin b)^2 + (ab\cos b)^2 + a^4$$

$$= \int a^4 + a^2b^2 = a \int a^2 + b^2$$

$$K(\theta) = \frac{||r'xr''||}{||r'||^3} = \frac{a \int a^2 + b^2}{a^2 + b^2} = \frac{a}{a^2 + b^2}$$

Figure 5: Helix

Proposition 2.3.10 (Curvature of graphs of functions).

1. (Rectangular coordinates): The curvature of the curve given by the graph of function y = f(x) in rectangular coordinates is

$$\kappa(x) = \frac{|f''|}{(1 + f'^2)^{\frac{3}{2}}}.$$

2. (Polar coordinates): The curvature of the curve given by the graph of function $r = r(\theta)$ in polar coordinates is

$$\kappa(\theta) = \frac{|r^2 + 2r'^2 - rr''|}{(r^2 + r'^2)^{\frac{3}{2}}}.$$

$$\frac{Pf}{X=t} \quad y=f(t)$$

$$x'=1 \quad y=f'$$

$$x''=0 \quad y=f''$$

$$x''=0 \quad y=f''$$

$$K = \frac{|x'y'' - x''y'|}{[(x')^{2}]^{\frac{3}{2}}} = \frac{|f''|}{[1 + (f')^{2}]^{\frac{3}{2}}}$$

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

$$V = V(\theta) = V_0$$

$$V' = V'' = 0$$

$$V = \frac{|V_0|}{|V_0|^3/2} = \frac{V_0}{|V_0|}$$

Example 2.3.11 (Catenary). The catenary is the curve given by the graph of the function $y = \cosh x$. Show that the curvature of the catenary is

$$\kappa = \frac{1}{\cosh^2 x}.$$

$$\kappa(x) = \frac{|f''|}{(1 + f'^2)^{\frac{3}{2}}}.$$

Proof. Observe that

$$\begin{cases} f'(x) = \sinh x, \\ f''(x) = \cosh x. \end{cases}$$

By Proposition 2.3.10, the curvature of the catenary is

$$\kappa = \frac{|f''|}{(1 + f'^2)^{\frac{3}{2}}}$$

$$= \frac{\cosh x}{(1 + \sinh^2 x)^{\frac{3}{2}}}$$

$$= \frac{\cosh x}{(\cosh^2 x)^{\frac{3}{2}}}$$

$$= \frac{1}{\cosh^2 x}$$

Parametrized Curve	Arc length	Curvature
Plane curve $\mathbf{r}(t) = (x(t), y(t)),$ $a < t < b$	$\int_{a}^{b} \ \mathbf{r}'\ dt$	$\kappa(t) = \frac{ x'y'' - x''y' }{(x'^2 + y'^2)^{\frac{3}{2}}}$
Space curve $\mathbf{r}(t) = (x(t), y(t), z(t)),$ $a < t < b$	$\int_{a}^{b} \ \mathbf{r}'\ dt$	$\kappa(t) = \frac{\ \mathbf{r}' \times \mathbf{r}''\ }{\ \mathbf{r}'\ ^3}$
Arc length parametrized curve $\mathbf{r}(s)$ with $\ \mathbf{r}(s)\ = 1$ $a < s < b$	b-a	$\kappa(s) = \ \mathbf{r}''(s)\ $
Circle $\mathbf{r}(\theta) = (r\cos\theta, r\sin\theta),$ $0 < \theta < 2\pi$	$2\pi r$	$\kappa = \frac{1}{r}$
Cycloid $\mathbf{r}(\theta) = (\theta - \sin \theta, \cos \theta),$ $\theta \in (0, 2\pi)$	8	$\frac{1}{2^{\frac{3}{2}}\sqrt{1-\cos\theta}}$
Helix $\mathbf{r}(\theta) = (a\cos\theta, a\sin\theta, b\theta),$ $0 < \theta < 2\pi$	$2\pi\sqrt{a^2+b^2}$	$\frac{a}{a^2 + b^2}$
Graph of function $y = f(z)$ in rectangular coordinates $\mathbf{r}(t) = (t, f(t)),$ $a < t < b$	$\int_{a}^{b} \sqrt{1 + f'^2} dx$	$\frac{ f'' }{(1+f'^2)^{\frac{3}{2}}}$
Graph of function $r = r(\theta)$ in polar coordination $\mathbf{r}(\theta) = (r\cos\theta, r\sin\theta),$ $\alpha < \theta < \beta$	$\int_{\alpha}^{\beta} \sqrt{r^2 + r'^2} d\theta$	$\frac{ r^2 + 2r'^2 - rr'' }{(r^2 + r'^2)^{\frac{3}{2}}}$

