MMAT 5010: LINEAR ANALYSIS (2024-25: SECOND TERM)

CHI-WAI LEUNG

1. BANACH SPACES

Throughout this note, we always denote K by the real field R or the complex field C. Let N be
the set of all natural numbers. Also, we write a sequence of numbers as a function z : {1,2,...} - K
or z; :=x(i) fori = 1,2....

Definition 1.1. Let X be a vector space over the field K. A function || - || : X — R is called a
norm on X if it satisfies the following conditions.
(i) ||z|]| > 0 for all x € X and ||z|| =0 if and only if x = 0.
(ii) ||ax|| = |al||z|| for all« € K and x € X.
(1) |z +yll <zl + llyll for all 2,y € X.
In this case, the pair (X, || - ||) is called a normed space.

Remark 1.2. Recall that a metric space is a non-empty set Z together with a function, (called a
metric), d : Z x Z — R that satisfies the following conditions:
(i) d(z,y) >0 for all x,y € Z; and d(z,y) = 0 if and only if x = y.
(ii) d(z,y) = d(y,z) for all z,y € Z.
(iii) d(z,y) < d(z,z) + d(z,y) for all z,y and z in Z.

For a normed space (X, | -]), if we define d(z,y) := ||x —y|| for x,y € X, then X becomes a metric
space under the metric d.

The following examples are important classes in the study of functional analysis.

Example 1.3. Consider X = K". Put
n
1
el = ()" and el := s |
1=

for1<p< oo and x = (z1,...,z,) € K"
Then || - ||p (called the usual norm as p=2) and || - || (called the sup-norm) all are norms on K™.

Example 1.4. Put
co = {(x(3)) : (i) € K, lim |z(¢)| = 0} (called the null sequnce space)
and
€2 = {(2(2)) : 2(i) € K, sup|z(i)| < oo}.
Then cy is a subspace of £2°. The sup-norm || - || on €>° is defined by

[2]|oo = sup |2(2))]
7
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for x € £>°. Let
coo := {(z(7)) : there are only finitly many x(i)’s are non-zero}.

Also, cqo is endowed with the sup-norm defined above and is called the finite sequence space.
Example 1.5. For 1 <p < oo, put
o
= {(x(i) : 2(i) €K, Y |2(i)P < oo}
i=1

Also, IP is equipped with the norm

3=

lzllp = (3 lz())
i=1
for x € P, Then || - ||, is a norm on (.

Example 1.6. Let C°(R) be the space of all bounded continuous R-valued functions f on R.
Now C?(R) is endowed with the sup-norm, that is,

[/ lloc = sup | f ()]
z€eR

for every f € C®(R). Then || - || is a norm on Cb(R).

Also, we consider the following subspaces of C*(X).

Let Cp(R) (resp. C’C(R)) be the space of all continuous R-valued functions f on R which vanish
at infinity (resp. have compact supports), that is, for every € > 0, there is a K > 0 such that
|f(x)| <& (resp. f(x)=0) for all |x| > K.

It is clear that we have Ce(R) C Co(R) C C*(R).

Now Cy(R) and C.(R) are endowed with the sup-norm || - || cc-

From now on, we always let X be a normed sapce.

Definition 1.7. We say that a sequence (x,,) in X converges to an element a € X iflim ||z, —al| =
0, that is, for any € > 0, there is N € N such that |z, — al| < e for alln > N.
In this case, (xy,) is said to be convergent and a is called a limit of the sequence (xy,).

Remark 1.8.
(i) If (zy) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the lim-
its of (xy,), then we have |[a—bl|| < ||la—zp||+]|zn—b] = 0. So, ||a—b|| = 0 which implies that a = b.

We write lim z,, for the limit of (z,) provided the limit exists.
(ii) The definition of a convergent sequence (x,,) depends on the underling space where the sequence

() sits in. For example, for eachn =1,2..., let x,(i) :=1/i as 1 < i < n and z,(i) =0 as i > n.
Then (x,,) is a convergent sequence in £°° but it is not convergent in cop.

A sequence (x,) in X is called a Cauchy sequence if for any £ > 0, there is NV € N such that
|Xm — zn|| < e for all m,n > N. We have the following simple observation.

Proposition 1.9. Fvery convergent sequence in X is a Cauchy sequence.
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Proof. Let (x,) be a convergent sequence with the limit a in X. Then for any ¢ > 0, there is
a positive integer N such that ||z, — a|| < € for all n > N. This implies that ||z, — x,|| <
|zr, — al| + |l — || < 2¢ for all m,n > N. Thus, (z,) is a Cauchy sequence.

Remark 1.10. The converse of Proposition 1.9 does not hold.

For example, let X be the finite sequence space (coo, | - |loo). If we consider the sequence x, :=
(1,1/2,1/3,...,1/n,0,0, ...) € coo, then (x,) is a Cauchy sequence but it is not a convergent sequence
m €00 -

In fact, if we are given any element a € cyy, then there exists a positive integer N such that a(i) =0
for alli > N. Thus we always have ||z, — al|lcc > 1/N for all n > N and thus, ||z, — a|lcc = O.
This implies that the sequence (x,,) does not converge to any element in coq.

The following notation plays an important role in mathematics.

Definition 1.11. A normed space X is said to be a Banach space if every Cauchy sequence in X
must be convergent. The space X is also said to be complete in this case.

