MATH 6222 LECTURE NOTE 1: SMOOTH CONVEX FUNCTIONS

JINGRONG WEI

ABSTRACT. This lecture note mainly introduces the function class considered in smooth convex optimization and is prepared based on [1, Chapter 2].

CONTENTS

1.	Convex Functions	1
2.	Smooth Functions	3
3.	Strongly Convex Functions	4
Ref	ferences	5

1. CONVEX FUNCTIONS

Definition 1.1 (Convex sets). A set $V \subseteq \mathbb{R}^n$ is called convex if for any $x, y \in V$ and α from [0,1] we have $\alpha x + (1-\alpha)y \in V$.

Thus, a convex set contains the whole segment [x, y] provided that the end points x and y belong to the set.

Definition 1.2 (Convex function). A continuously differentiable function $f(\cdot)$ is called convex on a convex set V (notation $f \in S^1(V)$) if for any $x, y \in V$ we have

(1)
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

If $-f(\cdot)$ is convex, we call $f(\cdot)$ concave.

For convex functions, the following properties hold.

Lemma 1.3 (Closed under linear combination). If f_1 and f_2 are convex and $\alpha, \beta \ge 0$, then the function $f = \alpha f_1 + \beta f_2$ is convex.

Lemma 1.4 (Closed under linear transformation). If $f \in S^1(V)$, then for $A : \mathbb{R}^m \to \mathbb{R}^n$ and $b \in \mathbb{R}^n$ such that $Ax + b \in V$, $\phi(x) = f(Ax + b)$ is convex.

Theorem 1.5 (Definition of convex function without differentiability). A continuously differentiable function f belongs to the class $S^1(V)$ if and only if for any $x, y \in V$ and $\alpha \in [0, 1]$ we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Proof. (\Rightarrow) This direction is straightforward using the definition of convex function at $x_{\alpha} = \alpha x + (1 - \alpha)y$.

Date: January 22, 2025.

(\Leftarrow) Choose some $\alpha \in [0, 1)$. Then

$$f(y) \ge \frac{1}{1-\alpha} \left[f(x_{\alpha}) - \alpha f(x) \right] = f(x) + \frac{1}{1-\alpha} \left[f(x_{\alpha}) - f(x) \right]$$
$$= f(x) + \frac{1}{1-\alpha} \left[f(x + (1-\alpha)(y-x)) - f(x) \right].$$

Let α tend to 1 , we get the desired result.

The *epigraph* of a function $f: V \to [-\infty, +\infty]$ is defined as

$$epi f := \{(x, w) | x \in V, w \in \mathbb{R}, f(x) \le w\}.$$

Proposition 1.6. A function $f: V \to \mathbb{R}$ is convex if and only if $epi f \subset \mathbb{R}^{n+1}$ is convex.

Theorem 1.7. A continuously differentiable function f belongs to the class $S^1(V)$ if and only if for any $x, y \in V$ we have

(2)
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0.$$

Proof. (\Rightarrow) This direction is straightforward.

(\Leftarrow)Define $x_{\tau} = x + \tau(y - x) \in V$. Then

$$\begin{split} f(y) &= f(x) + \int_0^1 \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau \\ &= f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(x_\tau) - \nabla f(x), y - x \rangle d\tau \\ &= f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \frac{1}{\tau} \langle \nabla f(x_\tau) - \nabla f(x), x_\tau - x \rangle d\tau \\ &\ge f(x) + \langle \nabla f(x), y - x \rangle. \end{split}$$

_

For any $f \in \mathcal{C}^1$, the linear Taylor expansion at x is

$$f_l(y;x) := f(x) + \langle \nabla f(x), y - x \rangle.$$

For $f \in S^1(V)$, the Bregman divergence is defined as

$$D_f(y,x) := f(y) - f_l(y;x) = f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$

For fixed $x \in V, D_f(\cdot, x)$ is also convex. Bregman divergence is in general asymmetric, i.e.,

$$D_f(y,x) \neq D_f(x,y), \quad \text{if } x \neq y$$

We then introduce its symmetrization

$$M_{\nabla f}(x,y) := D_f(y,x) + D_f(x,y) = \langle \nabla f(x) - \nabla f(y), x - y \rangle$$

