MMAT 5010 Linear Analysis Suggested Solution of Homework 1

1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Now for each element $(x, y) \in X \oplus Y$ (the direct sum of X and Y) we put $\|(x, y)\|_{\infty} := \max(\|x\|_X, \|y\|_Y)$. Show that $(X \oplus Y, \|\cdot\|_{\infty})$ is a Banach space if and only if X and Y both are Banach spaces.

Solution. (\implies) Suppose X and Y both are Banach spaces. Let $((x_n, y_n))$ be a Cauchy sequence in $X \oplus Y$. Since $||x_n - x_m||_X$, $||y_n - y_m||_Y \le ||(x_n, y_n) - (x_m, y_m)||_{\infty}$, (x_n) and (y_n) are Cauchy sequences in X and Y, respectively. As X, Y are Banach spaces, there is $x \in X$ and $y \in Y$ such that

$$||x_n - x||_X, ||y_n - y||_Y \to 0 \quad \text{as } n \to \infty.$$

Now, $((x_n, y_n))$ converges to (x, y) in $X \oplus Y$ because

$$||(x_n, y_n) - (x, y)||_{\infty} = ||(x_n - x, y_n - y)||_{\infty} = \max(||x_n - x||_X, ||y_n - y||_Y) \to 0.$$

Therefore $(X \oplus Y, \|\cdot\|_{\infty})$ is also a Banach space.

 (\Leftarrow) Suppose $(X \oplus Y, \|\cdot\|_{\infty})$ is a Banach space. Let (x_n) be a Cauchy sequence in X. Then $((x_n, 0_Y))$ is a Cauchy sequence in $X \oplus Y$ because $\|(x_n, 0_Y) - (x_m, 0_Y)\|_{\infty} = \|x_n - x_m\|_X$. As $X \oplus Y$ is a Banach space, there is $(x, y) \in X \oplus Y$ such that $\lim_{n \to \infty} \|(x_n, 0_Y) - (x, y)\|_{\infty} = 0$. Since

$$||x_n - x||_X \le ||(x_n, 0_Y) - (x, y)||_{\infty},$$

we must have $\lim_{n \to \infty} ||x_n - x||_X = 0$. Therefore X is a Banach space. Similarly, Y is also a Banach space.

- 2. Let (x_n) be a sequence in a normed space X.
 - (a) Suppose that there is 0 < r < 1 such that $||x_n|| < r^n$ for all $n = 1, 2, \ldots$. Put $s_n \coloneqq \sum_{k=1}^n x_k$. Show that if X is a Banach space, then $\sum_n x_n \coloneqq \lim_n s_n$ exists in X.
 - (b) Consider the finite sequence space $(c_{00}, \|\cdot\|_{\infty})$. For each n = 1, 2, ..., let $x_n(k) = 1/2^n$ as k = n, otherwise, set $x_n(k) = 0$, i.e. $x_n \coloneqq (0, ..., 0, 1/2^n, 0, ...) \in c_{00}$ at the *n*-th position is $1/2^n$. We keep the notation as Part (a). Show that $\lim_n s_n$ does not exist in c_{00} .

Solution. (a) Note that, for m > n,

$$||s_m - s_n|| = ||\sum_{k=n+1}^m x_k|| \le \sum_{k=n+1}^m ||x_k|| < \sum_{k=n+1}^m r^k \le \frac{r^{n+1}}{1-r}.$$

Since $\lim_{n\to\infty} \frac{r^{n+1}}{1-r} = 0$, (s_n) is a Cauchy sequence in the Banach space X. Thus $\lim_n s_n$ exists in X.

(b) Suppose $s \coloneqq \lim_{n \to \infty} s_n$ exists in c_{00} . Then for $m \ge n$, $s_m(n) = \sum_{k=1}^m x_k(n) = \frac{1}{2^n}$, and hence

$$|s(n) - \frac{1}{2^n}| = |s(n) - s_m(n)| \le ||s - s_m||_{\infty} \to 0$$
 as $m \to \infty$.

Thus $s(n) = \frac{1}{2^n}$ for $n \in \mathbb{N}$. Such s cannot belong to c_{00} because it is not a finite sequence. Therefore $\lim_n s_n$ does not exist in c_{00} .

◀