Real Analysis
$$24 - 09 - 13$$
\$14Integration on measure spaces.Let (X, M, μ) be a measure space.Let (X, M, μ) be a measure space.Let S be a simple function, i.e. $S = \sum_{j=1}^{N} d_j X_{Aj}$ with $\partial_1 < d_1 < \cdots < \partial_N$, $A_1 = \{x \in X: S\alpha) = d_1\} \in M$.Def. Let $S = \sum_{j=1}^{N} d_j X_{Aj}$ (in its shandard form) be anon-negative simple function. Then we definix $\int_E S d\mu = \sum_{j=1}^{N} d_j H(A_1 \cap E)$, $H \in M$.Prop 1.7. Let $S = \sum_{j=1}^{N} d_j H(A_1 \cap E)$, $H \in M$.(*) $\int_E S d\mu = \sum_{j=1}^{N} d_j \mu(E_1 \cap E)$, $H \in M$.(*) $\int_E S d\mu = \int_E S d\mu + \int_E t d\mu$ for any other snon-negative simple function t.

Pf. First observe that (*) holds if E; are
disjoint.
Next we prove (*) in the general case that
E; may not be disjoint. The main idea
is to construct
$$(F_j)$$
, F_j are disjoint, and
each E; is the union of those F; containing
(i.e. $E_i = \bigcup_{j:F_j \subset E_i} F_j$)
Indeed each F; can be written as
 $A_i \cap A_2 \cap \cdots \cap A_N : A_i = E_i \text{ or } E_i^C$
 $E_i = \sum_{i} Y_i Y_{E_i}$
 $= \sum_{i} Y_i (\sum_{j:F_j \subset E_i} Y_{F_j})$

$$= \sum_{j} \left(\sum_{i \in i} Y_{i} \right) \cdot \chi_{F_{j}}$$

$$= \sum_{j} \beta_{j} \chi_{F_{j}} \quad (\text{where } \beta_{j} = \sum_{i \in i} \frac{y_{i}}{y_{j}})$$
Hence $\int_{E} S d \mu = \sum_{j} \beta_{j} \mu(F_{j} \cap E)$

$$= \sum_{j} \left(\sum_{i \in i} \frac{y_{i}}{y_{j}} \right) \mu(F_{j} \cap E)$$

$$= \sum_{i} \left(\sum_{j \in F_{j} \supset F_{j}} \mu(F_{j} \cap E) \right) \gamma_{i}$$

$$= \sum_{i} \left(\sum_{j \in F_{j} \supset F_{j}} \mu(F_{j} \cap E) \right) \gamma_{i}$$

$$= \sum_{i} \mu(E_{i} \cap E) \cdot \gamma_{i}.$$
Mext we define the integration for non-negative measurable functions.
Def: Let $f^{2} \times \rightarrow [0, t\infty]$ be measurable.
We define for $E \in M$,
 $\int_{E} f d\mu = \sup_{i} \left\{ \int_{E} S d\mu : 0 \le S \le F$, S is simple $\right\}.$

Remark: Alternatively, we can define

$$\int_{E} f d\mu = \sup \left\{ \int_{E} S d\mu : S \leq f a.e., S \text{ is non-negtive} \\ \text{ simple } \right\}.$$
where $S \leq f a.e.$ means $\exists N \in \mathcal{M}$ with $\mu(N) = 0$
So that $S \leq f$ on $X \setminus N$.
(here we use the fact if $S \leq f a.e.$,
then taking $S = S \cdot X \times N$, then $S \leq f$
and $\int_{E} S d\mu = \int_{E} S d\mu$).
Prop 1.8. Let $f, g : X \rightarrow [o, two]$ measurable. Then

$$\frac{\operatorname{Prop 1.8}}{\operatorname{E}} \quad \text{Let } f, g : X \to [o, \pm \infty] \quad \text{measurable}, \text{ Then}$$

$$(1) \quad \int_{E} f d\mu = \int_{X} f \cdot X_{E} \, d\mu, \quad \forall \quad E \in \mathcal{M}$$

$$(2) \quad \int_{X} g \, d\mu \geq \int_{X} f \, d\mu \quad \text{if} \quad g \geq f \text{ a.e.}$$

$$\operatorname{Moreover}, \quad \text{if} \quad \int_{X} g \, d\mu < \infty, \quad \text{then} \quad \stackrel{'=}{=} \quad \text{holds}$$

