
MATH4240 Tutorial 6 Notes

1 Stationary Distribution

For a Markov chain X, a probability distribution π on the state space S is a stationary distribution if it is
invariant under the process: if X0 has distribution π, then Xn also has distribution π for all n. If P is the
transition function, this is π(y) = (πP )(y) =

∑
x π(x)P (x, y).1 If the state space is finite, π is the left eigenvector

of P associated to the eigenvalue 1 (which is always an eigenvalue of P ).
Recall the following theorem from lecture:

Theorem 1.1. If P is the transition matrix of a finite Markov chain, and

• 1 is a simple eigenvalue of P

• no other (complex) eigenvalue λ has modulus | λ | ≥ 1 (i.e., 1 is dominant eigenavalue)

• there exists a left eigenvector π associated to the eigenvalue 1 that has nonnegative entries (which we will
also assume to be normalized such that

∑
πi = 1)

Then limn P
n exists and is of the form limn P

n =
(
π . . . π

)T
(that is, π stacked together vertically), and π is

the unique stationary distribution.

As mentioned in the lecture, these conditions are satisfied if for some n every entry of Pn is positive (“primi-
tive”).2

2 Computational Example

Recall the Markov chain from tutorial 4:
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which, as we have computed, can be condensed into an absorbing chain that has a limiting transition matrix

P̃ =


C1 C2 4 7
1 0 0 0
0 1 0 0
0 0 1/2 1/2
1/2 1/2 0 0

 =

(
I 0
R Q

)
, lim

n
P̃n =


C1 C2 4 7
1 0 0 0
0 1 0 0
1/2 1/2 0 0
1/2 1/2 0 0

 =

(
I 0

NR 0

)

1Note that we are summing on the first variable.
2If the chain has N states, it suffices to take n ≥ (N − 1)2 + 1, see Horn and Johnson. This means you can check primitivity

by just squaring the transition matrix a few times and checking if there is a zero entry. Still, you would need to compute the left
eigenvector.
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with fundamental matrix N = (I −Q)
−1

.
To find the limiting transition matrix of the original chain, it suffices to consider the chain on each of the

irreducible closed sets. For convenience, let us first permute the transition matrix (of the original chain) into
canonical form

Pcan =



1 3 6 2 5 4 7
0 1/2 1/2 0 0 0 0

1/2 0 1/2 0 0 0 0
1/2 1/2 0 0 0 0 0
0 0 0 1/3 2/3 0 0
0 0 0 1/2 1/2 0 0
0 0 0 0 0 1/2 1/2

1/3 1/6 0 1/4 1/4 0 0


For C1 = {1, 3, 6}, the transition matrix restricted on C1 is

PC1
=

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


With direct computations, PC1

has eigenvalues 1,−1/2,−1/2, and the left eigenvector of PC1
associated to

eigenvalue 1 is of the form π = c(1, 1, 1) for c ∈ R. These imply Theorem 1.1 holds3, and so with normalized left
eigenvector πC1 = (1/3, 1/3, 1/3),

lim
n

Pn
C1

=

πC1

πC1

πC1

 =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 = 1⃗πC1

Here, 1⃗ is a column vector of appropriate size in which every entry is 1.
For C2 = {2, 5}, the transition matrix restricted on C2 is

PC2
=

(
1/3 2/3
1/2 1/2

)
With direct computations, PC2

has eigenvalues 1,−1/6, and the left eigenvector of PC2
associated to eigenvalue

1 is of the form π = c(3, 4) for c ∈ R. These imply Theorem 1.1 holds, and so with normalized left eigenvector
πC2

= (3/7, 4/7),

lim
n

Pn
C2

=

(
πC2

πC2

)
=

(
3/7 4/7
3/7 4/7

)
= 1⃗πC2

with 1⃗ similarly defined.
These imply that the limiting transition matrix exists and takes the form noted in lecture.
We now need to find the part of the limit transition matrix from the transient states to the irreducible closed

sets limn P
n(ST , Ci). As covered in the lecture, this part is simply

(
ρ(4, C1)πC1

ρ(4, C2)πC2

ρ(7, C1)πC1
ρ(7, C2)πC2

)
=

[ 1 3 6 2 5
4 1/6 1/6 1/6 3/14 2/7
7 1/6 1/6 1/6 3/14 2/7

]
Note that we can abuse the notation and write it in a more appealing form(

ρ(4, C1)πC1
ρ(4, C2)πC2

ρ(7, C1)πC1
ρ(7, C2)πC2

)
=

(
ρ(4, C1) ρ(4, C2)
ρ(7, C1) ρ(7, C2)

