MMAT 5010 Linear Analysis

Suggested Solution of Homework 4

1. Suppose that the space \mathbb{R}^2 is endowed with the usual norm, that is $||(x_1, x_2)|| := \sqrt{x_1^2 + x_2^2}$. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$

Find ||A||?

Solution. For any $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$,

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -3x_2 \end{bmatrix},$$

so that

$$||A\mathbf{x}|| = \sqrt{x_1^2 + 9x_2^2} \le 3\sqrt{x_1^2 + x_2^2} = 3||\mathbf{x}||.$$

Thus $||A|| \leq 3$. Next we will show that $||A|| \geq 3$. Indeed, if $e_2 = (0,1)$, then $||Ae_2|| = \sqrt{0^2 + 9 \cdot 1^2} = 3 = 3||e_2||$. Hence $||A|| \geq 3$.

4

Therefore ||A|| = 3.

2. Let X be a normed space and let $V : X \to X$ be an isometric isomorphism on X, that is V is a linear isomorphism and ||Vx|| = ||x|| for all $x \in X$. Show that if $T \in L(X)$, then $||VTV^{-1}|| = ||T||$.

Solution. Note that V^{-1} is also an isometric isomorphism since $||V^{-1}x|| = ||VV^{-1}x|| = ||x||$ for all $x \in X$. So, for all $x \in X$,

$$||VTV^{-1}x|| = ||TV^{-1}x|| \le ||T|| ||V^{-1}x|| \le ||T|| ||x||.$$

Thus $\|VTV^{-1}\| \leq \|T\|$. Since V^{-1} is also an isometric isomorphism, we also have $\|T\| = \|V^{-1}VTV^{-1}V\| \leq \|VTV^{-1}\|$. Therefore $\|VTV^{-1}\| = \|T\|$.

3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$. For each element $(x, y) \in X \oplus Y$, put

$$||(x,y)||_1 \coloneqq ||x||_X + ||y||_Y$$

Let $T \in L(X)$ and $S \in L(Y)$. Define $T \oplus S : X \oplus Y \to X \oplus Y$ by $(T \oplus S)(x, y) := (Tx, Sy)$. Show that $||T \oplus S|| = \max(||T||, ||S||)$.

Solution. For any $(x, y) \in X \oplus Y$,

$$||(T \oplus S)(x, y)||_1 = ||(Tx, Sy)||_1 = ||Tx||_X + ||Sy||_Y \le ||T|| ||x||_X + ||S|| ||y||_Y$$

$$\le \max(||T||, ||S||)(||x||_X + ||y||_Y) = \max(||T||, ||S||)|(x, y)||_1.$$

So $||T \oplus S|| \le \max(||T||, ||S||)$.

On the other hand, for any $x \in B_X$, we have $(x,0) \in B_{X\oplus Y}$ since $||(x,0)||_1 = ||x||_X + ||0||_Y \le 1$, and thus

$$||Tx||_X = ||(T \oplus S)(x, 0)||_1 \le ||T \oplus S||.$$

Taking supremum over $x \in B_X$, we have $||T|| \leq ||T \oplus S||$. Similarly, $||S|| \leq ||T \oplus S||$.