
MATH4240 Tutorial 3 Notes

1 One-step Argument

Given a Markov chain Xn with (finite) state space S, there are a few things we may want to know on given states
x, y ∈ S:

• the distribution of Ty on initial state x: Px (Ty = n)

• probability of visit: ρxy = Px (Ty < ∞) =
∑

n Px (Ty = n), which also gives expected number of visit
Ex (N(y)) =

ρxy

1−ρyy
, with N(y) =

∑
n≥1 χy(Xn)

• expected hitting time: Ex (Ty) =
∑

n nPx (Ty = n)

(Recall that Ty = inf { n ≥ 1 | Xn = y } is the hitting time of state y after the initial state.)
One-step argument yields a linear system on these quantities by considering their behavior after one step1 in

the chain: (for simplicity, let us denote for the moment txy = Ex (Ty |Ty < ∞))

Px (Ty = n+ 1) = 0 +
∑
z ̸=y

P (x, z)Pz (Ty = n) for n ≥ 1

Px (Ty = 1) = P (x, y)

ρxy = P (x, y) +
∑
z ̸=y

P (x, z)ρzy

txy = P (x, y) · 1 +
∑
z ̸=y

P (x, z)(1 + tzy)

= 1 +
∑
z ̸=y

P (x, z)tzy

If Ty = ∞ happens with probability 1 − ρxy > 0 (e.g. not irreducible), then trivially Ex (Ty) = ∞. Note that
the equations still hold if we consider the hitting time of a set TA instead of a single state Ty (with obvious
modification).

We can collect the equations on ρxy and txy as matrices:ρ1y
...

ρNy

 =

P (1, y)
...

P (N, y)

+ P−y

ρ1y
...

ρNy


 t1y

...
tNy

 =

1
...
1

+ P−y

 t1y
...

tNy


if the states are denoted as 1, . . . , N , and (P−y)ij =

{
Pij if j ̸= y

0 if j = y
is the the transition matrix with the column

corresponding to state y replaced with 0.
While you can solve these systems with straightforward approaches from e.g. MATH1030, sometimes the

transition matrix is dense enough that it may be worth while to find other approaches, especially if you just want
to find a single specific ρxy (or txy).

1Instead of first-step analysis, you can also do last-step analysis.
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2 Examples

Example 1. Consider Ehrenfest chain on population d = 3: on state space S = { 0, . . . , d },

P (x, y) =


x/d if y = x− 1

1− x/d if y = x+ 1

0 otherwise

, or P =


0 1 2 3

0 0 1 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 1 0


For each x ∈ S, what is ρx0 and Ex (T0)?

With one-step argument, we have the linear system
ρ00
ρ10
ρ20
ρ30

 =


0
1/3
0
0

+


0 1 0 0
0 0 2/3 0
0 2/3 0 1/3
0 0 1 0



ρ00
ρ10
ρ20
ρ30



E0 (T0)
E1 (T0)
E2 (T0)
E3 (T0)

 =


1
1
1
1

+


0 1 0 0
0 0 2/3 0
0 2/3 0 1/3
0 0 1 0



E0 (T0)
E1 (T0)
E2 (T0)
E3 (T0)


Solving the system (e.g. with Gauss elimination, reducing variables) yields

ρ00
ρ10
ρ20
ρ30

 =


1
1
1
1

 ,


E0 (T0)
E1 (T0)
E2 (T0)
E3 (T0)

 =


8
7
9
10


Example 2. Let us consider the (fair) gambler’s ruin chain on state space S = { 0, . . . , N }:

P (i, i− 1) = P (i, i+ 1) =
1

2
if i ̸= 0, N

P (0, 0) = P (N,N) = 1

or as transition diagram

0 1 . . . N − 1 N1

1/2

1/2

1/2

1/2

1/2

1/2

1

Let us compute the ruin probability ρx0 when started at state x ̸= 0, N .
By one-step argument and noting that ρ00 = 1, ρN0 = 0,

ρx0 = P (x, 0) +
∑
z ̸=0

P (x, z)ρz0

so ρ10 =
1

2
+

1

2
ρ20

ρi0 =
1

2
ρi−1,0 +

1

2
ρi+1,0 if i ∈ { 2, . . . , N − 1 }

Moving the terms around, we have

ρ20 − ρ10 = ρ10 − 1

ρi+1,0 − ρi0 = ρi0 − ρi−1,0 if i ∈ { 2, . . . , N − 1 }
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which implies for i ∈ { 1, . . . , N },

ρi0 − ρi−1,0 = ρ10 − 1

ρi0 − 1 =

i∑
j=1

(ρj0 − ρj−1,0) = i(ρ10 − 1)

In particular, −1 = ρN0 − 1 = N(ρ10 − 1). So ρi0 = 1− i/N . Same approach also implies ρiN = i/N .
We can also compute the expected duration Ex (T ) of the chain, where T = T{0,N} = min(T0, Tn) is the

(random) time of absorption, again when started at x ̸= 0, N .
By one-step argument,

Ex (T ) = 1 +
∑

z/∈{0,N}

P (x, z)Ez (T )

so E1 (T ) = 1 +
1

2
E2 (T )

EN−1 (T ) = 1 +
1

2
EN−2 (T )

Ei (T ) = 1 +
1

2
Ei−1 (T ) +

1

2
Ei+1 (T ) if i ∈ { 2, . . . , N − 2 }

Moving the terms around and denoting for the moment E0 (T ) = EN (T ) = 0, we have for each i ∈ { 0, . . . , N−1 },

Ei+1 (T )− Ei (T ) = Ei (T )− Ei−1 (T )− 2

which implies for i ∈ { 1, . . . , N },

Ei (T )− Ei−1 (T ) = E1 (T )− 2(i− 1)

Ei (T ) =

i∑
j=1

Ej (T )− Ej−1 (T ) = iE1 (T )− i(i− 1)

In particular, 0 = EN (T ) = NEi (T )−N(N − 1). So, E1 (T ) = N − 1, and hence

Ex (T ) = x(N − x)

Example 3. Let us consider symmetric random walk on S = Z:

P (x, x+ 1) = P (x, x− 1) =
1

2
for x ∈ Z

What is the probability ρx0 of visiting state 0 when started at state x ∈ Z?
Like gambler’s ruin chain, we have a similar list of equations

ρ00 =
1

2
ρ10 +

1

2
ρ−1,0

ρ10 =
1

2
+

1

2
ρ20

ρ−1,0 =
1

2
+

1

2
ρ−2,0

ρx0 =
1

2
ρx+1,0 +

1

2
ρx−1,0 for x ̸= −1, 0, 1

so the same approach yields

ρx0 = ρ10 + (x− 1)(ρ20 − ρ10) for x ≥ 2

ρx0 = ρ−1,0 + (x− 1)(ρ−2,0 − ρ−1,0) for x ≤ −2

Since 0 ≤ ρx0 ≤ 1 for all x, we must have ρx0 = ρ10 for x ≥ 1 and ρx0 = ρ−1,0 for x ≤ −1. Solving the remaining
equations gives ρ10 = ρ−1,0 = 1, and thus ρ00 = 1.

This implies that 0 is a recurrent state, and (by symmetry) the symmetric random walk on Z recurrent.

3


	One-step Argument
	Examples