Example 1.12. With the notation as above, we have the following examples of Banach spaces.
(i) If K™ is equipped with the usual norm, then K™ is a Banach space.
(ii) £>° is a Banach space. In fact, if (xy) is a Cauchy sequence in £>°, then for any ¢ > 0,
there is N € N, we have
20 (1) — 2m(i)] < flTn — Zmlloo <€

for allm,n > N and i = 1,2..... Thus, if we fixi = 1,2,.., then (z,(7))52, is a Cauchy
sequence in K. Since K is complete, the limit lim,, z,, (i) exists in K for all i = 1,2.... Nor
for each i =1,2..., we put z(i) := lim,, (i) € K. Then we have z € £*>° and ||z—p||cc — 0.
So, lim, x, = z € £>° (Check "!!). Thus {*° is a Banach space.

(iii) P is a Banach space for 1 < p < oco. The proof is similar to the case of £°.

(iv) Cla,b] is a Banach space.

(v) Let Co(R) be the space of all continuous R-valued functions f on R which are vanish at
infinity, that is, for every e > 0, there is a M > 0 such that |f(x)| < e for all |x| > M.
Now Cy(R) is endowed with the sup-norm, that is,

[flloc = sup[f(z)|
zeR

for every f € Co(R). Then Cy(R) is a Banach space.

Notation 1.13. Forr >0 and z € X, let

(i) B(xz,r) :={y € X : |z —y| <r} (called an open ball with the center at x of radius r) and
B*(z,r) :={ye X:0< ||z —y| <r}

(ii) B(x,r) :={y € X : ||z —y|| <r} (called a closed ball with the center at x of radius ).
Put Bx = {x € X : ||z|| <1} and Sx := {z € X : ||z|| = 1} the closed unit ball and the unit
sphere of X respectively.

Definition 1.14. Let A be a subset of X.

(i) A point a € A is called an interior point of A if there is r > 0 such that B(a,r) C A. Write
int(A) for the set of all interior points of A.
(i) A is called an open subset of X if int(A) = A.

Example 1.15. We keep the notation as above.
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(i) Let Z and Q denote the set of all integers and rational numbers respectively If 7. and Q both
are viewed as the subsets of R, then int(Z) and int(Q) both are empty.

(ii) The open interval (0,1) is an open subset of R but it is not an open subset of R%. In fact,
int(0,1) = (0,1) if (0,1) is considered as a subset of R but int(0,1) = () while (0,1) is
viewed as a subset of R2.

(iii) Every open ball is an open subset of X (Check!!).

Definition 1.16. Let A be a subset of X.

(i) A point z € X is called a limit point of A if for any € > 0, there is an element a € A such
that 0 < ||z — a|| < e, that is, B*(z,e) N A # 0 for all e > 0.
Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.

(ii) The closure of A, write A, is defined by
A:=AU{z € X : 2 is a limit point of A}.

Remark 1.17. With the notation as above:

(i) A set A is closed if and only if the following condition holds:
if (zy) is a sequence in A and is convergent in X, then limx,, € A.

(ii) A point z € A if and only if B(z,7r) N A # 0 for all r > 0. This is also equivalent to
saying that there is a sequence (x,) in A such that x, — a. In fact, this can be shown by
considering r = % form=1,2....

Proposition 1.18. With the notation as before, we have the following assertions.

(i) A is closed in X if and only if its complement X \ A is open in X.

(ii) The closure A is the smallest closed subset of X containing A. The “smallest” in here
means that if F is a closed subset containing A, then A C F.
Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that A # ().
For part (i), let C = X \ A and b € C. Suppose that A is closed in X. If there exists an element
be C\int(C), then B(b,r) £ C for all r > 0. This implies that B(b,r) N A # () for all 7 > 0 and
hence, b is a limit point of A since b ¢ A. It contradicts to the closeness of A. So, C' = int(C') and
thus, C' is open.
For the converse of (i), assume that C is open in X. Assume that A has a limit point z but z ¢ A.
Since z ¢ A, z € C = int(C) because C is open. Hence, we can find r > 0 such that B(z,r) C C.
This gives B(z,7) N A = (). This contradicts to the assumption of z being a limit point of A. So,
A must contain all of its limit points and hence, it is closed.

For part (i), we first claim that A is closed. Let z be a limit point of A. Let 7 > 0. Then there
is w € B*(z,7) N A. Choose 0 < 71 < 7 small enough such that B(w,r1) C B*(z,r). Since w is a
limit point of A, we have () # B*(w,r1) N A C B*(z,7) N A. So, z is a limit point of A. Thus, z € A
as required. This implies that A is closed.
It is clear that A is the smallest closed set containing A.
The last assertion follows from the minimality of the closed sets containing A immediately.
The proof is finished. U]

Example 1.19. Retains all notation as above. We have ¢yg = ¢ C £°°.
Consequently, co is a closed subspace of £°° but cog is not.

Proof. We first claim that ¢gg C ¢g. Let z € £°°. It suffices to show that if z € ¢yg, then z € ¢g, that

is, lim z(i) = 0. Let ¢ > 0. Then there is © € B(z,€) N ¢ and hence, we have |z(i) — 2(i)| < € for
1—00

alli =1,2..... Since z € cqo, there is iy € N such that z(i) = 0 for all i > ig. Therefore, we have



|z(1)] = |2(7) — x(i)| < e for all i > ip. So, z € ¢p as desired.

For the reverse inclusion, let w € ¢y. It needs to show that B(w,r) Ncoo # @ for all » > 0. Let
r > 0. Since w € ¢y, there is ig such that |w(i)| < r for all i > iy. If we let (i) = w(i) for 1 <i < g
and z(i) = 0 for i > ip, then x € ¢op and ||z — w||x := sup |z(i) — w(i)| < r as required. O

1=1,2...

