Exercise 4

- 1. We continue our study of the Lebesgue measure beginning in Ex 3. Show that
 - (a) \mathcal{L}^n is a Borel measure.
 - (b) For every set E, there exists a sequence of open sets $\{G_k\}$ satisfying $E \subset G_k$ and

$$\mathcal{L}^n(E) = \lim_{k \to \infty} \mathcal{L}^n(G_k) \; .$$

(c) For every measurable set A, there exists a sequence of compact sets $\{K_j\}$ satisfying $K_j \subset A$ and

$$\mathcal{L}^n(A) = \lim_{j \to \infty} \mathcal{L}^n(K_j) \;.$$

Hint: First assume A is bounded.

- 2. Let $(\mathbb{R}^n, \mathcal{B}, \mu)$ be a measure space where \mathcal{B} is the Borel σ -algebra on \mathbb{R}^n . Suppose that μ is translational invariant, i.e., $\mu(E+x) = \mu(E), \forall x \in \mathbb{R}^n, E \in \mathcal{B}$, and that μ is non-trivial in the sense that $0 < \mu([0, 1]^n) < \infty$. Show that μ is a constant multiple of the Lebesgue measure on \mathbb{R}^n when restricted to \mathcal{B} .
- 3. Let X be a metric space and C be a subset of \mathcal{P}_X containing the empty set and X. Assume that there is a function $\rho : \mathcal{C} \to [0, \infty]$ satisfying $\rho(\phi) = 0$. For each $\delta > 0$, show that (a)

$$\mu_{\delta}(E) = \inf \left\{ \sum_{k} \rho(C_k) : E \subset \bigcup_{k} C_k, \quad \text{diameter}(C_k) \le \delta \right\}$$

is an outer measure on X, and (b) $\mu(E) = \lim_{\delta \to 0} \mu_{\delta}(E)$ exists and is also an outer measure on X.

4. Consider in the previous problem the Euclidean space $\mathbb{R}^n, \mathcal{C} = \mathcal{P}_X$ and $s \in [0, \infty)$. Let

$$\rho(C) = (\text{diam } (C))^s ,$$

where the diameter of C is given by $\sup_{x,y\in C} |x-y|$. Show that the resulting outer measures are Borel measures.

5. Let X be a metric space and C(X) the collection of all continuous real-valued functions in X. Let \mathcal{A} consist of all sets of the form $f^{-1}(G)$ which $f \in C(X)$ and G is open in \mathbb{R} . The "Baire σ -algebra" is the σ -algebra generated by \mathcal{A} . Show that the Baire σ -algebra coincides with the Borel σ -algebra \mathcal{B} .

- 6. Identify the Riesz measures corresponding to the following positive functionals $(X = \mathbb{R})$:
 - (a) $\Lambda_1 f = \int_a^b f \, dx$, and (b) $\Lambda_2 f = f(0)$.
- 7. Let c be the counting measure on \mathbb{R} ,

$$c(A) = \begin{cases} \#A, & A \neq \phi, \\ 0, & A = \phi. \end{cases}$$

Is there a positive functional

$$\Lambda f = \int f \, dc \quad ?$$