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Chapter 2

Basic algorithms

A sparse matrix is one whose entries are mostly zero. There are many ways of storing
a sparse matrix. Whichever method is chosen, some form of compact data structure
is required that avoids storing the numerically zero entries in the matrix. It needs
to be simple and flexible so that it can be used in a wide range of matrix operations.
This need is met by the primary data structure in CSparse, a compressed-column
matrix. Basic matrix operations that operate on this data structure are presented
below, including matrix-vector multiplication, matrix-matrix multiplication, matrix
addition, and transpose.

2.1 Sparse matrix data structures
The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary
order. The list consists of two integer arrays i and j and one real array x of length
equal to the number of entries in the matrix. For example, the matrix

A =

⎡⎢⎢⎣
4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

⎤⎥⎥⎦ (2.1)

is represented in zero-based triplet form below. A zero-based data structure for
an m-by-n matrix contains row and column indices in the range 0 to m-1 and n-1,
respectively. A one-based data structure has row and column indices that start
with one. The one-based convention is used in linear algebra and is presented to
the MATLAB user. Internally in MATLAB and also in CSparse, all algorithms
and data structures are zero-based. Thus, both conventions are used in this book,
depending on the context. In particular, all C code is zero-based. All MATLAB
expressions, and all linear algebraic expressions, are one-based. All pseudocode
is zero-based, since it closely relates to a corresponding C code. Graph examples
are one-based, since they usually relate to an example matrix (which are also one-
based).
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8 Chapter 2. Basic algorithms

int i [ ] = { 2, 1, 3, 0, 1, 3, 3, 1, 0, 2 } ;

int j [ ] = { 2, 0, 3, 2, 1, 0, 1, 3, 0, 1 } ;

double x [ ] = { 3.0, 3.1, 1.0, 3.2, 2.9, 3.5, 0.4, 0.9, 4.5, 1.7 } ;

The triplet form is simple to create but difficult to use in most sparse matrix
algorithms. The compressed-column form is more useful and is used in almost all
functions in CSparse. An m-by-n sparse matrix that can contain up to nzmax entries
is represented with an integer array p of length n+1, an integer array i of length
nzmax, and a real array x of length nzmax. Row indices of entries in column j are
stored in i[p[j]] through i[p[j+1]-1], and the corresponding numerical values
are stored in the same locations in x. The first entry p[0] is always zero, and p[n]

≤ nzmax is the number of actual entries in the matrix. The example matrix (2.1)
is represented as

int p [ ] = { 0, 3, 6, 8, 10 } ;

int i [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double x [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

MATLAB uses a compressed-column data structure much like cs for its sparse
matrices. It requires the row indices in each column to appear in ascending order,
and no zero entries may be present. Those two restrictions are relaxed in CSparse.
The triplet form and the compressed-column data structures are both encapsulated
in the cs structure:

typedef struct cs_sparse /* matrix in compressed-column or triplet form */

{

int nzmax ; /* maximum number of entries */

int m ; /* number of rows */

int n ; /* number of columns */

int *p ; /* column pointers (size n+1) or col indices (size nzmax) */

int *i ; /* row indices, size nzmax */

double *x ; /* numerical values, size nzmax */

int nz ; /* # of entries in triplet matrix, -1 for compressed-col */

} cs ;

The array p contains the column pointers for the compressed-column form (of
size n+1) or the column indices for the triplet form (of size nzmax). The matrix is
in compressed-column form if nz is negative. Any given CSparse function expects
its sparse matrix input in one form or the other, except for cs print, cs spalloc,
cs spfree, and cs sprealloc, which can operate on either form.

Within a mexFunction written in C or Fortran (but callable from MATLAB),
several functions are available that extract the parts of a MATLAB sparse matrix;
mxGetJc returns a pointer to the equivalent of the A->p column pointer array of the
cs matrix A. The functions mxGetIr, mxGetPr, mxGetM, mxGetN, and mxGetNzmax

return A->i, A->x, A->m, A->n, and A->nzmax, respectively. These mx functions are
not available to a MATLAB statement typed in the MATLAB command window
or in a MATLAB M-file but only in a compiled C or Fortran mexFunction. The
compressed-column data structures used in MATLAB and CSparse are identical,
except that MATLAB can handle complex matrices as well. MATLAB 7.2 forbids
explicit zero entries and requires row indices to be in order in each column.D
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2.2. Matrix-vector multiplication 9

Access to a column of A is simple, equivalent to c=A(:,j) in MATLAB, where
j is a scalar. This assignment takes O(|c|) time in MATLAB, which is optimal.
Accessing the rows of a sparse matrix in cs form, or in MATLAB, is difficult. The
MATLAB statement r=A(i,:) for a scalar i accesses a row of A. To implement
this, MATLAB must examine every column of A, looking for row index i in each
column. This is costly compared with accessing a column. Transposing a sparse
matrix and accessing its columns is better than repeatedly accessing its rows.

The cs data structure can contain numerically zero entries, which brings
up the important practical and theoretical issue of numerical cancellation. Ex-
act numerical cancellation is rare, and most algorithms ignore it. An entry in the
data structure that is computed but found to be numerically zero is still called a
“nonzero” in this book. Leaving these entries in the matrix leads to much simpler
algorithms and more elegant graph theoretical statements about the algorithms, in
particular matrix-matrix multiplication, factorization, and the solution of Lx = b
when b is sparse. Zero entries can always be dropped afterward (see Section 2.7);
this is what MATLAB does. Modifying the nonzero pattern of a compressed-column
matrix is not trivial. Deleting or adding single entries can take O(|A|) time, since
no gaps can appear between columns. For example, to delete the first entry in a
matrix requires that all other entries be shifted up by one position. The MAT-
LAB statements A(1,1)=0 ; A(1,1)=1 are very costly because MATLAB always
removes zero entries whenever they occur.