Proposition 1.20. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and
only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let z € Y. Then there
is a convergent sequence (y,) in Y such that y, — z. Since (y,) is convergent, it is also a Cauchy
sequence in Y. Then (y,) is also a convergent sequence in Y because Y is a Banach space. So,
z € Y. This implies that Y = Y and hence, Y is closed.

For the converse statement, assume that Y is closed. Let (z,) be a Cauchy sequence in Y. Then
it is also a Cauchy sequence in X. Since X is complete, z := lim z,, exists in X. Note that z € Y
because Y is closed. So, (z,) is convergent in Y. Thus, Y is complete as desired. U

Corollary 1.21. ¢ is a Banach space but the finite sequence cgg is not.

Proposition 1.22. Let (X,|| - ||) be a normed space. Then there is a normed space (Xo,|| - o),
together with a linear map i : X — Xy, satisfy the following condition.

(i) Xo is a Banach space.
(i) The map i is an isometry, that is, ||i(z)|o = ||z|| for all z € X.
(iii) the image i(X) is dense in X, that is, i(X) = Xo.

Moreover, such pair (X, 1) is unique up to isometric isomorphism in the following sense: if (W, || -

l1) is a Banach space and an isometry j : X — W is an isometry such that j(X) = W, then there
s an isometric isomorphism ¥ from Xo onto W such that

j=voi: X — Xg— W.
In this case, the pair (Xo,1) is called the completion of X.

Example 1.23. Proposition 1.22 cannot give an explicit form of the completion of a given normed
space. The following examples are basically due to the uniqueness of the completion.
(i) If X is a Banach space, then the completion of X is itself.
(#9) By Corollary 1.21, the completion of the finite sequence space cop is the null sequence space
Co.
(7i1) The completion of C.(R) is Cp(R).

Definition 1.24. Let (X,d) and (Y, p) be metric spaces. Let f : X — Y be a function from X
into Y. We say that f is continuous at a point ¢ € X if for any € > 0, there is § > 0 such that
p(f(z), f(c)) < e whenever x € X with d(x,y) < 0.

Furthermore, [ is said to be continuous on A if f is continuous at every point in X.

Remark 1.25. [t is clear that f is continuous at ¢ € X if and only if for any € > 0, there is § > 0
such that B(c,8) C f~1(B(f(c),e)).
Proposition 1.26. With the notation as above, we have

(i) f is continuous at some ¢ € X if and only if for any sequence (x,,) € X with limz, = ¢

implies lim f(zy,) = f(c).
(ii) The following statements are equivalent.
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(ii.a) f is continuous on X.
(i5.b) f~Y(W) :={x € X : f(x) € W} is open in X for any open subset W of Y.
(ii.c) f~U(F):={x € X : f(x) € F} is closed in X for any closed subset F of Y.

Proof. Part (i):

Suppose that f is continuous at c¢. Let (z,,) be a sequence in X with limz,, = ¢. We claim that
lim f(zy,) = f(c). In fact, let € > 0, then there is 6 > 0 such that p(f(z), f(c)) < € whenever x € X
with d(z,c) < §. Since limx,, = ¢, there is a positive integer N such that d(z,,c) < ¢ for n > N
and hence p(f(zn), f(c)) < e for all n > N. Thus lim f(z,) = f(c).

For the converse, suppose that f is not continuous at ¢. Then we can find € > 0 such that for any
n, there is x, € X with d(z,,c) < 1/n but p(f(zy), f(c)) > €. So, if f is not continuous at c,
then there is a sequence (z,,) in X with limz,, = ¢ but (f(z,)) does not converge to f(c). Part
(fia) < (iib):

Suppose that f is continuous on X. Let W be an open subset of Y and ¢ € f~1(W). Since W is
open in Y and f(c) € W, there is € > 0 such that B(f(c),e) € W. Since f is continuous at ¢, there
is 0 > 0 such that B(c,8) C f~1(B(f(c),e)) € f~H(W). So f~1(W) is open in X.

It remains to show that the converse of Part (7). Let ¢ € X. Let € > 0. Put W := B(f(c),¢).
Then W is an open subset of Y and thus ¢ € f~1(W) and f~!(W) is open in X. Therefore, there
is 6 > 0 such that B(c,6) C f~1(W). So, f is continuous at c.

Finally, the last equivalent assertion (ii.b) < (ii.c) is clearly from the fact that a subset of a metric
space is closed if and only if its complement is open in the given metric space.

The proof is complete. ]

The following is one of the basic properties of a normed space. The proof is directly shown by
the triangle inequality and a simple fact that every convergent sequence (x,,) must be bounded, i.e.,
there is a positive number M such that ||z,|| < M for all n =1,2,....

Proposition 1.27. The addition + : (z,y) € X X X — z+y € X and the scalar multiplication
o: (\z) e Kx X — Az € X both are continuous maps. More precisely, if the convergent sequences
Tn = x and Yy, — y in X, then we have x, + y, — x +y. Similarly, if a sequence of numbers
An = A in K, then we also have Az, — Ax.

Definition 1.28. Let (X,d) be a metric space. A mapping f : X — X is called a contraction if
there is 0 < r < 1 such that d(fz, fy) < rd(z,y) for all x,y € X.

Clearly, every contraction is continuous.

