MMAT 5010 Linear Analysis Suggested Solution of Homework 3

1. Let $\|\cdot\|$ and $\|\cdot\|'$ be the norm functions defined on a vector space X. Let D be a subset of X. Show that if $\|\cdot\| \sim \|\cdot\|'$, then D is a compact with respect to the norm $\|\cdot\|$ if and only if it is also compact with respect to the norm $\|\cdot\|'$.

Solution. Since $\|\cdot\| \sim \|\cdot\|'$, there are positive numbers c_1, c_2 such that $c_1\|\cdot\| \leq \|\cdot\|' \leq c_2\|\cdot\|$ on X.

Suppose *D* is compact with respect to the norm $\|\cdot\|$. Let (x_n) be a sequence in *D*. Then (x_n) has a subsequence (x_{n_k}) converging to $x \in D$ with respect to the norm $\|\cdot\|$, that is $\|x_{n_k} - x\| \to 0$ as $k \to \infty$. So $\|x_{n_k} - x\|' \to 0$ as $k \to \infty$ because $\|\cdot\|' \leq c_2 \|\cdot\|$. Thus the subsequence (x_{n_k}) converges to $x \in D$ with respect to the norm $\|\cdot\|'$ also. Hence *D* is compact with respect to the norm $\|\cdot\|'$.

The converse can be proved by the same argument.

2. Show that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_2$ are not equivalent on the finite sequence space c_{00} .

Solution. For each $n \in \mathbb{N}$, let $x_n \in c_{00}$ be defined by

$$x_n(k) = \begin{cases} 1 & \text{if } 1 \le k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Then $||x_n||_{\infty} = 1$ while $||x_n||_2 = \sqrt{n}$. So there is no constant C > 0 such that $||x_n||_{\infty} \ge C ||x_n||_2$ for all $n \in \mathbb{N}$. In particular, $|| \cdot ||_{\infty}$ and $|| \cdot ||_2$ are not equivalent on c_{00} .

3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$. For each element $(x, y) \in X \oplus Y$, put

$$||(x,y)||_{\infty} \coloneqq \max(||x||_X, ||y||_Y)$$
 and $||(x,y)||_1 \coloneqq ||x||_X + ||y||_Y.$

Show that these two norms are equivalent on $X \oplus Y$.

Solution. For each $(x, y) \in X \oplus Y$, we have

$$||(x,y)||_{\infty} = \max(||x||_X, ||y||_Y) \le ||x||_X + ||y||_Y = ||(x,y)||_1,$$

and

$$||(x,y)||_1 = ||x||_X + ||y||_Y \le 2 \cdot \max(||x||_X, ||y||_Y) = 2||(x,y)||_{\infty}$$

Hence, $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ are equivalent norms on $X \oplus Y$.

-