$$\frac{\text{Defn}}{\|\mathbf{r}'(t)\|}.$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}.$$

$$\frac{d}{dt} \|\mathbf{r}'\| = \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|}$$
$$\mathbf{T}' = \frac{\mathbf{r}''}{\|\mathbf{r}'\|} - \frac{\langle \mathbf{r}', \mathbf{r}'' \rangle}{\|\mathbf{r}'\|^3} \mathbf{r}'$$

Proposition 2.3.12. Let $\mathbf{r}(s)$ be an <u>arc length parametrized plane curve</u> and $\theta(s)$ be the angle between \mathbf{T} and positive x-axis. Then

$$\kappa(s) = \left| \frac{d\theta}{ds} \right|.$$

$$x' = \cos\theta$$

$$y' = \sin\theta$$

$$x'' = -\sin\theta \frac{d\theta}{ds}$$

$$y'' = \cos\theta \frac{d\theta}{ds}$$

$$K = \frac{|x y'' - x y|}{[(x')^2 + (y')^2]^{\frac{3}{2}}}$$

$$= \frac{|\cos^2 \theta|}{(\cos^2 \theta + \sin^2 \theta)} \frac{d\theta}{ds} = \frac{|d\theta|}{|ds|}$$

$$\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

Definition 2.3.13 (Signed curvature). Let $\mathbf{r}(t) = (x(t), y(t))$ be a regular parametrized curve. The **signed curvature**, also denoted by κ , of \mathbf{r} is

$$\kappa(t) = \frac{d\theta}{ds} = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

where θ is the angle between the unit tangent vector \mathbf{T} and the positive x-axis so that $\mathbf{T} = (\cos \theta, \sin \theta)$.

RMK Signed curvature is defined for curves in IR2, not IR3

Definition 2.3.14 (Simple closed curve). A regular simple closed curve in \mathbb{R}^2 is a closed and bounded connected subset $C \subset \mathbb{R}^2$ such that for any point $p \in C$, we may find an open set $U_p \subset \mathbb{R}^2$ containing p such that $U_p \cap C$ is the image of a regular parametrized curve.

subset of R2

RMK A simple closed curve is a loop with no self-intersection

Orientation of a parametrized simple closed curve

Positively oriented (inside = left hand side)

Negatively oriented (outside = left hand side)

Theorem 2.3.15. Let $\mathbf{r}(t)$, $a \leq t \leq b$, be a positively oriented regular parametrization of a regular simple closed curve C such that $\mathbf{r}(t)$ is injective on (a,b) and $\mathbf{r}(a) = \mathbf{r}(b)$. Let $\theta(t)$ be a continuous function such that $\theta(t)$ is the angle between the unit tangent vector $\mathbf{T}(t)$ and the positive x-axis so that $\mathbf{T} = (\cos \theta, \sin \theta)$. Then $\theta(b) - \theta(a) = 2\pi$.