Example 1.29. If we let f(x) := sinx for x € [0,7/4], then f is a contraction from [0,7/4] to
itself.

Theorem 1.30. Banach fixed point theorem: If T : X — X s a contraction on a Banach
space X, then there is a unique fized point for T, that is, there is a unique point ¢ € X such that
Tec=c.

Proof. Since T is a contraction, there is 0 < r < 1 such that | Tz —Ty|| < r|jz —y| for all z,y € X.
Fix any point zy € X. For each n = 1,2, .., put z,, := T'(z,—1). From this we see that

st — @all = [T (@n) = T(@n1)|| < vllon — 2ol forall n=1,2,..
To repeat the same steps, we have

|Tnt1 — znl] < 77|21 — 20| foralln=1,2,..



This implies that (z,,) is a Cauchy sequence in X. To see this, for any n < m, we have

m—1
lm =zl = | > (@rs1 — )
k=n
m—1
<D o — |
k=n

m—1
< oy — ol > o
k=n
m—1 L

Since 0 < r < 1, we have ) ;" " r* — 0 as m,n — oco. Hence, (z,) is a Cauchy sequence in X.
This implies that ¢ := lim,, x,, exists in X because X is complete.
On the other hand, by the continuity of T" and x,+1 = Tz, , we have

T(c) =lmT(z,) =limz,+1 = c.

Thus, ¢ is a fixed point for T'.
Finally, we are going to show the uniqueness. Suppose that ¢ and ¢’ both are the fixed points for
T. Then we have
le =l =[[Te—Td|| <rle—{|.
This gives ||c — ¢/|| = 0 because 0 < r < 1. The proof is finished. O

2. FINITE DIMENSIONAL NORMED SPACES

Before starting this section, let us recall some basic properties of compact sets. Let (X,d) be a
metric space. Let (x,) be a sequence in X. Recall that a subsequence (z,, )3 of (x,) means that
(ni)72, is a sequence of positive integers satisfying n1 < np < -+ <mnp <ngq1 < ---, that is, such
sequence (ny) can be viewed as a strictly increasing function n : k € {1,2,..} — ny € {1,2,...}.

In this case, note that for each positive integer IV, there is K € N such that nxg > N and thus we
have n;, > N for all k > K.

Proposition 2.1. Let (zy,) be a sequence in a metric space X. Then the following statements are
equivalent.
(i) (zy,) is convergent.
(ii) Any subsequence (zp, ) of (xn) converges to the same limit.
(111) Any subsequence (zp, ) of (xn) is convergent.

Proof. Part (ii) =(7) is clear because the sequence (x,) is also a subsequence of itself.

For the Part (i) = (ii), assume that limz, = a € X exists. Let (xy,) be a subsequence of (xy,).
We claim that limz,, = a. Let ¢ > 0. In fact, since lim x,, = a, there is a positive integer N such
that d(a,x,) < ¢ for all n > N. Notice that by the definition of a subsequence, there is a positive
integer K such that ny > N for all k > K. So, we see that d(a,z,,) < € for all ¥ > K. Thus we
have limg_,o0 T, = a.

Part (i7) = (i4i) is clear.

It remains to show Part (iii) = (7). Suppose that there are two subsequences (x,,):2; and
(Tm,; )52, converge to distinct limits. Now put k; := n;. Choose m; such that n; < m; and then
put kg := m;. Then we choose n; such that ky < n; and put ks for such n;. To repeat the same
step, we can get a subsequence (2, ){2; of (x») such that @y, = xn, for some ny and @k, , =
for some mj/. Since by the assumption lim; x,,, # lim; 2,,,, lim; z;, does not exist which leads to a
contradiction.

The proof is finished. H

We now recall the following important theorem in R (see [1, Theorem 3.4.8]).
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Theorem 2.2. Bolzano-Weierstrass Theorem Fvery bounded sequence in R has a convergent
subsequence.

Definition 2.3. X is said to be compact if for every sequence in X has a convergent subsequence.
In particular, a subset A of X is compact if every sequence in A has a convergent subsequence with
the limit in A.

Example 2.4. (i) Every closed and bounded interval is compact.
In fact, if (z,,) is any sequence in a closed and bounded interval [a,b], then (xy,) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (z,) has a convergent
subsequence (xy, ). Notice that since a < xy, < b for all k, then a <limy x,, <b, and thus
limy xy,, € [a,b]. Therefore A is sequentially compact.
(i) (0,1] is not sequentially compact. In fact, if we consider x, = 1/n, then (xy) is a sequence
in (0,1] but it has no convergent subsequence with the limit sitting in (0,1].

Proposition 2.5. If A is a compact subset of X, then A must be a closed and bounded subset of
X.

Proof. We first claim that A is bounded. Suppose not. We suppose that A is unbounded. If we
fix an element z1 € A, then there is 9 € A such that d(z1,x2) > 1. Using the unboundedness of
A, we can find an element z3 in A such that d(zs,zy) > 1 for k = 1,2. To repeat the same step,
we can find a sequence (z,,) in A such that d(zy,,z,,) > 1 for n # m. Thus A has no convergent
subsequence. Thus A must be bounded

Finally, we show that A is closed in X. Let (x,) be a sequence in A and it is convergent. It needs
to show that lim,, z,, € A. Note that since A is compact, (x,) has a convergent subsequence (zy, )
such that limy x,, € A. Then by Proposition 2.1, we see that lim, x,, = limy x,,, € A. The proof
is finished. ]

Corollary 2.6. Let A be a subset of R. Then A is compact if and only if A is a closed and bounded
subset.