)(
πC1

0
0 πC2

)
= NR

(
πC1

0
0 πC2

)

3You can also note that PC1
is primitive: P 2

C1
=

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

.
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So, collecting the results, the limiting transition matrix for the original chain, in the canonical form, is

lim
n

Pn
can =



1 3 6 2 5 4 7

limn P
n
C1

0 0

0 limn P
n
C2

0

ρ(4, C1)πC1
ρ(4, C2)πC2 0

ρ(7, C1)πC1
ρ(7, C2)πC2


=



1 3 6 2 5 4 7
1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
0 0 0 3/7 4/7 0 0
0 0 0 3/7 4/7 0 0

1/6 1/6 1/6 3/14 2/7 0 0
1/6 1/6 1/6 3/14 2/7 0 0


We can abuse the notation and write it in a form that is a bit more intuitive:

lim
n

Pn
can =



1 3 6 2 5 4 7
πC1

0 0πC1

πC1

0
πC2 0
πC2

NR

(
πC1 0
0 πC2

)
0


=


C1 C2 ST

1⃗ 0

0 1⃗

0

0

NR

 C1 πC1 0
C2 0 πC2

ST 0

0

0



which you can interpret as total probability on the stationary distributions, conditioning on which irreducible
closed set the chain ends up in. Note that the 1⃗ vectors should have appropriate sizes that match the corresponding
irreducible closed sets.

Now we have the limiting transition matrix in canonical form. Typically you are given the transition matrix
with the states in a certain order, so you should permute the states back to the original order.

lim
n

Pn =



1 2 3 4 5 6 7
1/3 0 1/3 0 0 1/3 0
0 3/7 0 0 4/7 0 0
1/3 0 1/3 0 0 1/3 0
1/6 3/14 1/6 0 2/7 1/6 0
0 3/7 0 0 4/7 0 0
1/3 0 1/3 0 0 1/3 0
1/6 3/14 1/6 0 2/7 1/6 0


2.1 Example from Lecture

I believe the following transition matrix is mentioned during the lecture (for convenience, we also label the states)

P =



1 2 3 4 5 6
1 1/3 2/3 0 0 0 0
2 1/2 1/2 0 0 0 0
3 0 0 1 0 0 0
4 1/2 0 0 0 1/2 0
5 0 0 0 1/2 0 1/2
6 0 0 1/2 0 1/2 0


Let us compute the limiting transition matrix. Note that the matrix is already in canonical form.

The condensed chain, with C1 = {1, 2}, C3 = {3} has transition matrix

P̃ =


C1 C2 4 5 6
1 0 0 0 0
0 1 0 0 0
1/2 0 0 1/2 0
0 0 1/2 0 1/2
0 1/2 0 1/2 0

 =

(
I 0
R Q

)
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For the (restricted) transition matrix P1 =

(
1/3 2/3
1/2 1/2

)
on C1, which is the same one as in the previous

example, the eigenvalues are 1,−1/6, with the eigenvectors associated to the eigenvalue 1 being in the form
π = c(3, 4) with c ∈ R. By Theorem 1.1, on (normalized) stationary distribution π1 = (3/7, 4/7) on C1,

limn P
n
1 =

(
3/7 4/7
3/7 4/7

)
.

On C2 = {3}, it is easy to see that π2 = (1) is the stationary distribution on C2, and limn P
n
2 =

(
1
)
.

To compute the transient part, we can compute4

N = (I −Q)
−1

=

3/2 1 1/2
1 2 1

1/2 1 3/2

 , NR =

3/4 1/4
1/2 1/2
1/4 3/4

 , NR

(
π1 0
0 π2

)
=

9/28 3/7 1/4
3/14 2/7 1/2
3/28 1/7 3/4


Combined,

lim
n

Pn =


π1 0 0 0 0
π1 0 0 0 0
0 π2 0 0 0

0 0 0NR

(
π1 0
0 π2

)
 =


3/7 4/7 0 0 0 0
3/7 4/7 0 0 0 0
0 0 1 0 0 0

9/28 3/7 1/4 0 0 0
3/14 2/7 1/2 0 0 0
3/28 1/7 3/4 0 0 0



4If we denote T = NRΠ with Π =

(
π1 0
0 π2

)
, then T can be solved from the equation (I−Q)T = RΠ, which may be a bit easier

to handle (as you do not need to compute the inverse N explicitly).
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