A numerically rank-deficient matrix is rank deficient in the usual sense. The
structural rank of a matrix is the largest rank that can be obtained by reassigning
the numerical values of the entries in its data structure. An m-by-n matrix is struc-
turally rank deficient if its structural rank is less than min(m,n). For example, A is
numerically rank deficient but has structural full rank, while C is both numerically
and structurally rank deficient:

A =

[
1 1
1 1

]
, C =

[
0 1
0 0

]
.

2.2 Matrix-vector multiplication
One of the simplest sparse matrix algorithms is matrix-vector multiplication, z =
Ax+y, where y and x are dense vectors and A is sparse. If A is split into n column
vectors, the result z = Ax + y is

z =
[
A∗1 . . . A∗n

] ⎡⎢⎣ x1

...
xn

⎤⎥⎦+ y.

Allowing the result to overwrite the input vector y, the jth iteration computes
y = y + A∗jxj . The pseudocode for computing y = Ax + y is given below.

for j = 0 to n− 1 do
for each i for which aij �= 0 do

yi = yi + aijxj
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10 Chapter 2. Basic algorithms

Most algorithms are presented here directly in C, since the pseudocode directly
translates into C with little modification. Below is the complete C version of the
algorithm. Note how the for (p = ...) loop in the cs gaxpy function takes the
place of the for each i loop in the pseudocode (the name is short for generalized A
times x plus y). The MATLAB equivalent of cs gaxpy(A,x,y) is y=A*x+y. Detailed
descriptions of the inputs, outputs, and return values of all CSparse functions are
given in Chapter 9.

int cs_gaxpy (const cs *A, const double *x, double *y)

{

int p, j, n, *Ap, *Ai ;

double *Ax ;

if (!CS_CSC (A) || !x || !y) return (0) ; /* check inputs */

n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

y [Ai [p]] += Ax [p] * x [j] ;

}

}

return (1) ;

}

#define CS_CSC(A) (A && (A->nz == -1))

#define CS_TRIPLET(A) (A && (A->nz >= 0))

The function first checks its inputs to ensure they exist, and returns false (zero)
if they do not. This protects against a caller that ran out of memory. CS CSC(A) is
true for a compressed-column matrix; CS TRIPLET(A) is true for a matrix in triplet
form. The next line (n=A->n ; ...) extracts the contents of the matrix A—its
dimension, column pointers, row indices, and numerical values.

2.3 Utilities
A sparse matrix algorithm such as cs gaxpy requires a sparse matrix in cs form
as input. A few utility functions are required to create this data structure. The
cs malloc, cs calloc, cs realloc, and cs free functions are simple wrappers
around the equivalent ANSI C or MATLAB memory management functions.

void *cs_malloc (int n, size_t size)

{

return (malloc (CS_MAX (n,1) * size)) ;

}

void *cs_calloc (int n, size_t size)

{

return (calloc (CS_MAX (n,1), size)) ;

}

void *cs_free (void *p)

{

if (p) free (p) ; /* free p if it is not already NULL */

return (NULL) ; /* return NULL to simplify the use of cs_free */

}

D
ow

nl
oa

de
d 

07
/1

7/
23

 to
 1

37
.1

89
.4

9.
27

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ycq
高亮



sparse
2006/7/26
page 11

�

�

�

�

�

�

�

�

2.3. Utilities 11

cs realloc changes the size of a block of memory. If successful, it returns a pointer
to a block of memory of size equal to n*size, and sets ok to true. If it fails, it returns
the original pointer p and sets ok to false.

void *cs_realloc (void *p, int n, size_t size, int *ok)

{

void *pnew ;

pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */

*ok = (pnew != NULL) ; /* realloc fails if pnew is NULL */

return ((*ok) ? pnew : p) ; /* return original p if failure */

}

The cs spalloc function creates an m-by-n sparse matrix that can hold up to
nzmax entries. Numerical values are allocated if values is true. A triplet or
compressed-column matrix is allocated depending on whether triplet is true or
false. cs spfree frees a sparse matrix, and cs sprealloc changes the maximum
number of entries that a cs sparse matrix can contain (either triplet or compressed-
column).

cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet)

{

cs *A = cs_calloc (1, sizeof (cs)) ; /* allocate the cs struct */

if (!A) return (NULL) ; /* out of memory */

A->m = m ; /* define dimensions and nzmax */

A->n = n ;

A->nzmax = nzmax = CS_MAX (nzmax, 1) ;

A->nz = triplet ? 0 : -1 ; /* allocate triplet or comp.col */

A->p = cs_malloc (triplet ? nzmax : n+1, sizeof (int)) ;

A->i = cs_malloc (nzmax, sizeof (int)) ;

A->x = values ? cs_malloc (nzmax, sizeof (double)) : NULL ;

return ((!A->p || !A->i || (values && !A->x)) ? cs_spfree (A) : A) ;

}

cs *cs_spfree (cs *A)

{

if (!A) return (NULL) ; /* do nothing if A already NULL */

cs_free (A->p) ;

cs_free (A->i) ;

cs_free (A->x) ;

return (cs_free (A)) ; /* free the cs struct and return NULL */

}

int cs_sprealloc (cs *A, int nzmax)

{

int ok, oki, okj = 1, okx = 1 ;

if (!A) return (0) ;

if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ;

A->i = cs_realloc (A->i, nzmax, sizeof (int), &oki) ;

if (CS_TRIPLET (A)) A->p = cs_realloc (A->p, nzmax, sizeof (int), &okj) ;

if (A->x) A->x = cs_realloc (A->x, nzmax, sizeof (double), &okx) ;

ok = (oki && okj && okx) ;

if (ok) A->nzmax = nzmax ;

return (ok) ;

}

MATLAB provides similar utilities. cs spalloc(m,n,nzmax,1,0) is identical to the
MATLAB spalloc(m,n,nzmax), and cs spfree(A) is the same as clear A. TheD
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12 Chapter 2. Basic algorithms

number of nonzeros in a compressed-column cs matrix A is given by A->p[A->n],
the last column pointer value; this is identical to nnz(A) in MATLAB if the cs

matrix A has no explicit zeros. The MATLAB statement nzmax(A) is the same as
A->nzmax.

