MMAT 5010 Linear Analysis

Suggested Solution of Test

1. (10 points): Assume that \mathbb{C}^2 is equipped with the usual norm, i.e., $||z|| \coloneqq \sqrt{|z_1|^2 + |z_2|^2}$ for $z = (z_1, z_2) \in \mathbb{C}^2$. Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be a linear map given by the following matrix, that is T(z) = Az for $z \in \mathbb{C}^2$.

$$A \coloneqq \begin{bmatrix} -3 & 0\\ 0 & 1+i \end{bmatrix}.$$

Find ||T||.

Solution. For all $z \in \mathbb{C}^2$ with $||z|| \leq 1$,

$$||Az|| = \sqrt{|-3z_1|^2 + |(1+i)z_2|^2} = \sqrt{9|z_1|^2 + 2|z_2|^2} \le 3\sqrt{|z_1|^2 + |z_2|^2} = 3.$$

Thus $||T|| \leq 3$. On the other hand, if we take $e_1 = (1,0) \in \mathbb{C}^2$, then $||e_1|| = 1$ and

$$||Ae_1|| = \sqrt{|-3|^2 + |0|^2} = 3.$$

Consequently ||T|| = 3.

2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Define the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on $X \oplus Y$ by

$$\|(x,y)\|_1 \coloneqq \|x\|_X + \|y\|_Y$$
 and $\|(x,y)\|_2 \coloneqq \sqrt{\|x\|_X^2 + \|y\|_Y^2}$

for $(x, y) \in X \oplus Y$.

- (a) (10 points): Show that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.
- (b) (10 points): Show that if X and Y both are Banach spaces, then so is $X \oplus Y$ under the norm $\|\cdot\|_1$.

Solution. (a) For each $(x, y) \in X \oplus Y$, we have

$$||(x,y)||_1 = ||x||_X + ||y||_Y \le 2 \cdot \sqrt{||x||_X^2 + ||y||_Y^2} = 2||(x,y)||_2$$

and

$$||(x,y)||_2 \le \sqrt{||x||_X^2 + 2||x||_X||y||_Y + ||y||_Y^2} = \sqrt{(||x||_X + ||y||_Y)^2} = ||(x,y)||_1.$$

Hence, $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on $X \oplus Y$.

(b) Suppose X and Y both are Banach spaces. Let $((x_n, y_n))$ be a Cauchy sequence in $X \oplus Y$. Since

$$||x_n - x_m||_X, ||y_n - y_m||_Y \le ||x_n - x_m||_X + ||y_n - y_m||_Y = ||(x_n, y_n) - (x_m, y_m)||_1,$$

 (x_n) and (y_n) are Cauchy sequences in X and Y, respectively. As X, Y are Banach spaces, there is $x \in X$ and $y \in Y$ such that

$$||x_n - x||_X, ||y_n - y||_Y \to 0 \quad \text{as } n \to \infty.$$

Now, $((x_n, y_n))$ converges to (x, y) in $X \oplus Y$ because

$$||(x_n, y_n) - (x, y)||_1 = ||x_n - x||_X + ||y_n - y||_Y \to 0.$$

Therefore $(X \oplus Y, \|\cdot\|_1)$ is also a Banach space.

3. Let Y be a proper subspace of a normed space X. Let $\pi : X \to X/Y$ be the natural projection. Define

$$q(\pi(x)) \coloneqq \inf\{\|x+y\| : y \in Y\}$$

for $x \in X$.

- (a) (10 points): Show that $q: X/Y \to [0, \infty)$ is a well defined function, that is $\inf\{\|x+y\|: y \in Y\} = \inf\{\|x'+y\|: y \in Y\}$ whenever $\pi(x) = \pi(x')$.
- (b) (10 points): Show that if Y is closed, then q is a norm function on X/Y. In this case, show that $||\pi|| = 1$. (Hint: use the Riesz' Lemma: for any $0 < \theta < 1$, there is $x_0 \in X$ with $||x_0|| = 1$ such that $||x_0 - y|| \ge \theta$ for all $y \in Y$.)
- **Solution.** (a) Suppose $\pi(x) = \pi(x')$. Then $x x' \in Y$, that is x = x' + y' for some $y' \in Y$. Now, for any $y \in Y$,

$$||x + y|| = ||x' + y' + y|| \ge \inf\{||x' + z|| : z \in Y\}$$

since $y' + y \in Y$.

As $y \in Y$ is arbitrary, we have $\inf\{||x + y|| : y \in Y\} \ge \inf\{||x' + y|| : y \in Y\}$. Similarly, we can show that $\inf\{||x + y|| : y \in Y\} \le \inf\{||x' + y|| : y \in Y\}$.

- (b) Clearly $q(\pi(x)) \ge 0$ for any $x \in X$.
 - (i) Since Y is closed, one have $q(\pi(x)) = 0$ if and only if $x \in Y$, that is $\pi(x)$ is the zero vector in X/Y.
 - (ii) Since Y is a closed subspace, we have for $\alpha \in \mathbb{K}$,

$$q(\alpha \pi(x)) = q(\pi(\alpha x)) = \inf\{\|\alpha x + y\| : y \in Y\} = |\alpha| \inf\{\|x + y\| : y \in Y\} = |\alpha|q(\pi(x))$$

(iii) For any $x_1, x_2 \in X, y_1, y_2 \in Y$,

$$||x_1 + y_1|| + ||x_2 + y_2|| \ge ||x_1 + x_2 + y_1 + y_2|| \ge q(\pi(x_1 + x_2))$$

because $y_1 + y_2 \in Y$. Taking infimum over y_1, y_2 and since $\pi(x_1 + x_2) = \pi(x_1) + \pi(x_2)$, we have $q(\pi(x_1) + \pi(x_2)) \leq q(\pi(x_1)) + q(\pi(x_2))$.

Therefore, q is a norm function on X/Y.

For any $x \in X$, we have

$$q(\pi(x)) = \inf\{\|x + y\| : y \in Y\} \le \|x\|$$

since $0 \in Y$. Thus $\|\pi\| \le 1$.

By the Riesz' Lemma, for any $0 < \theta < 1$, there is $x_0 \in X$ with $||x_0|| = 1$ such that $||x_0 - y|| \ge \theta$ for all $y \in Y$. In particular, $q(\pi(x_0)) \ge \theta$. Hence $||\pi|| \ge \theta$ for any $\theta \in (0, 1)$. Consequently $||\pi|| = 1$.

◀