$$\operatorname{iff} \quad g = f \quad \text{a.e.}$$

(3)
$$\int_{E_{1}} f d\mu \leq \int_{E_{2}} f d\mu$$
 if $E_{1} \equiv E_{2}$
(4) $\int_{X} f d\mu = \int_{X} cf d\mu \quad \forall \quad C \geq 0$.
Pf. Here we only prove (1), i.e
 $\int_{E} f d\mu = \int_{X} f X_{E} d\mu$. (**).
We first prove that (**) holds if f is simple.
To see it, let
 $S = \sum_{i} d_{i} X_{A_{i}}$.
Then
 $\int_{E} s d\mu = \sum_{i} d_{i} \mu(A_{i} \cap E)$
 $= \int_{X} s \cdot X_{E} d\mu$.
Next we consider the general care. We prove
that
 $\int_{E} f d\mu \geq \int_{X} f X_{E} d\mu$.

To see this, let
$$osS = \Sigma d_i X_{A_i} \leq f X_E$$

Then $S \cdot X_E = s$ and $s \leq f$.
(since $s(x)=o if x \notin E$)
Hence $\int_E f dM \geq \int_E s dM$
 $= \int_X s \chi_E dM$
 $= \int_X s dM$.
taking supremum of $\int_X s dM$ over $o \leq s \leq f X_E$
gives
 $\int_E f dM \geq \int_X f X_E dM$.
Next we prove $\int_E f dM \leq \int_X f X_E dM$.
To see it, let $o \leq s \leq f$, where s is simple.
Then $s X_E \leq f X_E$, so
 $\int_X f X_E dM \geq \int_X s X_E dH = \int_E s dM$,

taking supremum over
$$0 \le s \le f$$
 gives
 $\int_X f X_E d\mu \ge \int_E f d\mu$.
Prop 1.9 (Markov inequality)
Let $f: X \rightarrow Eo, \pm \infty$] measurable.
Let $M \ge o$. Then
 $\mu \{x: f(x) \ge M\} \le \frac{1}{M} \int_X f d\mu$.
Consequently (i) If $\int_X f d\mu < \infty$, then
 f is finite a.e.
(ii) If $\int_X f d\mu = o$, then
 $f = o$ a.e.
Pf. Write $E_M := \{x: f(x) \ge M\}$.
Then $f \ge M \cdot X_{E_M}$

Taking integration gives

$$\int_{x} f d\mu \ge \int_{x} M \chi_{E_{M}} d\mu = M \mu(E_{M}).$$
Hence $\mu(E_{M}) \le \frac{1}{M} \int_{x} f d\mu.$
Next assume $\int_{x} f d\mu < \infty.$
Write
$$E_{\infty} = \{x : f(x) = +\infty \}.$$
Then
$$E_{\infty} \subset E_{M} \quad \forall M > 0$$
So
$$\mu(E_{\infty}) \le \mu(E_{M}) \le \frac{1}{M} \int_{x} f d\mu$$
Letting $M \rightarrow +\infty$ gives $\mu(E_{\infty}) = 0, i.e.$

$$f \text{ is finite a.e.}$$
Finally assume $\int f d\mu = 0.$
Let $A = \{x : f(x) > 0\}.$
Let $A = \{x : f(x) > 0\}.$

$$(\text{ conversely } \forall x \in A, \text{ then } f(x) > 0, so = 10, s$$

Hence
$$\mu(A) \leq \sum_{n=1}^{\infty} \mu(E_{1/n})$$

 $\leq \sum_{n=1}^{\infty} (1/n) \int f dM$
 $\leq 0.$
Hence $\mu(A) = 0$, i.e. $f = 0$ a.e.
 $Hence \mu(A) = 0$, i.e. $f = 0$ a.e.
 $(\lim_{n \to \infty} f_n(X) = f(X) \text{ a.e.}),$
 $(\lim_{n \to \infty} f_n(X) = f(X) \text{ a.e.}),$
 $Q: Do we have$
 $\int_X f_n d\mu \longrightarrow \int_X f d\mu ?$
Example 1. Let $\mu = d_{(0,1)}, Leb.$ Measure on $(0,1).$
Take $g_R = 0$ on $(1/n, 1)$ and R on $(0, \frac{1}{N}).$
Then $\lim_{R \to R} g_R = 0$ on $(0, 1).$

However
$$\int_{(0,1)} \varphi_{R} d\mu = 1$$

So $\lim_{R} \int \varphi_{R} d\mu = 1 \neq \int \lim_{R} \varphi_{R} d\mu$
Example 2. Take $f_{R} = \chi_{ER,R+1}$
Let $\mu = \mathcal{L}_{[0,+\infty]}$.
Again $f_{R} \rightarrow 0$ are, but
 $\lim_{R} \int_{(\infty)} S_{R} d\mu = 1 \neq \int \lim_{R} f_{R} d\mu$.
Example 3. Take $g_{R} = \frac{1}{R} [0,R]$.
 $\mu = \mathcal{L}_{[0,\infty)}$.