2.4 Triplet form
The utility functions can allocate space for a sparse matrix, but they do not define
its contents. The simplest way to construct a cs matrix is to first allocate a matrix
in triplet form. Applications would normally create a matrix in this way, rather
than statically defining them as done in Section 2.1. For example,

cs *T ;

int *Ti, *Tj ;

double *Tx ;

T = cs_spalloc (m, n, nz, 1, 1) ;

Ti = T->i ; Tj = T->p ; Tx = T->x ;

Next, place each entry of the sparse matrix in the Ti, Tj, and Tx arrays. The
kth entry has row index i = Ti[k], column index j = Tj[k], and numerical value
aij = Tx[k]. The entries can appear in arbitrary order. Set T->nz to be the number
of entries in the matrix. Section 2.1 gives an example of a matrix in triplet form.
If multiple entries with identical row and column indices exist, the corresponding
numerical value is the sum of all such duplicate entries.

The cs entry function is useful if the number of entries in the matrix is not
known when the matrix is first allocated. If space is not sufficient for the next entry,
the size of the T->i, T->j, and T->x arrays is doubled. The dimensions of T are
increased as needed.

int cs_entry (cs *T, int i, int j, double x)

{

if (!CS_TRIPLET (T) || i < 0 || j < 0) return (0) ; /* check inputs */

if (T->nz >= T->nzmax && !cs_sprealloc (T,2*(T->nzmax))) return (0) ;

if (T->x) T->x [T->nz] = x ;

T->i [T->nz] = i ;

T->p [T->nz++] = j ;

T->m = CS_MAX (T->m, i+1) ;

T->n = CS_MAX (T->n, j+1) ;

return (1) ;

}

The cs compress function converts this triplet-form T into a compressed-
column matrix C. First, C and a size-n workspace are allocated. Next, the number
of entries in each column of C is computed, and the column pointer array Cp is
constructed as the cumulative sum of the column counts. The counts in w are
also replaced with a copy of Cp. cs compress iterates through each entry in the
triplet matrix. The column pointer w[Tj[k]] is found and postincremented. This
determines the location p where the row index Ti[k] and numerical value Tx[k]

are placed in C. Finally, the workspace is freed and the result C is returned.D
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2.4. Triplet form 13

cs *cs_compress (const cs *T)

{

int m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj ;

double *Cx, *Tx ;

cs *C ;

if (!CS_TRIPLET (T)) return (NULL) ; /* check inputs */

m = T->m ; n = T->n ; Ti = T->i ; Tj = T->p ; Tx = T->x ; nz = T->nz ;

C = cs_spalloc (m, n, nz, Tx != NULL, 0) ; /* allocate result */

w = cs_calloc (n, sizeof (int)) ; /* get workspace */

if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */

Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (k = 0 ; k < nz ; k++) w [Tj [k]]++ ; /* column counts */

cs_cumsum (Cp, w, n) ; /* column pointers */

for (k = 0 ; k < nz ; k++)

{

Ci [p = w [Tj [k]]++] = Ti [k] ; /* A(i,j) is the pth entry in C */

if (Cx) Cx [p] = Tx [k] ;

}

return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */

}

The cs done function returns a cs sparse matrix and frees any workspace.

cs *cs_done (cs *C, void *w, void *x, int ok)

{

cs_free (w) ; /* free workspace */

cs_free (x) ;

return (ok ? C : cs_spfree (C)) ; /* return result if OK, else free it */

}

Computing the cumulative sum will be useful in other CSparse functions, so it
appears as its own function, cs cumsum. It sets p[i] equal to the sum of c[0]

through c[i-1]. It returns the sum of c[0...n-1]. On output, c[0...n-1] is
overwritten with p[0...n-1].

double cs_cumsum (int *p, int *c, int n)

{

int i, nz = 0 ;

double nz2 = 0 ;

if (!p || !c) return (-1) ; /* check inputs */

for (i = 0 ; i < n ; i++)

{

p [i] = nz ;

nz += c [i] ;

nz2 += c [i] ; /* also in double to avoid int overflow */

c [i] = p [i] ; /* also copy p[0..n-1] back into c[0..n-1]*/

}

p [n] = nz ;

return (nz2) ; /* return sum (c [0..n-1]) */

}

The MATLAB statement C=sparse(i,j,x,m,n) performs the same function
as cs compress, except that it returns a matrix with sorted columns, and sums up
duplicate entries (see Sections 2.5 and 2.6).D
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14 Chapter 2. Basic algorithms

2.5 Transpose
The algorithm for transposing a sparse matrix (C = AT ) is very similar to the
cs compress function because it can be viewed not just as a linear algebraic func-
tion but as a method for converting a compressed-column sparse matrix into a
compressed-row sparse matrix as well. The algorithm computes the row counts of
A, computes the cumulative sum to obtain the row pointers, and then iterates over
each nonzero entry in A, placing the entry in its appropriate row vector. If the
resulting sparse matrix C is interpreted as a matrix in compressed-row form, then
C is equal to A, just in a different format. If C is viewed as a compressed-column
matrix, then C contains AT . It is simpler to describe cs transpose with C as a
row-oriented matrix.

cs *cs_transpose (const cs *A, int values)

{

int p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ; /* allocate result */

w = cs_calloc (m, sizeof (int)) ; /* get workspace */

if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */

Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (p = 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ; /* row counts */

cs_cumsum (Cp, w, m) ; /* row pointers */

for (j = 0 ; j < n ; j++)

