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Remark. If you do not have the background in elementary probability
theory, then the first three chapters of the textbook Probability, Statistics, and
Stochastic Processes by Mikael Andersson and Peter Olofsson may be a good
reference for you.

1.

Let X be a discrete random variable that has a binomial distribution with pa-
rameters n and p, written as X ∼ Binomial(n, p). Its probability mass function
is given by

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . .

where p ∈ (0, 1) is some constant. Compute the following values:

a) E[X], E[X2] and hence Var[X].

b) MX(t) := E[exp(tX)], where t ∈ R.

c) The derivatives at t = 0:

d

dt
MX(t)

∣∣∣∣
t=0

and
d2

dt2
MX(t)

∣∣∣∣
t=0

.

These values should agree with the values of E[X] and E[X2] that you
have obtained in part (a).

Hint 1: For a discrete random variable X, the expectation value of the
random variable g(X) is given by E[g(X)] =

∑
x g(x)P (X = x). Here g(X) is

any function of X, for example, you may take g(X) = X2.
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Hint 2: You may find the binomial theorem useful:

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Solution.
a) We perform straightforward computation following the definition of E:

E[X] =

∞∑
k=0

k

(
n

k

)
pk(1−p)n−k =

∞∑
k=1

k

(
n

k

)
pk(1−p)n−k (the k = 0 term is zero)

=

∞∑
k=1

n

(
n− 1

k − 1

)
pk(1−p)n−k = np

∞∑
m=0

(
n− 1

m

)
pm(1−p)(n−1)−m = np[p+(1−p)]n−1 = np.

Similarly,

E[X2] =

∞∑
k=0

k2
(
n

k

)
pk(1−p)n−k =

∞∑
k=1

k2
(
n

k

)
pk(1−p)n−k (the k = 0 term is zero)

=

∞∑
k=1

kn

(
n− 1

k − 1

)
pk(1−p)n−k = np

∞∑
m=0

(m+1)

(
n− 1

m

)
pm+1(1−p)(n−1)−(m+1).

The first sum can be found by the same method of obtaining E[X] and the
second sum can be found by the binomial theorem.

Thus, the variance is

Var[X] = E[X2]− E[X]2 = n(n− 1)p2 + np− (np)2 = np(1− p).

b) This is even more straightforward by using the binomial theorem:

MX(t) = E[exp(tX)] =

∞∑
k=0

etk
(
n

k

)
pk(1−p)n−k =

∞∑
k=0

(
n

k

)
(pet)k(1−p)n−k = [pet+(1−p)]n.

c) A direct computation shows that

M ′(t) = n[pet + (1− p)]n−1 · pet = np[pet + (1− p)]n−1 · et.

M ′′(t) = n(n− 1)p[pet + (1− p)]n−2 · pet · et + np[pet + (1− p)]n−1 · et.

Hence, we have that

M ′(0) = np and M ′′(0) = n(n− 1)p2 + np.

Remark. This MX(t) is called the moment generating function of X. For
the reason why its derivatives are equal to E[X] and E[X2], see Corollary 3.15
in the textbook.
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2.

Let X be a continuous random variable that has a normal distribution with
parameters µ and σ2, written as X ∼ N(µ, σ2). Its probability density function
is given by

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R,

where µ ∈ R, and σ > 0 are constants. Compute the following values:

a) E[X], E[X2] and hence Var[X].

b) MX(t) := E[exp(tX)], where t ∈ R is some constant.

c) The derivatives at t = 0:

d

dt
MX(t)

∣∣∣∣
t=0

and
d2

dt2
MX(t)

∣∣∣∣
t=0

.

These values should agree with the values of E[X] and E[X2] that you
have obtained in part (a).

Hint 3: For a continuous random variable X, the expectation value of the
random variable g(X) is given by E[g(X)] =

∫∞
−∞ g(x)f(x) dx. Here g(X) is

any function of X, for example, you may take g(X) = X2.
Hint 4: You may find the following integral helpful:∫ ∞

0

e−z2/2 dz =

√
π

2
.