Then 1.10 (Lebesgue's Monotone Convergence Thm).
Let
$$f_R$$
, $f : X \to [o, tw]$ is measurable.
Assume $f_R(x) \land f(x)$ on $X \setminus N$ with $H(N)=0$
Then
tim $\int_X f_R dH = \int_X f dH$.
Pf. Since f_R are monotone increasing.
So are $\int_X f_R dH$.
Clearly we have $\int_X f_R dH \leq \int_X f dH$
(since $f_R s = 0$).
Hence $\lim_{N \to \infty} \int_X f_R dH \leq \int_X f dH$.
Now we prove the other direction.
Let $0 \leq S \leq f$ be simple. Let $0 < S < 1$.
Define: $E_R := \{x \in X \setminus N : f_R(x) \geq S \cdot S(x)\}$

Since
$$f_{R}(k) \uparrow f(x)$$
 on $X \setminus V$ and $S(k) \leq f(x)$
We have
 $\bigcup_{k=1}^{\infty} E_{k} = X \setminus N$
and $E_{k} \subset E_{k+1}$, $\forall k$.
Now notice that
 $f_{k} \geq SS(k) \not X \in K$
Taking integration gives
 $\int_{X} f_{k} d_{M} \geq S \int S - X \in M$
 $= S \int_{E_{k}} S d_{M}$
 $= S \int_{E_{k}} S d_{M}$
 $S = \sum_{i=1}^{N} d_{i} \mu(A_{i} \cap E_{k})$
Since $E_{R} \uparrow X \setminus N$, So $A_{i} \cap E_{R} \int A_{i} n(X \setminus N)$
 $a \leq k \neq \infty$.

Letting R > 00, we see that $S \sum_{i=1}^{N} d_i \mu(A_i \cap E_{\kappa})$ $\rightarrow \xi \sum_{i=1}^{N} a_i \mu(A_i \cap (X \setminus N))$ $= \int_{i=1}^{N} d_{i} \mu(A_{i})$ $= S \int_X S dM$ Hence $\lim_{k \to \infty} \int_{Y} f_{k} d\mu \geq \delta \int_{X} S d\mu$ Since S is arbitrarily taken in (0,1). Letting $S \rightarrow 1$, $\int_X S d\mu \rightarrow \int_Y f d\mu$ we have $\lim_{k \to \infty} \int_{F_k} d\mu \ge \int_X f d\mu$

Thm 1.11. (Fatou's Lemma)
Let
$$f_{R}: X \rightarrow [0, \infty]$$
 be measurable, $R \ge 1$.
Then
 $\int \lim_{R \to \infty} f_{R} d\mu \le \lim_{R \to \infty} \int f_{R} d\mu$.
 $g_{R} = \sum_{k \ge 0} \inf_{X} f_{k} d\mu$.
Pf. Notice that
 $\lim_{R \to \infty} f_{R}(x) = \sup_{R \ge 1} \inf_{j \ge R} f_{j}(x)$
Now White $g_{R}(x) = \inf_{j \ge R} f_{j}(x)$.
 $g(x) = \lim_{R \ge 0} f_{R}(x)$.
Then $g_{R} \land g_{r}$ also g_{R} are non-negative.
 $g_{R} = \lim_{R \ge 0} f_{R}(x)$.
 $f_{R}(x) = \int_{X} g_{r} d\mu$
 $\int \lim_{R \to \infty} f_{R}(x) = \int_{X} g_{r} d\mu$

$$= \lim_{k \to \infty} \int_{X} g_{k} dM$$

$$\leq \lim_{k \to \infty} \int_{X} f_{k} dM \quad (sine g_{k} \in f_{k}).$$
Next we prove the linearity of integration.
Prop 1.12: Let $f, g \colon X \to [0, t\omega]$ measurable.
Let $d, \beta \ge 0.$
Then $\int_{X} df + \beta g dM = d \int_{X} f dM + \beta \int_{X} g dH.$
Pf. First the identity holds if f, g are simple functions.
Next Choose $S_{R} \uparrow f, t_{R} \uparrow g,$
where S_{R}, t_{R} are non-negative simple.
Then $dS_{R} + \beta t_{K} \uparrow df + \beta g$