{

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

Ci [q = w [Ai [p]]++] = j ; /* place A(i,j) as entry C(j,i) */

if (Cx) Cx [q] = Ax [p] ;

}

}

return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */

}

First, the output matrix C and workspace w are allocated. Next, the row
counts and their cumulative sum are computed. The cumulative sum defines the
row pointer array Cp. Finally, cs transpose traverses each column j of A, placing
column index j into each row i of C for which aij is nonzero. The position q of this
entry in C is given by q = w[i], which is then postincremented to prepare for the
next entry to be inserted into row i. Compare cs transpose and cs compress.
Their only significant difference is what kind of data structure their inputs are in.
The statement C=cs transpose(A) is identical to the MATLAB statement C=A’,
except that the latter can also compute the complex conjugate transpose. For
real matrices the MATLAB statements C=A’ and C=A.’ are identical. The values

parameter is true (nonzero) to signify that the numerical values of C are to be
computed or false (zero) otherwise.

Sorting the columns of a sparse matrix is particularly simple. The statement
C=cs transpose(A) computes the transpose of A. Each row of C is constructed
one column index at a time, from column 0 to C->n-1. Thus, it is a sorted matrix;D
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2.6. Summing up duplicate entries 15

cs transpose is a linear-time bucket sort algorithm. A can be sorted by transposing
it twice. A cs sort function is left as an exercise. The total time required is
O(m + n + |A|). Rather than transposing a matrix twice, it is sometimes possible
to create the transpose first and then sort it with a single call to cs transpose.

MATLAB has no explicit function to sort its sparse matrices. Each function or
operator that returns a sparse matrix is required to return it with sorted columns.

2.6 Summing up duplicate entries
Finite-element methods generate a matrix as a collection of elements or dense sub-
matrices. The complete matrix is a summation of the elements. If two elements
contribute to the same entry, their values should be summed. The cs compress

function leaves these duplicate entries in its output matrix. They can be summed
with the cs dupl function.

int cs_dupl (cs *A)

{

int i, j, p, q, nz = 0, n, m, *Ap, *Ai, *w ;

double *Ax ;

if (!CS_CSC (A)) return (0) ; /* check inputs */

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

w = cs_malloc (m, sizeof (int)) ; /* get workspace */

if (!w) return (0) ; /* out of memory */

for (i = 0 ; i < m ; i++) w [i] = -1 ; /* row i not yet seen */

for (j = 0 ; j < n ; j++)

{

q = nz ; /* column j will start at q */

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

i = Ai [p] ; /* A(i,j) is nonzero */

if (w [i] >= q)

{

Ax [w [i]] += Ax [p] ; /* A(i,j) is a duplicate */

}

else

{

w [i] = nz ; /* record where row i occurs */

Ai [nz] = i ; /* keep A(i,j) */

Ax [nz++] = Ax [p] ;

}

}

Ap [j] = q ; /* record start of column j */

}

Ap [n] = nz ; /* finalize A */

cs_free (w) ; /* free workspace */

return (cs_sprealloc (A, 0)) ; /* remove extra space from A */

}

The function uses a size-m integer workspace; w[i] records the location in Ai

and Ax of the most recent entry with row index i. If this position is within the
current column j, then it is a duplicate entry and must be summed. Otherwise, the
entry is kept and w[i] is updated to reflect the position of this entry.D
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16 Chapter 2. Basic algorithms

MATLAB does not have an explicit function to sum duplicate entries of a
sparse matrix. It is combined with the MATLAB sparse function that converts a
triplet matrix to a compressed sparse matrix.

2.7 Removing entries from a matrix
CSparse does not require its sparse matrices to be free of numerically zero entries,
but its MATLAB interface does. Rather than writing a special-purpose function to
drop zeros from a matrix, the cs fkeep function is used. It takes as an argument
a pointer to a function fkeep(i,j,aij,other) which is evaluated for each entry
aij in the matrix. An entry is kept if fkeep is true for that entry. Dropping
entries from A requires each column to be shifted; Ap[j] must be decremented
by the number of entries dropped from columns 0 to j-1. When a cs matrix
A is returned to MATLAB, cs dropzeros(A) is normally performed first. The
cs chol mexFunction optionally keeps zero entries in L, so that cs updown can
work properly.

int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other)

{

int j, p, nz = 0, n, *Ap, *Ai ;

double *Ax ;

if (!CS_CSC (A) || !fkeep) return (-1) ; /* check inputs */

n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{

p = Ap [j] ; /* get current location of col j */

Ap [j] = nz ; /* record new location of col j */

for ( ; p < Ap [j+1] ; p++)

{

if (fkeep (Ai [p], j, Ax ? Ax [p] : 1, other))

{

if (Ax) Ax [nz] = Ax [p] ; /* keep A(i,j) */

Ai [nz++] = Ai [p] ;

}

}

}

Ap [n] = nz ; /* finalize A */

cs_sprealloc (A, 0) ; /* remove extra space from A */

return (nz) ;

}

static int cs_nonzero (int i, int j, double aij, void *other)

{

return (aij != 0) ;

}

int cs_dropzeros (cs *A)

{

return (cs_fkeep (A, &cs_nonzero, NULL)) ; /* keep all nonzero entries */

}

Additional arguments can be passed to fkeep via the void *other parameter to
cs fkeep. This is demonstrated by cs droptol, which removes entries whose mag-
nitude is less than or equal to tol.D
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2.8. Matrix multiplication 17

The MATLAB equivalent for cs droptol(A,tol) is A = A.*(abs(A)>tol).

static int cs_tol (int i, int j, double aij, void *tol)

{

return (fabs (aij) > *((double *) tol)) ;

}

int cs_droptol (cs *A, double tol)

{

return (cs_fkeep (A, &cs_tol, &tol)) ; /* keep all large entries */

}

2.8 Matrix multiplication
Since matrices are stored in compressed-column form in CSparse, the matrix multi-
plication C = AB, where C is m-by-n, A is m-by-k, and B is k-by-n, should access
A and B by column and create C one column at a time. If C∗j and B∗j denote
column j of C and B, then C∗j = AB∗j . Splitting A into its k columns and B∗j
into its k individual entries,

C∗j =
[
A∗1 · · · A∗k

] ⎡⎢⎣ b1j
...

bkj

⎤⎥⎦ =

k∑
i=1

A∗ibij . (2.2)

The nonzero pattern of C is given by the following theorem.

