MMAT 5010 Linear Analysis Suggested Solution of Homework 8

1. Suppose that the finite sequences space c_{00} is endowed with the sup-norm. For each $n = 1, 2, \ldots$, define $T_n : c_{00} \to c_{00}$ by

$$T_n(x)(k) \coloneqq \begin{cases} kx(k) & \text{as} \quad 1 \le k \le n \\ 0 & \text{as} \quad k > n, \end{cases}$$

for $x \in c_{00}$ and k = 1, 2, ...

- (a) Show that each T_n is bounded.
- (b) Show that $T(x) := \lim_{n \to \infty} T_n(x)$ exists for all $x \in c_{00}$.
- (c) Show that T is unbounded.
- **Solution.** (a) For any $x \in c_{00}$, $\sup_k |T_n(x)(k)| \le n \sup_k |x(k)|$, and hence $||T_n(x)||_{\infty} \le ||x||_{\infty}$. So T_n is bounded with $||T_n|| \le n$.
- (b) Let $x \in c_{00}$. We will show that $\lim_{n} T_n(x) = y$, where y is the sequence in c_{00} defined by y(k) := kx(k) for each $k \in \mathbb{N}$. Since $x \in c_{00}$, there is $N \in \mathbb{N}$ such that x(k) = 0 for all k > N. Then, if $n \ge N$, we have

$$||T_n(x) - y||_{\infty} = \sup_k |T_n(x)(k) - kx(k)| = \sup_{k>n} |0 - kx(k)| = 0.$$

Therefore $T(x) \coloneqq \lim_{n \to \infty} T_n(x) = y$.

(c) From (b), we see that

$$T(x)(k) = kx(k)$$
 for $k = 1, 2, ...$

For $n \in \mathbb{N}$, let $e_n \in c_{00}$ be defined by $e_n(k) = 1$ if k = n and 0 otherwise. Then $||e_n||_{\infty} = 1$ while $||Te_n||_{\infty} = n$. So $||T|| = \infty$ and T is unbounded.

◄