So by the Monotone Convergence Thm

$$\int df + \beta g d\mu = \lim_{k \to \infty} \int dS_k + \beta t_k d\mu$$

$$= \lim_{k \to \infty} \left(d \int S_k d\mu + \beta \int t_k d\mu \right)$$

$$= d \int f d\mu + \beta \int g d\mu.$$
Now we are ready to define the integration
of general measurable functions.
Def. Let $f: X \to [-\infty, \infty]$ be measurable.
Then we define

$$\int_X f d\mu = \int_X f^{\dagger} d\mu - \int_X f d\mu$$
if one of $\int_X f^{\dagger} d\mu$, $\int_X f^{-}$ is finite.
where $f^{\dagger} = \max\{f, o\}, f^{-} = \max\{0, -f\}$

Def. We say a measurable function f is
integrable if
$$\int_X f^* d\mu < \infty$$
 and
 $\int_X f^* d\mu < \infty$.
(Notice $|f| = f^* + f^*$. Hence by Prop 1.12,
 $\int |f| d\mu = \int f^* d\mu + \int f^* d\mu$),
So f is integrable $\iff \int_X |f| d\mu < \infty$.
Prop 1.13. Let f, g be integrable and d, β ∈ IR
Then $\partial f + \beta g$ is integrable and
 $\int_X df + \beta g d\mu = d \int f d\mu + \beta \int g d\mu$.
PF. We first prove $f + g$ is integrable and
 $\int f + g d\mu = \int f d\mu + \int g d\mu$.
Since $|f + g| \leq |f| + |g|$, so
 $\int |f + g| \leq |f| + |g|$, so
 $\int |f + g| d\mu \leq \int |f| + |g|$, so
 $\int |f + g| d\mu \leq \int |f| + |g|$, so

Hence
$$f+g$$
 is integrable.
Now we prove $S+g.d\mu = S+g.d\mu + Sg.d\mu$.
Nottle that
 $f+g = (f+g)^{+} - (f+g)^{-}$
 $= (f^{+}-f^{-}) + (g^{+}-g^{-})$
Hence
 $(f+g)^{+} + f^{-} + f^{-} = (f+g)^{-} + f^{+} + g^{+}$.
Taking integration on both sides we obtain
 $\int (f+g)^{+} d\mu + \int f^{-} d\mu + \int g^{-} d\mu = \int (f+g)^{-} d\mu$
 $+ \int f^{+} d\mu + \int g^{+} d\mu + \int g^{-} d\mu$
from which we obtain
 $\int (f+g)^{+} d\mu - \int (f+g)^{-} d\mu = \int f^{+} d\mu - \int f^{-} d\mu$
 $+ \int g^{+} d\mu - \int g^{-} d\mu$
i.e $\int f+g.d\mu = \int f d\mu + \int g.d\mu$.
Next we show $C\int f d\mu = \int cf.d\mu$, $\forall c \in \mathbb{R}$.

If C>0, then it follows from the def of integration
of meas. function since
$$(Cf)^{\dagger} = Cf^{\dagger}$$

 $(Cf)^{-} = Cf^{-}$
If C<0, it suffices to show
 $-\int f d\mu = \int f d\mu$.
Again it follows from the def. [2]
Thm 1.14 (Lebesgue's dominated convergence Thm).
Let f, $f_{R} : X \rightarrow [-\infty, \infty]$ be measurable
such that
 $\int_{R}^{K} (L) \neq [C_{X}) \quad a.e. \quad as \quad R \rightarrow \infty$.
Moveover, suppose $\exists an integrable \quad g \quad such that$
 $|f_{R}^{(K)}| \leq g^{(K)} \quad a.e. \quad for \quad all \quad R \in INT.$
Then
 $\lim_{R \rightarrow \infty} \int_{X} f_{R} d\mu = \int_{X} f d\mu$.
Pf. First $|f_{(X)}| = \lim_{R \rightarrow \infty} [f_{R}^{(K)}] \leq g^{(K)} \quad a.e.$

Now let us apply Fatou's lemma to the
sequence
$$2g - |f_R - f|$$
, $R = 1, 2, ...$
($|f_R - f| \le |f_R| + |f| \le 2g$ a.e).
We have

$$\frac{\lim_{k \to \infty} \int 2g - |f_R - f| \, dM}{g \to \infty} = \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, d\mu. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

$$= \int 2g \, dM. \quad (2g - |f_R - f| \, dM)$$

Hence
$$\lim_{k \to \infty} \int If_k - f | d\mu = 0.$$

So $\lim_{k \to \infty} \int f_k d\mu - \int f d\mu |$
 $\leq \lim_{k \to \infty} \int f_k - f | d\mu = 0.$
Therefore
 $\lim_{k \to \infty} \int f_m d\mu = \int f d\mu.$