Proof. The necessary part follows from Proposition 2.5 at once.

Now suppose that A is closed and bounded. Let (x,) be a sequence in A and thus (z,,) is a bounded
sequence in R. Then by the Bolzano-Weierstrass Theorem, (x,) has a subsequence (x,, ) which is
convergent in R. Since A is closed, limy z,,, € A. Therefore, A is sequentially compact. O

Remark 2.7. From Corollary 2.6, we see that the converse of Proposition 2.5 holds when X =R,
but it does not hold in general. For example, if X = {>°(N) and A is the closed unit ball in £*°(N),
that is A := {x € L>°(N) : ||z|l0c < 1}, then A is closed and bounded subset of £>°(N) but it is not
sequentially compact. Indeed, if we put ey, := (en,:)52, € (*°(N), where e, ; =1 as i = n; otherwise,
eni = 0. Then (ey) is a sequence in A but it has no convergent subsequence because ||ep, —€m |00 = 2

forn #£ m.

Definition 2.8. We say that two norms || - || and || - ||" on a vector space X are equivalent, write
||l ~ |-, if there are positive numbers ¢1 and co such that c1]| - || < || - ||' < 2 - || on X.
Example 2.9. Consider the norms || - ||1 and || - || on £*. We are going to show that || - |1 and
| - lloo are not equivalent. In fact, if we put x,(i) := (1,1/2,...,1/n,0,0,....) for n,i =1,2.... Then
T, € 01 for all n. Notice that (z,,) is a Cauchy sequence with respect to the norm || - ||o but it is
not a Cauchy sequence with respect to the norm || - ||1. Hence || - [|1 < || - [loo on £*.

Example 2.10. Recall that the space L>([0,1]) is the set of all essential bounded functions defined
n [0,1], that is, the set of all R-valued functions f defined on [0,1] such that there is M > 0
satisfying the condition: Mz € [0,1] : |f(x)| > M} = 0, where A denotes the Lebesgue measure on
[0,1]. In this case,
[ Flloo o= inf{M : Mz € [0,1] : [ ()] > M} = 0},
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On the other hand, L'[0,1] denotes the space of all integrable functions on [0,1], that is the set of
measurable R-valued functions on [0,1] satisfying the condition:

[ i

Also, we define || f|1 := fo |f(z)]|d\ ()

It is a known fact that (L*° ([0, ]) | - Hoo) and (L*([0,1]), || - |l1) both are Banach spaces. (see [?,
Section 9.2]).

It is clear that L>°[0,1] C L'[0,1].

Claim: The norms || - ||« and || - |1 are not equivalent on L*°|0,1].

For showing the Claim, it suffices to find a sequence (fy,) in L>[0, 1] that is convergent in L[0,1]
but it is divergent in L*°[0,1].

Now for each positive integer i, we define a function e;(x) on [0,1] by e;(x) = 1 if v € (-1 e i);
otherwise, set e;(x) = 0. Define

=> Vie(z)
=1

for x € [0,1]. Notice that f € L'[0,1] because we have

[ W) = SV = 3Vl - ] £ X <

On the other hand, for each positive integer n, let

= Z \/iez(a:)
=1

for z €[0,1]. Then each f, € L*[0,1] and || fn, — f|1 — 0 since we have

e 1 1 <1
If— falll = Z \/ZT|E—1,+1!§ Z 13/2—>0 as n — oo.

1=n-+1 1=n-+1

However, we note that f ¢ L*°[0,1], that is, for each M > 0, we have AM{xz € [0,1] : | f(z)| > M} > 0.
Indeed, given any M > 0, we can find a positive mteger ig such that \/igp > M. Then by the
construction of f, we have f(x) > M for all x € (ZO+17 110) This implies that

1

Mz e [0,1]):|f ()|>M}>m > 0.

Therefore, the sequence (f,) must be divergent in L0, 1], otherwise, the limit of (f,) must be f
that contradicts to f ¢ L*°[0,1] above. So, the sequence (fy) is as required.

Proposition 2.11. All norms on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space and let {ey,...,en} be a vector base of X. For
each © = Zf\il aie; for o € K, define [|z]jo = Y./, |ai|. Then || - [jp is a norm X. The result is
obtained by showing that all norms || - || on X are equivalent to || - ||o.

Notice that for each x = Zfil aje; € X, we have [|z]] < (1I<nzz£J<VHeZH)||m||o It remains to find

¢ > 0 such that ¢/ - o < || - ||. In fact, let K¥ be equipped with the sup-norm || - ||, that is
(a1, ..., an)||oo = maxj<i<py || Define a real-valued function f on the unit sphere Sgn of KV
by

fi(ag,...,an) € Sgny — |larer + - - + anenl|-
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Notice that the map f is continuous and f > 0. It is clear that Sk~ is compact with respect to the
sup-norm | - |[|sc on KV. Hence, there is ¢ > 0 such that f(a) > ¢ > 0 for all a € Sg~. This gives
|z|| > c||z]|o for all z € X as desired. The proof is finished. O

The following result is clear. The proof is omitted here.

Lemma 2.12. Let X be a normed space. Then the closed unit ball Bx is compact if and only if
every bounded sequence in X has a convergent subsequence.

Proposition 2.13. We have the following assertions.
(i) All finite dimensional normed spaces are Banach spaces. Consequently, any finite dimen-
sional subspace of a normed space must be closed.
(ii) The closed unit ball of any finite dimensional normed space is compact.