Theorem 2.1 (Gilbert [101]). The nonzero pattern of C∗j is the set union of the
nonzero pattern of A∗i for all i for which bij is nonzero. If Cj, Ai, and Bj denote
the set of row indices of nonzero entries in C∗j, A∗i, and B∗j, then

Cj =
⋃
i∈Bj

Ai. (2.3)

A matrix multiplication algorithm must compute both C∗j and Cj . Note that
(2.3) is correct only if numerical cancellation is ignored. It is implemented with
cs scatter and cs multiply below. A dense vector x is used to construct C∗j .
The set Cj is stored directly in C, but another work vector w is needed to determine
if a given row index i is in the set already. The vector w starts out cleared. When
computing column j, w[i]<j+1 will denote a row index i that is not yet in Cj .
When i is inserted in Cj , w[i] is set to j+1. The cs scatter function computes one
iteration of (2.2) and (2.3) for a single value of i, using a scatter operation to copy
a sparse vector into a dense one. The matrix multiplication function cs multiply

first allocates the w and x workspace and the output matrix C. Next, it iterates over
each column j of the result C. After a series of scatter operations, the dense vector
x is gathered into a sparse vector (a column of C). Since the number of nonzeros in
C is not known at the beginning, it is increased in size as needed.

Computing nnz(A*B) is actually much harder than computing nnz(chol(A)).
The latter is discussed in Chapter 4. An alternate approach that computes nnz(A*B)
in an initial pass and then C=A*B in a second pass is left as an exercise (Prob-
lem 2.20).D
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18 Chapter 2. Basic algorithms

cs *cs_multiply (const cs *A, const cs *B)

{

int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values, *Bi ;

double *x, *Bx, *Cx ;

cs *C ;

if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */

m = A->m ; anz = A->p [A->n] ;

n = B->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; bnz = Bp [n] ;

w = cs_calloc (m, sizeof (int)) ; /* get workspace */

values = (A->x != NULL) && (Bx != NULL) ;

x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */

C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result */

if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ;

Cp = C->p ;

for (j = 0 ; j < n ; j++)

{

if (nz + m > C->nzmax && !cs_sprealloc (C, 2*(C->nzmax)+m))

{

return (cs_done (C, w, x, 0)) ; /* out of memory */

}

Ci = C->i ; Cx = C->x ; /* C->i and C->x may be reallocated */

Cp [j] = nz ; /* column j of C starts here */

for (p = Bp [j] ; p < Bp [j+1] ; p++)

{

nz = cs_scatter (A, Bi [p], Bx ? Bx [p] : 1, w, x, j+1, C, nz) ;

}

if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ;

}

Cp [n] = nz ; /* finalize the last column of C */

cs_sprealloc (C, 0) ; /* remove extra space from C */

return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */

}

int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark,

cs *C, int nz)

{

int i, p, *Ap, *Ai, *Ci ;

double *Ax ;

if (!CS_CSC (A) || !w || !CS_CSC (C)) return (-1) ; /* check inputs */

Ap = A->p ; Ai = A->i ; Ax = A->x ; Ci = C->i ;

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

i = Ai [p] ; /* A(i,j) is nonzero */

if (w [i] < mark)

{

w [i] = mark ; /* i is new entry in column j */

Ci [nz++] = i ; /* add i to pattern of C(:,j) */

if (x) x [i] = beta * Ax [p] ; /* x(i) = beta*A(i,j) */

}

else if (x) x [i] += beta * Ax [p] ; /* i exists in C(:,j) already */

}

return (nz) ;

}

When cs multiply is finished, the matrix C is resized to the actual number of
entries it contains, and the workspace is freed. The cs scatter function computes
x=x+beta*A(:,j), and accumulates the nonzero pattern of x in C->i, starting atD
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2.9. Matrix addition 19

position nz. The new value of nz is returned. Row index i is in the pattern of x if
w[i] is equal to mark.

The time taken by cs multiply is O(n + f + |B|), where f is the number of
floating-point operations performed (f dominates the run time unless A has one or
more columns with no entries, in which case either n or |B| can be greater than f).
If the columns of C need to be sorted, either C = ((AB)T )T or C = (BTAT )T can
be computed. The latter is better if C has many more entries than A or B. The
MATLAB equivalent C=A*B uses a similar algorithm to the one presented here.

2.9 Matrix addition
The cs add function performs matrix addition, C = αA+βB. Matrix addition can
be written as a multiplication of two matrices,

C =
[
A B

] [ αI
βI

]
, (2.4)

where I is an identity matrix of the appropriate size. Although it is not implemented
this way, the function cs add looks very much like cs multiply because of (2.4).
The innermost loop differs slightly; no reallocation is needed, and the for p loop
is replaced with two calls to cs scatter. Like cs multiply, it does not return C

with sorted columns. The MATLAB equivalent is C=alpha*A+beta*B.

cs *cs_add (const cs *A, const cs *B, double alpha, double beta)

{

int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values ;

double *x, *Bx, *Cx ;

cs *C ;

if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */

m = A->m ; anz = A->p [A->n] ;

n = B->n ; Bp = B->p ; Bx = B->x ; bnz = Bp [n] ;

w = cs_calloc (m, sizeof (int)) ; /* get workspace */

values = (A->x != NULL) && (Bx != NULL) ;

x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */

C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result*/

if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ;

Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (j = 0 ; j < n ; j++)

{

Cp [j] = nz ; /* column j of C starts here */

nz = cs_scatter (A, j, alpha, w, x, j+1, C, nz) ; /* alpha*A(:,j)*/

nz = cs_scatter (B, j, beta, w, x, j+1, C, nz) ; /* beta*B(:,j) */

if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ;

}

Cp [n] = nz ; /* finalize the last column of C */

cs_sprealloc (C, 0) ; /* remove extra space from C */

return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */

}
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20 Chapter 2. Basic algorithms

2.10 Vector permutation
An n-by-n permutation matrix P can be represented by a sparse matrix P with a
one in each row and column, or by a length-n integer vector p called a permutation
vector, where p[k]=i means that pki = 1. A permutation matrix P is orthogonal,
so its inverse is simply P−1 = PT . The inverse permutation vector is given by
pinv[i]=k if pki = 1, since this implies (PT )ik = 1.

Some MATLAB functions return permutation vectors; others return permuta-
tion matrices. If p and q are MATLAB permutation vectors of length n, converting
between these forms is done as follows:

[p j x] = find(P’) convert row permutation P*A to A(p,:)

[q j x] = find(Q) convert column permutation A*Q to A(:,q)

P=sparse(1:n, p, 1) convert row permutation A(p,:) to P*A

Q=sparse(q, 1:n, 1) convert column permutation A(:,q) to A*Q

If x = Pb, row k of x is row p[k] of b. The function cs pvec computes
x = Pb, or x=b(p) in MATLAB, where x and b are vectors of length n. The
function cs ipvec computes x = PT b, or x(p)=b in MATLAB.

int cs_pvec (const int *p, const double *b, double *x, int n)

{

int k ;

if (!x || !b) return (0) ; /* check inputs */

for (k = 0 ; k < n ; k++) x [k] = b [p ? p [k] : k] ;

return (1) ;

}

int cs_ipvec (const int *p, const double *b, double *x, int n)

{

int k ;

if (!x || !b) return (0) ; /* check inputs */

for (k = 0 ; k < n ; k++) x [p ? p [k] : k] = b [k] ;

return (1) ;

}

The inverse, or transpose, of a permutation vector p[k]=i is the vector pinv,
where pinv[i]=k. This is computed by cs pinv. In MATLAB, pinv(p) = 1:n

computes the inverse pinv of a permutation vector p of length n (this assumes that
pinv is initially not defined or a vector of length n or less).

int *cs_pinv (int const *p, int n)

{

int k, *pinv ;

if (!p) return (NULL) ; /* p = NULL denotes identity */

pinv = cs_malloc (n, sizeof (int)) ; /* allocate result */

if (!pinv) return (NULL) ; /* out of memory */

for (k = 0 ; k < n ; k++) pinv [p [k]] = k ;/* invert the permutation */

return (pinv) ; /* return result */

}
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2.11. Matrix permutation 21

2.11 Matrix permutation
The cs permute function permutes a sparse matrix, C = PAQ (C=A(p,q) in MAT-
LAB). It takes as input a column permutation vector q of length n and an inverse
row permutation pinv (not p) of length m, where A is m-by-n. Row i of A becomes
row k of C if pinv[i]=k. The algorithm traverses the columns of j of A in permuted
order via q. Each row index in A is mapped to its permuted row in C.

cs *cs_permute (const cs *A, const int *pinv, const int *q, int values)

{

int t, j, k, nz = 0, m, n, *Ap, *Ai, *Cp, *Ci ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

C = cs_spalloc (m, n, Ap [n], values && Ax != NULL, 0) ; /* alloc result */

if (!C) return (cs_done (C, NULL, NULL, 0)) ; /* out of memory */

Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (k = 0 ; k < n ; k++)

{

Cp [k] = nz ; /* column k of C is column q[k] of A */

j = q ? (q [k]) : k ;

for (t = Ap [j] ; t < Ap [j+1] ; t++)

{

if (Cx) Cx [nz] = Ax [t] ; /* row i of A is row pinv[i] of C */

Ci [nz++] = pinv ? (pinv [Ai [t]]) : Ai [t] ;

}

}

Cp [n] = nz ; /* finalize the last column of C */

return (cs_done (C, NULL, NULL, 1)) ;

}

CSparse functions that operate on symmetric matrices use just the upper
triangular part, just like chol in MATLAB. If A is symmetric with only the upper
triangular part stored, C=A(p,p) is not upper triangular. The cs symperm function
computes C=A(p,p) for a symmetric matrix A whose upper triangular part is stored,
returning C in the same format. Entries below the diagonal are ignored.

The first for j loop counts how many entries are in each column of C. Suppose
i ≤ j, and A(i,j) is permuted to become entry C(i2,j2). If i2 ≤ j2, this entry
is in the upper triangular part of C. Otherwise, C(i2,j2) is in the lower triangular
part of C, and the entry must be placed in C as C(j2,i2) instead. After the column
counts of C are computed (in w), the cumulative sum is computed to obtain the
column pointers Cp. The second for loop constructs C, much like cs permute.

cs *cs_symperm (const cs *A, const int *pinv, int values)

{

int i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

C = cs_spalloc (n, n, Ap [n], values && (Ax != NULL), 0) ; /* alloc result*/

w = cs_calloc (n, sizeof (int)) ; /* get workspace */

if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */
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22 Chapter 2. Basic algorithms

Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (j = 0 ; j < n ; j++) /* count entries in each column of C */

{

j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

i = Ai [p] ;

if (i > j) continue ; /* skip lower triangular part of A */

i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */

w [CS_MAX (i2, j2)]++ ; /* column count of C */

}

}

cs_cumsum (Cp, w, n) ; /* compute column pointers of C */

for (j = 0 ; j < n ; j++)

