MMAT 5010 Linear Analysis Suggested Solution of Homework 5

- 1. Let c_{00} be the finite sequence space. Assume that c_{00} is endowed with the $\|\cdot\|_{\infty}$ norm. Define a linear map $T: c_{00} \to c_{00}$ by $Tx(k) := \frac{1}{k}x(k)$ for $x \in c_{00}$ and $k = 1, 2, \ldots$
 - (a) Find ||T||.
 - (b) Show that T is a linear isomorphism, that is T is linear bijection, and the inverse T^{-1} is unbounded.
 - **Solution.** (a) For any $x \in c_{00}$, $\sup_k |Tx(k)| = \sup_k |\frac{1}{k}x(k)| \le \sup_k |x(k)|$, and hence $||Tx||_{\infty} \le ||x||$. So $||T|| \le 1$. On the other hand, if x = (1, 0, 0, ...), then Tx = x and so $||T|| \ge 1$. Hence ||T|| = 1.
 - (b) Define the linear map $S : c_{00} \to c_{00}$ by $Sx(k) \coloneqq kx(k)$ for $x \in c_{00}$ and $k = 1, 2, \ldots$ It is clear that

$$STx = x$$
 and $TSx = x$ for any $x \in c_{00}$.

Thus T is a linear bijection and $T^{-1} = S$ is also a linear map. However, $||T^{-1}||$ is unbounded. For $n \in \mathbb{N}$, let $e_n \in c_{00}$ be defined by $e_n(k) = 1$ if k = n and 0 otherwise. Then $||e_n||_{\infty} = 1$ while $||T^{-1}e_n||_{\infty} = n$. So $||T^{-1}|| = \infty$.

- 2. Let $(X, \|\cdot\|)$ be a normed space. Assume that $T: X \to X$ is a linear isomorphism.
 - (a) For each $x \in X$, put $||x||_0 \coloneqq ||Tx||$. Show that $||\cdot||_0$ is a norm on X.
 - (b) Show that the inverse T^{-1} is bounded if and only if there is c > 0 such that $c||x|| \le ||Tx||$ for all $x \in X$.
 - (c) The norms $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent if and only if T and T^{-1} both are bounded.

Solution. (a) Clearly $||x||_0 = ||Tx|| \ge 0$ for any $x \in X$.

- (i) If $||x||_0 = ||Tx|| = 0$, then Tx = 0 and hence x = 0 since $||\cdot||$ is a norm and T is a linear isomorphism.
- (ii) For any $\alpha \in \mathbb{K}$ and $x \in X$, $\|\alpha x\|_0 = \|T(\alpha x)\| = \|\alpha Tx\| = |\alpha| \|Tx\| = \|\alpha\| \|x\|_0$ since $\|\cdot\|$ is a norm and T is linear.
- (iii) For any $x, y \in X$, $||x+y||_0 = ||T(x+y)|| = ||Tx+Ty|| \le ||Tx|| + ||Ty|| = ||x||_0 + ||y||_0$ since $||\cdot||$ is a norm and T is linear.

Hence $\|\cdot\|_0$ is a norm on X.

(b) Suppose there is c > 0 such that $c||x|| \le ||Tx||$ for all $x \in X$. Then, for any $x \in X$, we have

$$||T^{-1}x|| \le \frac{1}{c}||T(T^{-1}x)|| = \frac{1}{c}||x||.$$

Hence T^{-1} is bounded with $||T^{-1}|| \leq \frac{1}{c}$. Suppose T^{-1} is bounded. Then, for any $x \in X$,

$$||x|| = ||T^{-1}(Tx)|| \le ||T^{-1}|| ||Tx||,$$

and so $\frac{1}{c} \|x\| \le \|Tx\|$, where $c := \|T^{-1}\| + 1 > 0$.

(c) Suppose $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent. Then there are $c_1, c_2 > 0$ such that

$$c_1 \|x\| \le \|x\|_0 = \|Tx\| \le c_2 \|x\|$$
 for any $x \in X$.

The first inequality shows that T^{-1} is bounded by (b), while the second one shows that T is bounded.

Suppose T and T^{-1} both are bounded. By (b) and the definition of ||T||, there are $c_1, c_2 > 0$ such that

$$c_1 \|x\| \le \|x\|_0 = \|Tx\| \le c_2 \|x\|$$
 for any $x \in X$.

Hence $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent.

NOTE: Question 1(b) above shows us that a linear isomorphism T is bounded but the inverse T^{-1} may not be bounded in general.