Theorem 1.8 (Definition using twice differentiablility). Let V be an open set. A twice continuously differentiable function f belongs to the class $S^2(V)$ if and only if for any $x \in V$ we have

$$\nabla^2 f(x) \succeq 0$$

Proof. (\Rightarrow) Let a function f from $C^2(V)$ be convex and $s \in \mathbb{R}^n$. Let $x_\tau = x + \tau s \in V$ for $\tau > 0$ small enough. Then, in view of (2), we have

$$0 \leq \frac{1}{\tau^2} \left\langle \nabla f(x_\tau) - \nabla f(x), x_\tau - x \right\rangle = \frac{1}{\tau} \left\langle \nabla f(x_\tau) - \nabla f(x), s \right\rangle$$
$$= \frac{1}{\tau} \int_0^\tau \left\langle \nabla^2 f(x + \lambda s)s, s \right\rangle d\lambda$$

and we get the desired result by letting τ tend to zero.

(\Leftarrow) For all $x,y\in V$ we have

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \int_0^\tau \left\langle \nabla^2 f(x + \lambda(y - x))(y - x), y - x \right\rangle d\lambda d\tau$$

$$\geq f(x) + \langle \nabla f(x), y - x \rangle.$$

Let us look at some examples of differentiable convex functions on \mathbb{R}^n .

- Every linear function $f(x) = \alpha + \langle a, x \rangle$ is convex.
- Let matrix A be symmetric and positive semidefinite. Then the quadratic function

$$f(x) = \alpha + \langle a, x \rangle + \frac{1}{2} \langle Ax, x \rangle$$

is convex (since $\nabla^2 f(x) = A \succeq 0$).

• The following functions of one variable belong to $\mathcal{S}^1(\mathbb{R})$:

$$\begin{split} f(x) &= e^x, \\ f(x) &= |x|^p, \quad p > 1, \\ f(x) &= \frac{x^2}{1 - |x|}, \\ f(x) &= |x| - \ln(1 + |x|) \end{split}$$

• ℓ_p -norm approximation:

$$f(x) = \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|^p$$

2. Smooth Functions

Denote by $C_L^{1,1}$ the set of all C^1 functions, the gradient for which is Lipschitz continuous with constant L > 0:

$$\|\nabla f(x) - \nabla f(y)\|_* \leq L \|x - y\| \quad \forall x, y \in V$$

where, for $g \in V^*$, the dual norm is

$$\|g\|_* := \sup_{\substack{v \in V \\ \|v\|=1}} \langle g, v \rangle = \sup_{v \in V \setminus \{0\}} \frac{\langle g, v \rangle}{\|v\|}.$$

Theorem 2.1 (Bounds using Lipschitz smoothness). All conditions below, holding for all $x, y \in \mathbb{R}^n$, are equivalent to the inclusion $f \in \mathcal{C}_L^{1,1} \cap \mathcal{S}^1$:

(1) $0 \le D_f(y, x) \le \frac{L}{2} ||x - y||^2$, (2) $\frac{1}{2L} ||\nabla f(x) - \nabla f(y)||_*^2 \le D_f(y, x)$, (3) (co-coercivity) $\frac{1}{L} ||\nabla f(x) - \nabla f(y)||_*^2 \le M_{\nabla f}(x, y)$, (4) $0 \le M_{\nabla f}(x, y) \le L ||x - y||^2$.

Proof. $f \in C_L^{1,1} \cap S^1 \Rightarrow (1)$. Indeed, the first inequality in (1) follows from the definition of convex functions. To prove the second one, note that

$$D_f(y,x) = f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$

= $\int_0^1 \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$
 $\leq \int_0^1 L\tau ||y - x||^2 d\tau = \frac{L}{2} ||y - x||^2.$