{

j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

i = Ai [p] ;

if (i > j) continue ; /* skip lower triangular part of A*/

i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */

Ci [q = w [CS_MAX (i2, j2)]++] = CS_MIN (i2, j2) ;

if (Cx) Cx [q] = Ax [p] ;

}

}

return (cs_done (C, w, NULL, 1)) ; /* success; free workspace, return C */

}

2.12 Matrix norm
Computing the 2-norm of a sparse matrix (‖A‖2) is not trivial, since it is the largest
singular value of A. MATLAB does not provide a function for computing the 2-norm
of a sparse matrix, although it can compute a good estimate using normest. The
∞-norm is the maximum row-sum, the computation of which requires a workspace
of size n if A is accessed by column. The simplest norm to use for a sparse matrix
stored in compressed-column form is the 1-norm, ‖A‖1 = maxj

∑m
i=1 |aij |, which

is computed by the cs norm function below. Note that it does not make use of
the A->i row index array. The MATLAB norm function can compute the 1-norm,
∞-norm, or Frobenius norm of a sparse matrix.

double cs_norm (const cs *A)

{

int p, j, n, *Ap ;

double *Ax, norm = 0, s ;

if (!CS_CSC (A) || !A->x) return (-1) ; /* check inputs */

n = A->n ; Ap = A->p ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{

for (s = 0, p = Ap [j] ; p < Ap [j+1] ; p++) s += fabs (Ax [p]) ;

norm = CS_MAX (norm, s) ;

}

return (norm) ;

}
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2.13 Reading a matrix from a file
The cs load function reads in a triplet matrix from a file. The matrix T is initially
allocated as a 0-by-0 triplet matrix with space for just one entry. The dimensions
of T are determined by the maximum row and column index read from the file.

cs *cs_load (FILE *f)

{

int i, j ;

double x ;

cs *T ;

if (!f) return (NULL) ; /* check inputs */

T = cs_spalloc (0, 0, 1, 1, 1) ; /* allocate result */

while (fscanf (f, "%d %d %lg\n", &i, &j, &x) == 3)

{

if (!cs_entry (T, i, j, x)) return (cs_spfree (T)) ;

}

return (T) ;

}

2.14 Printing a matrix
cs print prints the contents of a cs matrix in triplet form or compressed-column
form. Only the first few entries are printed if brief is true.

int cs_print (const cs *A, int brief)

{

int p, j, m, n, nzmax, nz, *Ap, *Ai ;

double *Ax ;

if (!A) { printf ("(null)\n") ; return (0) ; }

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

nzmax = A->nzmax ; nz = A->nz ;

printf ("CSparse Version %d.%d.%d, %s. %s\n", CS_VER, CS_SUBVER,

CS_SUBSUB, CS_DATE, CS_COPYRIGHT) ;

if (nz < 0)

{

printf ("%d-by-%d, nzmax: %d nnz: %d, 1-norm: %g\n", m, n, nzmax,

Ap [n], cs_norm (A)) ;

for (j = 0 ; j < n ; j++)

{

printf (" col %d : locations %d to %d\n", j, Ap [j], Ap [j+1]-1);

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

printf (" %d : %g\n", Ai [p], Ax ? Ax [p] : 1) ;

if (brief && p > 20) { printf (" ...\n") ; return (1) ; }

}

}

}

else

{

printf ("triplet: %d-by-%d, nzmax: %d nnz: %d\n", m, n, nzmax, nz) ;

for (p = 0 ; p < nz ; p++)

{

printf (" %d %d : %g\n", Ai [p], Ap [p], Ax ? Ax [p] : 1) ;

if (brief && p > 20) { printf (" ...\n") ; return (1) ; }

}

}

return (1) ;

}

D
ow

nl
oa

de
d 

07
/1

7/
23

 to
 1

37
.1

89
.4

9.
27

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



sparse
2006/7/26
page 24

�

�

�

�

�

�

�

�

24 Chapter 2. Basic algorithms

2.15 Sparse matrix collections
Arbitrary random matrices are easy to generate; random sparse matrices with spe-
cific properties are not simple to generate (type the command type sprand in
MATLAB and compare the 3-input versus 4-input usage of the function). Both
can give misleading performance results. Sparse matrices from real applications are
better, such as those from the Rutherford-Boeing collection4 [55], the NIST Matrix
Market,5 and the UF Sparse Matrix Collection.6 The UFget package distributed
with CSparse provides a simple MATLAB interface to the UF Sparse Matrix Collec-
tion. For example, UFget(’HB/arc130’) downloads the arc130 matrix and loads it
into MATLAB. UFweb(’HB/arc130’) brings up a web browser with the web page
for the same matrix. Matrix properties are listed in an index, which makes it simple
to write a MATLAB program that uses a selected subset of matrices (for example,
all symmetric positive definite matrices in order of increasing number of nonzeros).
As of April 2006, the UF Sparse Matrix Collection contains 1,377 matrices, with
order 5 to 5 million, and as few as 15 and as many as 99 million nonzeros. The
submission of new matrices not represented by the collection is always welcome.

2.16 Further reading
The CHOLMOD [30] package provides some of the sparse matrix operators in MAT-
LAB. Other sparse matrix packages have similar functions; see the HSL7 and
the BCSLIB-EXT8 packages in particular. Gilbert, Moler, and Schreiber present
the early development of sparse matrices in MATLAB [105]. Gustavson discusses
sparse matrix permutation, transpose, and multiplication [121]. The Sparse BLAS
[43, 44, 56, 70] includes many of these operations.

Exercises
2.1. Write a cs gatxpy function that computes y = ATx+y without forming AT .

2.2. Write a function cs find that converts a cs matrix into a triplet-form matrix,
like the find function in MATLAB.

2.3. Write a variant of cs gaxpy that computes y = Ax+y, where A is a symmetric
matrix with only the upper triangular part present. Ignore entries in the lower
triangular part.