<u>er</u>

$$r(a) = r(b)$$

<u>eg</u>

$$\frac{d\theta}{ds} = \frac{2\pi - 0}{2\pi r} = \frac{1}{r}$$
Signed curvature

$$\theta$$
 discontinuous at vertices $5\pi/2 - \pi/2 = 2\pi$

$$3\pi - \pi = 2\pi$$

$$\theta(b) - \theta(a) = 2\pi \quad \text{why?}$$

Deform a simple closed curve to a circle

Signed curvature of a simple closed curve can be considered as the continuous version of exterior angles of a polygon. The following theorem is the continuous version of the theorem for sum of exterior angles of polygon.

Theorem 2.3.16. Let C be a simple closed curve and κ be the signed curvature defined by positively oriented parametrization. Then

$$\int_C \kappa ds = 2\pi.$$

Meaning of [xds: r(a)=r(b) arclength = l b=a+l

$$\frac{Pf}{\int K ds} = \int \frac{d\theta}{ds} ds = \int d\theta = \left[\theta\right]_{\alpha}^{b} = \theta(b) - \theta(a) = 2\pi$$

Proposition 2.3.17. Let $\mathbf{r}(t)$ be a regular parametrized curve. Then

$$\mathbf{a} = \mathbf{r}'' = \frac{dv}{dt}\mathbf{T} + \kappa v^2\mathbf{N}$$
 where $v' = \|\mathbf{v}\| = \|\mathbf{r}'\|$.

Proof. First, we have

$$\mathbf{r}'(t) = v(t)\mathbf{T}(t).$$

Let s be an arc length parameter, that means s(t) is a function such that $\frac{ds}{dt} = \|\mathbf{r}'(t)\|$. Then $\frac{d}{ds}\mathbf{T} = \kappa\mathbf{N}$ by Theorem 2.3.6 and we have

$$\mathbf{r}'' = \frac{dv}{dt}\mathbf{T} + v\frac{d}{dt}\mathbf{T}$$
$$= \frac{dv}{dt}\mathbf{T} + v\frac{ds}{dt}\frac{d}{ds}\mathbf{T}$$
$$= \frac{dv}{dt}\mathbf{T} + \kappa v^2\mathbf{N}.$$

$$\frac{\text{Corollary}}{\|\mathbf{r}'(t)\|^2} \ \kappa(t) = \frac{\langle \mathbf{r}''(t), \mathbf{N} \rangle}{\|\mathbf{r}'(t)\|^2}.$$

There is one more way to interpret the curvature of a curve. When we consider $\mathbf{r}(t)$ as the displacement of a moving particle, we try to find a circle which is closest to the trajectory of the particle at a certain point on the curve. Then the curvature of the curve at that point can be interpreted as the reciprocal of the radius of that circle.

Proposition 2.3.18. Let $\mathbf{r}(t)$ be a regular parametrized curve. Let s(t) be an arc length parameter, that is, $\frac{ds}{dt} = \|\mathbf{r}'(t)\|$ or equivalently $\left\|\frac{d\mathbf{r}}{ds}\right\| = 1$. Let \mathbf{r}

T and **N** be the unit tangent and normal vectors, which can be considered as vector valued functions of t or s, respectively. The curvature κ of the curve is characterized by any of the following conditions.

1.

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

2.

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$$

3. If $\mathbf{r} = (x, y)$ is a plane curve, we have

$$\kappa = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}.$$

4. If $\mathbf{r} = (x, y, z)$ is a space curve, we have

$$\kappa = \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}.$$

5.

$$\kappa = \left\| \frac{d^2 \mathbf{r}}{ds^2} \right\|$$

6. If $\mathbf{r} = (x, y)$ is a plane curve and θ is the angle between \mathbf{T} and the positive x-axis, that is, $\mathbf{T} = (\cos \theta, \sin \theta)$, then we have

$$\kappa = \frac{d\theta}{ds}.$$

7.

$$\mathbf{r}'' = \frac{dv}{dt}\mathbf{T} + \kappa v^2\mathbf{N}, \text{ where } v = ||\mathbf{r}'(t)||.$$