Homework 1 for MATH5070 Topology of Manifolds Due Wednesday, Sept. 18

The goal of the exercises below is to show that the set of all k-dimensional subspace of \mathbb{R}^n is a manifold of dimension k(n-k).

- (i) For 0 < k < n let M be the set of all injective linear mappings of R^k into Rⁿ. Show that M is a kn-dimensional manifold. Hint: It's an open subset of a kn-dimensional vector space.
 - (ii) Define E to be the set of all pairs, $(L_1, L_2) \in M \times M$ with Image L_1 = Image L_2 . Show that E is an equivalence relation. What are the equivalence classes?

Let M_E be the set of equivalence classes. I want you to show that M_E is a k(n-k)-dimensional manifold. Here are some hints:

- **2.** Let \mathcal{M} be the set of real $n \times k$ matrices of rank k. Identify \mathcal{M} with M. If A_1 and A_2 are elements of \mathcal{M} show that the following three conditions are equivalent
 - (i) A_1 is *E*-equivalent to A_2 .
 - (ii) There exists an invertible $k \times k$ matrix, B, such that $A_1 = A_2 B$.
 - (iii) A_1 can be obtained from A_2 by a sequence of elementary column operations.
- **3.** Let $I = (i_1, i_2, \dots, i_k)$ be a k-tuple of integers with $1 \le i_1 < i_2 < \dots < i_k \le n$. For $A \in \mathcal{M}$ let A_I be $k \times k$ minor of A whose rows are the i_1 -th, i_2 -th, \dots , i_k -th rows of A. Let

$$\mathcal{M}_I = \{ A \in \mathcal{M}, A_I \text{ is invertible} \}.$$

Prove:

- (i) \mathcal{M}_I is an open subset of \mathcal{M} .
- (ii) $\mathcal{M} = \bigcup \mathcal{M}_I$.
- (iii) If A is in \mathcal{M}_I , then every matrix which is E-equivalent to A is in \mathcal{M}_I .
- 4. Prove the following Lemma: If A is in \mathcal{M}_I , then there exists a *unique* matrix $A^{\#}$ in \mathcal{M}_I which is E-equivalent to A and has the property that $A_I^{\#}$ is the identity matrix.
- **5.** Given $A \in \mathcal{M}$ let [A] be its equivalence class in M_E . Set

$$\mathcal{U}_I = \{ [A], \ A \in \mathcal{M}_I \}$$

and define a bejective map

$$\varphi_I: \mathcal{U}_I \to \mathbb{R}^{k(n-k)}$$

as follows. Let W_I be the set of $n \times k$ matrices, A, for which A_I is the $k \times k$ identity matrix; and, using the results of problem 4 prove:

Lemma W_I is contained in \mathcal{M}_I and the map

$$W_I \to \mathcal{U}_I, \ A \to [A]$$
 (1)

is bijective.

Now show that there is a (simple and natural) identification

$$W_I \simeq \mathbb{R}^{k(n-k)} \tag{2}$$

and compose (2) with the inverse of (1).

6. Let \mathcal{A} be the collection of charts $(\varphi_I, \mathcal{U}_I, \mathbb{R}^{k(n-k)})$. Verify that this is an atlas by computing the transition maps associated with any pairs of charts in this collection and verifying that they are smooth.