Proof. Let (X,|| -]|) be a finite dimensional normed space. With the notation as in the proof of
Proposition 2.11 above, we see that || - || must be equivalent to the norm || - [|o. It is clear that X
is complete with respect to the norm || - [|p and so is complete in the original norm || - ||. The Part

(7) follows.

For Part (i7), by using Lemma 2.12, we need to show that any bounded sequence has a convergent
subsequence. Let (x,) be a bounded sequence in X. Since all norms on a finite dimensional normed
space are equivalent, it suffices to show that (z,) has a convergent subsequence with respect to the
norm || - ||o.

Using the notation as in Proposition 2.11, for each x,, put x, = Zszl ap ek, n = 1,2.... Then
by the definition of the norm | - ||o, we see that (o, ;)52 is a bounded sequence in K for each
k = 1,2..., N. Then by the Bolzano-Weierstrass Theorem, for each k = 1,..., N, we can find a
convergent subsequence (Oénj,k)})il of (@ k)pzy- Put g = limj 00 iy x € K, for k =1,.., N. Put
x = Zszl Yrex- Then by the definition of the norm || - [|o, we see that |[z,,; — x|lo — 0 as j — oo.
Thus, (z,) has a convergent subsequence as desired.

The proof is complete. l

In the rest of this section, we are going to show the converse of Proposition 2.13 (i) also holds.
Before showing the main theorem in this section, we need the following useful result.

Lemma 2.14. Riesz’s Lemma: Let Y be a closed proper subspace of a normed space X. Then
for each 6 € (0,1), there is an element xo € Sx such that d(xo,Y) = inf{||zo —y|| :y € Y} > 0.

Proof. Let u € X —Y and d := inf{|ju — y|| : ¥y € Y}. Notice that since Y is closed, d > 0
and hence, we have 0 < d < % because 0 < 6 < 1. This implies that there is yy € Y such that
0<d< |lu—yol <4 Now put zg := Tu—e € Sx. We are going to show that zg is as desired.
Indeed, let y € Y. Since yo + ||lu — wolly € Y, we have

lzo —yll = H (yo + [lu = wolly)l| = d/|lu = yol > 6.

e —ao =
u—yol|
So, d(zo,Y) > 6. O

Remark 2.15. The Riesz’s lemma does not hold when 6 = 1.

Theorem 2.16. Let X be a normed space. Then the following statements are equivalent.

(i) X is a finite dimensional normed space.
(ii) The closed unit ball Bx of X is compact.
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(iii) Every bounded sequence in X has convergent subsequence.

Proof. The implication (i) = (ii) follows from Proposition 2.13 (ii) at once.

Lemma 2.12 gives the implication (ii) = (i77).

Finally, for the implication (iii) = (i), assume that X is of infinite dimension. Fix an element
x1 € Sx. Let Y1 = Kzy. Then Y] is a proper closed subspace of X. The Riesz’s lemma gives an
element x9 € Sx such that ||z1 — x2|| > 1/2. Now consider Y2 = span{z1,z2}. Then Y3 is a proper
closed subspace of X since dim X = oco. To apply the Riesz’s Lemma again, there is z3 € Sx such
that ||x3 — x| > 1/2 for kK = 1,2. To repeat the same step, there is a sequence (z,) € Sx such
that ||z, — x,|| > 1/2 for all n # m. Thus, (z,) is a bounded sequence but it has no convergent
subsequence by using the similar argument as in Proposition ??. So, the condition (iii) does not
hold if dim X = oco. The proof is finished. O

3. BOUNDED LINEAR OPERATORS

Let V and W be vector spaces. Recall that a mapping T' : V — W is said to be linear if
T(ax + By) = oTx + BTy for all z,y € V and for all scalars a and S.

Proposition 3.1. Let T' be a linear operator from a normed space X into a normed space Y. Then
the following statements are equivalent.

(i) T is continuous on X.
(i) T is continuous at 0 € X.
(iii) sup{||Tz| : x € Bx} < o0.
In this case, let ||T'|| = sup{||Tz| : * € Bx} and T is said to be bounded.

Proof. (i) = (i1) is obvious.

For (i7) = (i), suppose that T is continuous at 0. Let o € X. Let ¢ > 0. Then there is § > 0 such
that |[Tw| < e for all w € X with ||w|| < §. Therefore, we have ||Tz — T'zo|| = ||T(z — z¢)|| < € for
any x € X with ||z — z¢|| < . So, (i) follows.

For (ii) = (#ii), since T is continuous at 0, there is 6 > 0 such that [|Tz| < 1 for any = € X with
|z|| < 8. Now for any x € Bx with = # 0, we have ||3z|| < §. So, we see have | T(Jz)| < 1 and
hence, we have ||Tz|| < 2/§. So, (iii) follows.

Finally, it remains to show (¢iz) = (ii). Notice that by the assumption of (7i7), there is M > 0 such
that ||Tz|| < M for all z € Bx. So, for each x € X, we have ||Tz|| < M||z||. This implies that T
is continuous at 0. The proof is complete. [l

Corollary 3.2. Let T : X — Y be a bounded linear map. Then we have
sup{||Tz|| : = € Bx} =sup{||Tz| : x € Sx} =inf{M > 0: | Tz| < M|z||, Vz € X}.

Proof. Let a = sup{||Tz|| : = € Bx}, b = sup{||Tz|| : * € Sx} and ¢ = inf{M > 0 : |Tz| <
M||z||, Yz € X}.

