MATH5021 THEORY OF PDE I Homework 2

Due Oct 23, 2024, in hard copies. Late assignment is not accepted.

1. (8 points) Let $\phi = \phi(t, x)$ be the solution to the linear wave equation

 $\Box \phi = 0, \quad \phi(0, \cdot) = \phi_0, \quad \partial_t \phi(0, \cdot) = \phi_1.$

For fixed R > 0 and $x_0 \in \mathbb{R}^n$, we define

$$\mathcal{E}(t) = \frac{1}{2} \int_{B_{R-t}(x_0)} |\partial_{t,x}\phi(t,x)|^2 \, dx,$$

where we denote $B_{R-t}(x_0)$ by the ball centered at x_0 with radius R-t. Prove that $\mathcal{E}(t) \leq \mathcal{E}(0)$.

2. (7 points) Let f be C^2 -function defined on \mathbb{R}^n equipped with a Riemannian metric g. For any vector fields X, Y, we define $\nabla^2 f$ (i.e., the Hessian) to be the bilinear form satisfying

$$\nabla^2 f(X, Y) = g(\nabla_X \nabla f, Y).$$

Prove that

$$\nabla^2 f(X, Y) = XYf - (\nabla_X Y)f.$$

Use this to conclude that $\nabla^2 f(X, Y) = \nabla^2 f(Y, X)$.

3. [10 points] Consider the initial value problem:

$$\Box \phi = f(t, x, \phi), \quad \text{in } \mathbb{R}^+ \times \mathbb{R}^3, \phi(0, \cdot) = \phi_0, \quad \partial_t \phi(t, \cdot) = \phi_1.$$
(1)

Do the following:

- a. [8] Let $f(t, x, \phi) = |\phi|^2$. Given $(\phi_0, \phi_1) \in H^2(\mathbb{R}^3) \times H^1(\mathbb{R}^3)$, prove that (1) admits a local-in-time solution $\phi(t, \cdot) \in H^2(\mathbb{R}^3)$. (Hint: It is enough to prove the a priori energy estimate. The following Sobolev embedding may come in handy: $\|\phi\|_{L^6(\mathbb{R}^3)} \leq C \|\phi\|_{\dot{H}^1(\mathbb{R}^3)}$.).
- b. [2] Let $f(t, x, \phi) = |\nabla \phi|^2$. Is it still possible to find a local-in-time solution when $(\phi_0, \phi_1) \in H^2(\mathbb{R}^3) \times H^1(\mathbb{R}^3)$? Explain your answer. No rigorous justification is required.