Homework 3 for MATH5070

Topology of Manifolds

Due Wednesday, Oct. 16

1. (i) Let A be an $n \times n$ matrix. Show that the infinite series

$$\exp tA = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

converges uniformly on compact subintervals of the t-axis.

(ii) Show that $\exp tA$ is differentiable as a function of t and that

$$\frac{d}{dt}\exp tA = (\exp tA)A = A(\exp tA).$$

Hint: First show that if one differentiates the series above term by term, one gets a series which is uniformly convergent on compact intervals.

- (iii) Conclude from (ii) that $\exp tA$ is smooth in t.
- 2. Let $A = (a_{ij})$ be an $n \times n$ matrix and let v_A be the vector field on \mathbb{R}^n :

$$v_A = \sum (a_{ij}x_j) \frac{\partial}{\partial x_i}$$

Show that v_A generates a global one-parameter group of diffeomorphisms of \mathbb{R}^n .

Hint: Let x_0 be an arbitrary point of \mathbb{R}^n . Show that the curve

$$t \to (\exp tA)(x_0), -\infty < t < \infty,$$

is the (unique) integral curve of v_A passing through the point x_0 .

- 3. From exercise 2 deduce that $(\exp sA)(\exp tA) = \exp(s+t)A$.
- 4. Let GL(n) be the group of invertible $n \times n$ matrices and let $\phi : \mathbb{R} \to GL(n)$ be a homomorphism of the additive group of real numbers into GL(n). Assuming ϕ is smooth, prove that there exists a $n \times n$ matrix, A, such that $\phi(t) = \exp tA$ for all t.
- 5. Let A and B be $n \times n$ matrices. Prove that the following properties are equivalent:
 - (i) A and B commute (as matrices).
 - (ii) $\exp tA$ and $\exp sB$ commute for all s and t.
 - (iii) The Lie bracket of v_A and v_B is zero.

- 6. Let A be an $n \times n$ matrix. Prove that the following properties are equivalent:
 - (i) The transpose of A is -A.
 - (ii) $\exp tA$ is in O(n) for all $t \in \mathbb{R}$.
- 7. Consider the distribution \mathcal{V} in \mathbb{R}^3 spanned by

$$V = x\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + x(y+1)\frac{\partial}{\partial z}, \ W = \frac{\partial}{\partial x} + y\frac{\partial}{\partial z}$$

- (i) Show that $\mathcal V$ is involutive.
- (ii) Consider the projection map $\pi: \mathbb{R}^3 \to \mathbb{R}^2$, $(x,y,z) \mapsto (x,y)$. Show that

$$X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}, \ Y = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}$$

are the vector fields spanning \mathcal{V} that are π -related to $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

- (iii) Find the integral curves of X and Y respectively.
- (iv) What are the integral manifolds of \mathcal{V} ?