It is clear that b < a. Now for each # € Bx with = # 0, then we have b > ||T(x/|z|)| =
(I/)lz)Tz| > || Tx||. So, we have b > a and thus, a = b.

Now if M > 0 satisfies ||Tz|| < M||z||, Vx € X, then we have || Tw]| < M for all w € Sx. So, we
have b < M for all such M. So, we have b < ¢. Finally, it remains to show ¢ < b. Notice that by
the definition of b, we have ||Tz|| < b||z|| for all x € X. So, ¢ < b. O

Proposition 3.3. Let X and Y be normed spaces. Let B(X,Y) be the set of all bounded linear
maps from X into Y. For each element T € B(X,Y), let

|T|| = sup{||Tz|| : = € Bx}.
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be defined as in Proposition 3.1.

Then (B(X,Y),| -||) becomes a normed space.

Furthermore, if Y is a Banach space, then so is B(X,Y).

In particular, if Y =K, then B(X,K) is a Banach space. In this case, put X* := B(X,K) and call
it the dual space of X.

Proof. One can directly check that B(X,Y) is a normed space (Do It By Yourself!).

We are going to show that B(X,Y’) is complete if Y is a Banach space. Let (T},) be a Cauchy
sequence in B(X,Y). Then for each x € X it is easy to see that (T,,x) is also a Cauchy sequence
in Y. So, limT,x exists in Y for each x € X because Y is complete. Hence, one can define a map
Tx:=1limT,x € Y for each x € X. It is clear that T is a linear map from X into Y.

It needs to show that '€ B(X,Y) and ||T'— 7| — 0 as n — oco. Let € > 0. Since (73,) is a Cauchy
sequence in B(X,Y'), there is a positive integer N such that ||T,,, —T,|| < € for all m,n > N. So, we
have [|(T), — T3,)(x)|| < € for all x € Bx and m,n > N. Taking m — oo, we have [Tz — T,x| < ¢
for all n > N and = € Bx. Therefore, we have ||T — T,|| < € for all n > N. From this, we see
that T — T € B(X,Y) and thus, T =Ty + (I' —Tn) € B(X,Y) and ||T — T,|| = 0 as n — oo.
Therefore, lim, T,, = T exists in B(X,Y). O

Proposition 3.4. Let X and Y be normed spaces. Suppose that X is of finite dimension n. Then
we have the following assertions.

(i) Any linear operator from X intoY must be bounded.
(i) If T, + X — Y is a sequence of linear operators such that Tz — 0 for all x € X, then
IT%|l — 0.

Proof. Using Proposition 2.11 and the notation as in the proof, then there is ¢ > 0 such that

n n
D il <l aiedl|
=1 =1

for all scalars aq, ..., a,,. Therefore, for any linear map 71" from X to Y, we have

< .
7o) < (s [Teil)el|

for all z € X. This gives the assertions (i) and (i7) immediately. O

Proposition 3.5. Let Y be a closed subspace of X and X/Y be the quotient space. For each
element v € X, put :=x+Y € X/Y the corresponding element in X/Y . Define

(3.1) 2] = inf{[lz +yl| : y € Y}.

If we let m: X — X/Y be the natural projection, that is w(x) = & for all x € X, then (X/Y,| - ||)
is a normed space and w is bounded with ||w| < 1. In particular, ||7|| =1 as Y is a proper closed
subspace.

Furthermore, if X is a Banach space, then so is X/Y.
In this case, we call || - || in (3.1) the quotient norm on X/Y .

Proof. Notice that since Y is closed, one can directly check that ||z]| = 0 if and only is x € Y, that
is, z=0¢€ X/Y. It is easy to check the other conditions of the definition of a norm. So, X/Y is
a normed space. Also, it is clear that 7 is bounded with ||7|] < 1 by the definition of the quotient
norm on X/Y.

Furthermore, if Y C X, then by using the Riesz’s Lemma 2.14, we see that ||| = 1 at once.

We are going to show the last assertion. Suppose that X is a Banach space. Let (Z,,) be a Cauchy
sequence in X/Y. It suffices to show that (Z,) has a convergent subsequence in X/Y by using
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Lemma ?7.
Indeed, since (Z,) is a Cauchy sequence, we can find a subsequence (Zp, ) of (Z,) such that

ank-i,-l - jnkH < 1/2k

for all kK = 1,2.... Then by the definition of quotient norm, there is an element y; € Y such that
|Tny —ny, +y1]] < 1/2. Notice that we have, x,, — y1 = T, in X/Y. So, there is yo € Y such that
|€ny —y2 — (Xn, —y1)|| < 1/2 by the definition of quotient norm again. Also, we have z,, — y2 = Tp,.
Then we also have an element y3 € Y such that ||2,,; —y3 — (Zn, —y2)|| < 1/22. To repeat the same
step, we can obtain a sequence (yx) in Y such that

for all k = 1,2.... Therefore, (z,, — yx) is a Cauchy sequence in X and thus, limg(z,, — yx) exists
in X while X is a Banach space. Set z = limy(x,, — yx). On the other hand, notice that we have
(xn, —yi) = 7(zp,) for all k =1,2,,,. This tells us that limy 7(zy, ) = limy 7(zp, —yi) = 7(z) €
X/Y since 7 is bounded. So, (Z,,) is a convergent subsequence of (z,) in X/Y. The proof is
complete. ]

Corollary 3.6. Let T : X — Y be a linear map. Suppose that Y is of finite dimension. Then T
is bounded if and only if ker T := {x € X : Tx = 0}, the kernel of T, is closed.