 $(1) \Rightarrow (2)$. Let us fix $x_0 \in \mathbb{R}^n$. Consider the function $\phi(y) = f(y) - \langle \nabla f(x_0), y \rangle$. Note thats $\phi(y) - \phi(x_0) = D_f(y, x_0) \ge 0$ for any y. Therefore, we have

$$\phi(x_0) = \min_{x \in \mathbb{R}^n} \phi(x) \stackrel{(1)}{\leq} \min_{x \in \mathbb{R}^n} \left\{ \phi(y) + \langle \nabla \phi(y), x - y \rangle + \frac{L}{2} \|x - y\|^2 \right\}$$
$$= \min_{r \ge 0} \left\{ \phi(y) - r \|\nabla \phi(y)\|_* + \frac{L}{2} r^2 \right\} = \phi(y) - \frac{1}{2L} \|\nabla \phi(y)\|_*^2$$

and we get (2) since $\nabla \phi(y) = \nabla f(y) - \nabla f(x_0)$.

 $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow f \in \mathcal{C}_L^{1,1} \cap \mathcal{S}^1$. Applying the Cauchy-Schwarz inequality to (3), we get $\|\nabla f(x) - \nabla f(y)\|_* \leq L \|x - y\|$.

 $(1) \Rightarrow (4)$ is trivial. $(4) \Rightarrow (1)$ is similar to Theorem 1.7 using integration. \Box

Theorem 2.2. A twice continuously differentiable function f belongs to the class $C_L^{2,1}$ if and only if for any $x, h \in \mathbb{R}^n$ we have

$$0 \le \left\langle \nabla^2 f(x)h, h \right\rangle \le L \|h\|^2$$

Proof. Similar to Theorem 1.8.

3. STRONGLY CONVEX FUNCTIONS

Definition 3.1. A continuously differentiable function $f(\cdot)$ is called strongly convex on \mathbb{R}^n (notation $f \in S^1_{\mu}(V)$) if there exists a constant $\mu > 0$ such that for any $x, y \in V$ we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}\mu ||y - x||^2.$$

The constant μ is called the convexity parameter of function f. Our notation for convex function $S^1(V) = S_0^1(V)$ with $\mu = 0$.

Let us describe the result of addition of two strongly convex functions.

Lemma 3.2. If $f_1 \in S^1_{\mu_1}(V_1)$, $f_2 \in S^1_{\mu_2}(V_2)$ and $\alpha, \beta \ge 0$, then $f = \alpha f_1 + \beta f_2 \in S^1_{\alpha\mu_1+\beta\mu_2}(V_1 \cap V_2)$.

Theorem 3.3. Let f be continuously differentiable. For all $x, y \in V$,

$$M_{\nabla f}(x,y) \ge \mu \|x-y\|^2$$

is equivalent to inclusion $f \in S^1_{\mu}(V)$.

The properties in the next statement is useful.

Theorem 3.4. If $f \in S^1_{\mu}(\mathbb{R}^n)$, then for any x and y from \mathbb{R}^n we have

$$D_{f}(y,x) \leq \frac{1}{2\mu} \|\nabla f(x) - \nabla f(y)\|_{*}^{2},$$

$$M_{\nabla f}(x,y) \leq \frac{1}{\mu} \|\nabla f(x) - \nabla f(y)\|_{*}^{2},$$

$$\mu \|x - y\| \leq \|\nabla f(x) - \nabla f(y)\|_{*}.$$

The proof of this theorem is very similar to the proof of Theorem 2.1 and we leave it as an exercise for the reader.

Let us present a second-order characterization of the class $\mathcal{S}^1_{\mu}(V)$.

Theorem 3.5 (Definition using twice differentiability). Let a continuous function f be twice continuously differentiable in int V. It belongs to the class $S^2_{\mu}(V)$ if and only if for all $x \in \text{int } V$ and $h \in \mathbb{R}^n$ we have

$$\langle \nabla^2 f(x)h,h\rangle \succeq \mu \|h\|^2.$$

Notice that for $f \in S^1_{\mu}$, $D_f(y, x)$ is positive, and furthermore if f is twice differentiable

$$D_f(y,x) = \frac{1}{2} \|y - x\|_{\nabla^2 f(\xi(x))}^2$$

by Taylor expansion. Therefore, $D_f(y, x)$ induced a special metric associated to the Hessian of a strongly convex function.

REFERENCES

[1] Y. Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018. 1