Exercise 3

- Prove the conclusion of Lebesgue's dominated convergence theorem still holds when the condition "{f_k} converges to f a.e." is replaced by the condition " {f_k} converges to f in measure".
- (2) Find an example in each of the following cases.
 - (a) A sequence which converges in measure but not at every point.
 - (b) A sequence which converges pointwisely but not in measure.
 - (c) A sequence which converges in measure but not in L^1 .
- (3) Let $f_n, n \ge 1$, and f be real-valued measurable functions in a finite measure space. Show that $\{f_n\}$ converges to f in measure if and only if each subsequence of $\{f_n\}$ has a subsubsequence that converges to f a.e..
- (4) Let (X, \mathcal{M}, μ) be a measure space. Let $\widetilde{\mathcal{M}}$ contain all sets E such that there exist $A, B \in \mathcal{M}, A \subset E \subset B, \mu(B \setminus A) = 0$. Show that $\widetilde{\mathcal{M}}$ is a σ -algebra containing \mathcal{M} and if we set $\widetilde{\mu}(E) = \mu(A)$, then $(X, \widetilde{\mathcal{M}}, \widetilde{\mu})$ is a complete measure space.
- (5) Show that $\widetilde{\mathcal{M}}$ in the previous problem is the σ -algebra generated by \mathcal{M} and all subsets of measure zero sets in \mathcal{M} .
- (6) Here we consider an application of Caratheodory's construction. An algebra \mathcal{A} on a set X is a subset of \mathcal{P}_X that contains the empty set and is closed under taking complement and finite union. A premeasure $\mu : \mathcal{A} \to [0, \infty]$ is a finitely additive function which satisfies: $\mu(\phi) = 0$ and $\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$ whenever E_k are disjoint and $\bigcup_{k=1}^{\infty} E_k \in \mathcal{A}$. Show that the premeasure μ can be extended to a measure on the σ -algebra generated by \mathcal{A} . Hint: Define the

outer measure

$$\overline{\mu}(E) = \inf\left\{\sum_{k} \mu(E_k) : E \subset \bigcup_{k} E_k, E_k \in \mathcal{A}\right\}.$$

This is called Hahn-Kolmogorov theorem.

The following problems are concerned with the Lebesgue measure. Let $R = I_1 \times I_2 \times \cdots \times I_n$, I_j bounded intervals (open, closed or neither), be a rectangle in \mathbb{R}^n . More properties of the Lebesgue measure can be found in the Exercise 4.

(7) For a rectangle R in \mathbb{R}^n , define its "volume" to be

$$|R| = (b_1 - a_1) \times (b_2 - a_2) \times \cdots \times (b_n - a_n)$$

where b_i , a_i are the right and left endpoints of I_j . Show that

(a) if $R = \bigcup_{k=1}^{N} R_k$ where R_k are almost disjoint (that's, their interiors are pairwise disjoint), then

$$|R| = \sum_{k=1}^{N} |R_k|.$$

(b) If
$$R \subset \bigcup_{k=1}^{N} R_k$$
, then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

- (8) Let \mathcal{R} be the collection of all closed cubes in \mathbb{R}^n . A closed cube is of the form $I \times \cdots \times I$ where I is a closed, bounded interval.
 - (a) Show that $(\mathcal{R}, |\cdot|)$ forms a gauge, and thus it determines a complete measure \mathcal{L}^n on \mathbb{R}^n called the *Lebesgue measure*.
 - (b) $\mathcal{L}^n(R) = |R|$ where R is a cube, closed or open.

- (c) For any set E and $x \in \mathbb{R}^n$, $\mathcal{L}^n(E+x) = \mathcal{L}^n(E)$. Thus the Lebesgue measure is translational invariant.
- (9) This problem is optional. Use Hahn-Kolmogorov theorem to construct the Lebesgue measure instead of Problems 7 and 8.