Proof. The necessary part is clear.

Now assume that kerT" is closed. Then by Proposition 3.5, X/kerT becomes a normed space.
Also, it is known that there is a linear injection T:X /kerT — Y such that T = To m, where
m: X — X/kerT is the natural projection. Since dimY < oo and Tis injective, dim X/ kerT' < oc.

This implies that T is bounded by Proposition 3.4. Hence T' is bounded because T' = Tormand
is bounded. O

Remark 3.7. The converse of Corollary 3.6 does not hold when Y is of infinite dimension. For
example, let X := {z € £2: Y °° n%[z(n)|*> < oo} (notice that X is a vector space Why?) and
Y = /2. Both X and Y are endowed with | - ||2-norm.

Define T' : X — Y by Tx(n) = nz(n) for x € X and n = 1,2.... Then T is an unbounded
operator(Check !!). Notice that ker 7' = {0} and hence, ker T" is closed. So, the closeness of ker T’
does not imply the boundedness of 7" in general.

We say that two normed spaces X and Y are said to be isomorphic (resp. isometric isomorphic)
if there is a bi-continuous linear isomorphism (resp. isometric) between X and Y. We also write
X =Y if X and Y are isometric isomorphic.

Remark 3.8. Notice that the inverse of a bounded linear isomorphism may not be bounded.

Example 3.9. Let X : {f € C®(=1,1) : f € C*(—1,1) for alln=0,1,2...} and Y := {f €
X : f(0) = 0}. Also, X and Y both are equipped with the sup-norm || - ||ec. Define an operator

S:X Y by
):/Oﬂt)dt

for f € X and x € (—1,1). Then S is a bounded linear isomorphism but its inverse S~1 is
unbounded. In fact, the inverse S™' : Y — X is given by

S7lg:=¢
forgeY.
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A metric space is said to be separable if there is a countable dense subset, for example, the base
field K is separable. Moreover, it is easy to see that a normed space is separable if and only if it is
the closed linear span of a countable dense subset.

Definition 3.10. A sequence of element (e,)02 in a normed space X is called a Schauder basis
for X if for each element x € X, there is a unique sequence of scalars (o) such that

00 N
(3.2) T = Z:l Qpen 1= A}gnoo Z:l Q.
n= n=

Note: The expression in Eq. 3.2 depends on the order of ¢,’s.

Remark 3.11. Note that if X has a Schauder basis, then X must be separable. To see this, if we
let (e,) is a Schauder basis for X, then D := {>"77 | tyey : tx, € Q+14Q} is a countable dense subset
of X. The following natural question was first raised by Banach (1932).

The basis problem: Does every separable Banach space have a Schauder basis?

The answer is “No”!

This problem was completely solved by P. Enflo in 1973.

Example 3.12. We have the following assertions.

(i) The space £>° is non-separable under the sup-norm ||-||cc. Consequently, £>° has no Schauder
basis.
(ii) The spaces cy and (P for 1 < p < oo have Schauder bases.

Proof. For Part (i) let D = {x € ¢ : z(i) = 0 or 1}. Then D is an uncountable set and
|z — ylloo = 1 for & # y. Therefore {B(x,1/4) : © € D} is an uncountable family of disjoint open
balls. Therefore, £°° has no countable dense subset.

For each n = 1,2..., let e,(i) = 1 if n = i, otherwise, is equal to 0.

In addition, (e,) is a Schauder basis for the space ¢y and 7 for 1 < p < co. O

4. DuAL SPACES: HAHN-BANACH THEOREM

All spaces X,Y, Z... are normed spaces over the field K throughout this section. By Proposition
3.3, we have the following assertion at once.

Proposition 4.1. Let X be a normed space. Put X* = B(X,K). Then X* is a Banach space and
1s called the dual space of X.

Example 4.2. Let X = K. Consider the usual Euclidean norm on X, that is, ||(z1,...,zn)| =
V0z12+ - |zn]?. Define 6 : KN — (KN)* by 0x(y) = 21y1 + -+ + nyn for @ = (21,...,2N)
and y = (y1,...,yn) € KV. Notice that 0x(y) = (z,y), the usual inner product on KN. Then by

the Cauchy-Schwarz inequality, it is easy to see that 0 is an isometric isomorphism. Therefore, we
have KN = (KN)*,

Example 4.3. Define a map T : {1 — ¢} by

(Ta)(n) = Y a(in(i)

0o
=1

for x € £* and n € co.
Then T is isometric isomorphism and hence, cf = (1.
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Proof. The proof is divided into the following steps.
Step 1. T'x € ¢ for all x € o,
In fact, let n € ¢y. Then

Ta(n)] < 1Y (@@ <Y lz@ln@)] < llz]ilnllo-
i=1 i=1

So, Step 1 follows.
Step 2. T is an isometry.
Notice that by Step 1, we have ||Tz|| < ||z||; for all z € £!. It needs to show that ||Tz|| > ||z for
all x € £L. Fix z € ot Now for each k = 1,2.., consider the polar form z(k) = |z(k)|e?. Notice
that 7, := (e71,...,e7,0,0,....) € ¢o for all n = 1,2.... Then we have

n n

Y latk) =Y w(k)na(k) = Ta(na) = [Ta()| < |Tz|

k=1 k=1
for all n = 1,2.... So, we have ||z|; < ||Tx|.
Step 3. T is a surjection.
Let ¢ € ¢ and let e, € co be given by ey (j) = 1 if j = k, otherwise, is equal 