2.4. Write a function with prototype void cs scale(cs *A, double *r, double

*c) that overwrites A with RAC, where R and C are diagonal matrices; r[k]
and c[k] are the kth diagonal entries of R and C, respectively.

2.5. Write a function similar to cs entry that adds a dense submatrix to a triplet

4www.cse.clrc.ac.uk/nag/hb
5math.nist.gov/MatrixMarket
6www.cise.ufl.edu/research/sparse/matrices; see also www.siam.org/books/fa02
7www.cse.clrc.ac.uk/nag/hsl
8www.boeing.com/phantom/bcslib-ext
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Exercises 25

matrix. i and j should be integer arrays of length k, and x should be a k-by-k
dense matrix.

2.6. Show how to transpose a cs matrix in triplet form in O(1) time.

2.7. Write a function cs sort that sorts a cs matrix. Its prototype should be cs

*cs sort (cs *A). Use two calls to cs transpose. Why is C=cs transpose

(cs transpose (A)) incorrect?

2.8. Write a function that sorts a matrix one column at a time, using the ANSI
C quicksort function, qsort. Compare its performance (time and memory
usage) with the solution to Problem 2.7.

2.9. Write a function that creates a compressed-column matrix from a triplet
matrix with sorted columns, no duplicates, and no numerically zero entries.

2.10. Show how to multiply a matrix in triplet form times a dense vector.

2.11. Sorting a matrix with a double transpose does extra work that is not required.
The second transpose counts the entries in each row, but these are equal to
the original column counts. Write a cs sort function that avoids extra work.

2.12. Write a function cs ok that checks a matrix to see if it is valid and op-
tionally prints the matrix with prototype int cs ok (cs *A, int sorted,

int values, int print). If values is negative, A->x is ignored and may
be NULL; otherwise, it must be non-NULL. If sorted is true, then the columns
must be sorted. If values is positive, then there can be no numerically zero
entries in A. The time and workspace are O(m + n + |A|) and O(m).

2.13. Write a function that determines if a sparse matrix is symmetric.

2.14. Write a function cs *cs copy (cs *A) that returns a copy of A.

2.15. Write a function cs band(A,k1,k2) that removes all entries from A except
for those in diagonals k1 to k2 of A. Entries outside the band should be
dropped. Hint: use cs fkeep.

2.16. Write a function that creates a sparse matrix copy of a dense matrix stored
in column-major form.

2.17. How much time does it take to transpose a column vector? How much space
does a sparse row vector take if stored in compressed-column form?

2.18. How much time and space does it take to compute xT y for two sparse column
vectors x and y, using cs transpose and cs multiply? Write a more efficient
routine with prototype double cs dot (cs *x, cs *y), which assumes x

and y are column vectors. Consider two cases: (1) The row indices of x and y

are not sorted. A double workspace w of size x->m will need to be allocated.
(2) The row indices of x and y are sorted. No workspace is required. Both
cases take O(|x| + |y|) time.

2.19. The first call to cs scatter in each iteration of the j loop in both cs multiply

and cs add does more work than is necessary, since w[i]<mark is always true
in this case. Write a more efficient version.

2.20. Consider an alternative algorithm for cs multiply that uses two passes. The
first pass computes the number of entries in each column of C (or just the total
number of entries), and the second pass performs the matrix multiplication.D
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26 Chapter 2. Basic algorithms

No cs sprealloc is needed. Compare with the original cs multiply.

2.21. How efficient is cs add when A and B are sparse column vectors? Hint: how
much time does calloc take? Write faster function cs saxpy that takes an
initialized workspace (w and x) as input, computes the result, and returns
the workspace ready to use in a subsequent call to cs saxpy.

2.22. Write two functions cs hcat and cs vcat that perform the horizontal and
vertical concatenation of A and B, respectively, just like the MATLAB state-
ments C = [A B] and C = [A ; B].

2.23. Write a function that implements the MATLAB statement C=A(i1:i2,j1:j2).
This is much simpler than the next two problems.

2.24. The MATLAB statement C=A(i,j), where i and j are integer vectors, creates
a submatrix C of A of dimension length(i)-by-length(j). Write a function
that performs this operation. Either assume that i and j do not contain
duplicate indices or that they may contain duplicates (MATLAB allows for
duplicates).

2.25. The MATLAB statement A(i,j)=C, where i and j are integer vectors, re-
places the entries in the A(i,j) submatrix with the length(i)-by-length(j)
matrix C. Write a function that performs this operation. Either assume that
i and j do not contain duplicate indices or that they may contain duplicates
(MATLAB allows for duplicates).

2.26. Write a function combining cs permute and cs transpose that computes the
permuted transpose, just as in the MATLAB statement C=A(p,q)’, where
p and q are permutation vectors. It should use one pass over the matrix to
count the number of entries in C and another to copy entries from A to C.

2.27. Create three versions of cs gaxpy that operate on dense matrices X and Y (A
is still sparse). The first should assume X and Y are in column-major form.
The second should use row-major form. The third should use column-major
form but operate on blocks of (say) 32 columns of X at a time. Compare their
performance.

2.28. Repeat Problem 2.27 but for cs gatxpy instead (described in Problem 2.1).

2.29. Write four functions that modify a sparse matrix A, adding k empty rows or
columns (an empty row or column has no entries in it). Adding empty rows
takes O(|A|) if added to the top or O(1) if added to the bottom. Adding
empty columns takes O(n + k) time.

2.30. Experiment with the time taken by the MATLAB statement r=A(i,:) for
an m-by-n matrix and a scalar i. Does MATLAB use a binary search (taking
O(
∑

log |A(:, j)|) time)? Or does it use a linear search of each column? Does
it exploit special cases, such as r=A(1,:) and r=A(m,:)?

2.31. Which CSparse functions work properly if duplicate entries are present?
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