MMAT 5010 Linear Analysis Suggested Solution of Homework 7

- 1. Let X and Y be non-zero normed spaces. Let B(X, Y) be the space of all bounded linear maps from X to Y.
 - (a) Show that for any non-zero elements $x_0 \in X$, there is $f \in X^*$ such that $f(x_0) = 1$.
 - (b) Show that for any pair of elements $x_0 \in X$ with $x_0 \neq 0$ and $y_0 \in Y$, there is a bounded linear map T from X to Y such that $T(x_0) = y_0$.
 - (c) Let $x_1, x_2 \in X$. Show that if $x_1 \neq x_2$, then there is $T \in B(X, Y)$ such that $T(x_1) \neq T(x_2)$.
 - (d) Show that $B(X, Y) \neq \{0\}$.
 - **Solution.** (a) Let $Z = \mathbb{K}x_0$. Define $f_0 : Z \to \mathbb{K}$ by $f_0(\alpha x_0) = \alpha$ for $\alpha \in \mathbb{K}$. Then $f_0 \in Z^*$ ($||f_0|| = ||x_0||^{-1}$). By the Hahn-Banach Theorem, there exists a linear extension $f \in X^*$ of f_0 such that $||f|| = ||f_0||$. In particular, $f(x_0) = f_0(x_0) = 1$.
 - (b) Let f be the bounded linear functional obtained in (a). Define the map T: $X \to Y$ by $T(x) = f(x)y_0$. Clearly $T(x_0) = f(x_0)y_0 = y_0$. Moreover it is easy to check that T is linear and $||T(x)|| = |f(x)|||y_0|| \le ||f|||x||||y_0|| =$ $||f||||y_0|||x||$. So $T \in B(X, Y)$.
 - (c) Fix $y_0 \in Y \setminus \{0\}$. By (b), there is $T \in B(X, Y)$ such that $T(x_1 x_2) = y_0$, that is, $T(x_1) T(x_2) = y_0 \neq 0$.
 - (d) It follows immediately from (c).
- 2. Let X be a normed space. Show that for any element $x_0 \in X$, we have $||x_0|| = \sup\{|f(x_0)| : f \in X^*; ||f|| \le 1\}$.

Solution. For any $f \in X^*$ with $||f|| \le 1$, we have $|f(x_0)| \le ||f|| ||x_0|| \le ||x_0||$. Hence $||x_0|| \ge \sup\{|f(x_0)| : f \in X^*; ||f|| \le 1\}.$

We may assume that $x_0 \neq 0$. Let $Y = \mathbb{K}x_0$. Define $f_0 : Y \to \mathbb{K}$ by $f_0(\alpha x_0) = \alpha ||x_0||$ for $\alpha \in \mathbb{K}$. Then $f_0 \in Y^*$ with $||f_0|| = 1$. By the Hahn-Banach Theorem, there exists a linear extension $f \in X^*$ of f_0 such that $||f|| = ||f_0|| = 1$. In particular, $f(x_0) = f_0(x_0) = ||x_0||$. Hence $||x_0|| = \sup\{|f(x_0)| : f \in X^*; ||f|| \le 1\}$.

◀