Solution.
a)

E[X] =
1√
2πσ2

∫ ∞

−∞
xe−

(x−µ)2

2σ2 dx =
1√
2πσ2

∫ ∞

−∞
(σz+µ)e−

z2

2 σ dz (change of variable z =
x− µ

σ
)

= µ · 1√
2π

∫ ∞

−∞
e−

z2

2 dz = µ (the first integrand is odd).

And

E[X2] =
1√
2πσ2

∫ ∞

−∞
x2e−

(x−µ)2

2σ2 dx =
1√
2πσ2

∫ ∞

−∞
(σz + µ)2e−

z2

2 σ dz

=
1√
2π

∫ ∞

−∞

(
σ2z2 + 2µσz + µ2

)
e−

z2

2 dz = σ2 ·
√
2π · 1

2
+ µ2.

Hence, Var[X] = E[X2]− E[X]2 = σ2.
b)

MX(t) = E[exp(tX)] =
1√
2πσ2

∫ ∞

−∞
etxe−

(x−µ)2

2σ2 dx
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=
1√
2πσ2

∫ ∞

−∞
et(σz+µ)e−

z2

2 σ dz (change of variable z =
x− µ

σ
)

= eµt· 1√
2π

∫ ∞

−∞
e−

z2

2 +σtz dz = eµt+
σ2t2

2 · 1√
2π

∫ ∞

−∞
e−

(z−σt)2

2 dz (completing the square).

c)

M ′(t) = eµt+
σ2t2

2 ·(µ+σ2t) and M ′′(t) = eµt+
σ2t2

2 ·
(
µ+ σ2t

)2
+eµt+

σ2t2

2 ·σ2.

Therefore,
M ′(0) = µ and M ′′(0) = µ2 + σ2.

3.

Recall that (Corollary 3.8 in the textbook) if two random variables are indepen-
dent, then they are uncorrelated, i.e. Cov(X,Y ) = 0. However, the converse is
not true in general and this problem provides an example. Let X be a random
variable with continuous uniform distribution on the interval [−1, 1], i.e. its
probability density function is given by

f(x) =

{
1
2 , if x ∈ [−1, 1],

0, otherwise.

a Show that Cov(X,X2) = 0.

b Prove mathematically (not just argue by intuition) that X and X2 are not
independent. One way to do this is by showing that they do not satisfy
the property:

P (X ∈ A,X2 ∈ B) = P (X ∈ A) · P (X2 ∈ B)

for all A,B ⊆ R. You may also use other equivalent definitions of inde-
pendence.

Solution.
a) Since the integrands are odd, we have

Cov(X,X2) = E[(X − µX)(X2 − µX2)] = E[X3]− µXµX2 = 0

where µX = E[X] and µX2 = E[X2].
b) First of all, we remark that it is obvious that X and X2 cannot be

independent of each other. The problem is how to prove it mathematically.
Here we provide one method which is to explicitly construct some A,B ⊆ R
such that

P (X ∈ A,X2 ∈ B) ̸= P (X ∈ A) · P (X2 ∈ B).

Let 0 < a < 1 and denote A = B = (−∞, a]. Then, on one hand, we have

P (X ∈ A,X2 ∈ B) = P (X ≤ a,X2 ≤ a) = P (X ≤ a,−
√
a ≤ X ≤

√
a) = P (−

√
a ≤ X ≤ a).
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=

∫ a

−
√
a

f(x) dx =
1

2
· (a+

√
a).

On the other hand, we have

P (X ∈ A)·P (X2 ∈ B) = P (X ≤ a)·P (−
√
a ≤ X ≤ a) =

(∫ a

−1

1

2
dx

)
·

(∫ √
a

−
√
a

1

2
dx

)
= (a+ 1)·

(√
a
)
.

Therefore, we have

P (X ∈ A,X2 ∈ B) =
1

2
(a+

√
a) ̸= (a+ 1) · 1

2

√
a = P (X ∈ A) · P (X ∈ B)

since 0 < a < 1.
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