
MATH4240 Tutorial 2 Notes

1 Definitions

A stochastic process X is a collection of random values on a common probability space that take values in a
common space: Xt = X(t) : Ω → S for each t in an index set T , typically interpreted as time.

For now, we will assume that

• index set T is natural number N

• state space S is a countable set, usually finite

In particular, we may write the process as a sequence of random variables X0, X1, . . ..

Definition 1. A (discrete) Markov chain is a (discrete time) stochastic process {Xn} (on discrete state space)
with the Markov property : for all n ≥ 0, t0 < . . . < tn+1, x0, . . . , xn+1 ∈ S,

P
(
Xtn+1 = xn+1

∣∣ Xtn = xn and Xti = xi, ∀i < n
)
= P

(
Xtn+1 = xn+1

∣∣ Xtn = xn

)
That is, given precisely the current state, the behavior of the chain in the future is independent of the past.

We will also assume that the chain is (time) homogeneous: for all n,m ∈ N and x, y ∈ S,

P ( Xn+1 = y | Xn = x ) = P ( Xm+1 = y | Xm = x )

For such chain, the (one-step) transition matrix is

Pxy = P (x, y) = P ( Xn+1 = y | Xn = x )

The distribution πn of the chain at time n is described via the pmf

πn(x) = P (Xn = x) , ∀x ∈ S

In particular, its initial distribution is π0. We will treat the pmf as a row vector, so that πn =
(
πn(1) . . . πn(k)

)
(assuming the state space is { 1, . . . , k }).

Occasionally, the initial distribution is deterministic (i.e. π0(x0) = 1 for some x0 ∈ S), in which case we will
write the corresponding probability as Px0

(E) = P (E |X0 = x0) and expectation as Ex0
(Y ) = E (Y |X0 = x0).

Remark 1. We can write the Markov property in a (slightly) more general way: on T ≥ 0, E<T is an event that
depends only on Xt with t < T , E≥T is an event that depends only on Xt with t ≥ T , x ∈ S, then

P ( E≥T | XT = x and E<T ) = P ( E≥T | XT = x )

Note that we need to have the precise information of the present state, i.e. XT = x. Quoting Chung from
Green, Brown, and Probability & Brownian Motion on the Line (p.30),

This is often described by words like: “the past has no aftereffect on the future when we know the
present.” But beware of such non-technical presentation (sometimes required in funding applications
because bureaucrats can’t read mathematics). Big mistakes have been made through misunderstanding
the exact meaning of the words “when the present is known”.
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Example 1 (Two-state Markov chain). Suppose in Hong Kong the weather of a specific day depends only on the
weather of the day before, and we observed the following pattern

P ( sunny today | sunny yesterday ) = 1− p

P ( not sunny today | sunny yesterday ) = p

P ( sunny today | not sunny yesterday ) = q

P ( not sunny today | not sunny yesterday ) = 1− q

for some p, q ∈ [0, 1]. Then we can model the weather as a Markov chain, with the transition matrix represented
as

P =

[ S N
S 1− p p
N q 1− q

]
with S = sunny, N = not sunny. Note that the headings (S,N) are there just to keep track on the entries.

Example 2 (Typical chains). Here are some chains that are mentioned in the textbook:

• (birth-death chain) on Xn denoting the number of people in a region, assuming that at each time unit
people are born / immigrate and die / emigrate with probabilities that depend only on the population, then

P (i, j) =


pi if j = i+ 1

qi if j = i− 1

ri if j = i

0 otherwise

with pi + qi + ri = 1 for each i

• (random walk) Xn = Xn−1 + ξn where ξ1, ξ2, . . . are iid random variables

• (queuing chain) on a queue of Xn customers at time n, with iid ξn being the number of new customers
arrived in time (n, n+ 1], assuming one customer can be served for each time unit,

Xn+1 = Xn + ξn −

{
0 if Xn = 0

1 if Xn ̸= 0

• (branching chain) on the number Xn of particles at time n, assuming at each unit time a particle may
independently split into identical particles, with the number of descendants distributed according to some
distribution f , then

P (x, y) = P ( ξ1 + . . .+ ξx = y | iid ξ1, . . . , ξx ∼ f )

2 Computations

As shown in lecture, for a Markov chain,

• the n-step transition probability is the n-th power of the (one-step) transition matrix:

P ( Xk+n = y | Xk = x ) = (Pn)xy

• given the initial distribution π0, the distribution at time n is its product with the transition matrix:

πn = πn−1P = . . . = π0P
n

Definition 2. On a given chain X, a random variable T with value in N ∪ {∞} is a stopping time if for each
n ∈ N, the event {T ≤ n} can be determined by X0, X1, . . . , Xn (possibly with randomness independent of the
chain).
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As a special case, for A ⊆ S, the hitting time TA of A is the first time Xt enters A after the initial time:

TA = min { t ≥ 1 | Xt ∈ A }

If A = {y} is singleton, we also write Ty = T{y}. Note that we start from 1 instead of 0, and (by convention)
TA = ∞ if Xt /∈ A, ∀t ≥ 1.

We also define ρxy = P ( Ty < ∞ | X0 = x ) as the probability of visiting y when starting at x, so

P (Xn ̸= y, ∀n ≥ 1 |X0 = x) = Px (Ty = ∞) = 1− ρxy

Example 3. Consider the two-state chain from Example 1, and assume that p, q ̸= 0. Then

• given that X0 = S, on n ≥ 1 we have

PS (TN = n) = P (X1 = . . . = Xn−1 = S, Xn = N |X0 = S) = P (S, S)n−1P (S,N) = (1− p)n−1p

and so the hitting time TN is geometrically distributed: (TN | X0 = S) ∼ Geom(p)

• given that X0 = N , we have

PN (TN = 1) = P (X1 = N |X0 = N) = P (N,N) = 1− q

and on n ≥ 2 we have

PN (TN = n) = P (X1 = . . . = Xn−1 = S, Xn = N |X0 = N) = P (N,S)P (S, S)n−2P (S,N) = q(1− p)n−2p

and so (TN | X0 = N) is a mixture of distributions, and we can represent it as (TN | X0 = N) = 1 + BG
with independent B ∼ Bernoulli(q) and G ∼ Geom(p).

Example 4. Consider the two-state chain from Example 1, and assume that 0 < p + q < 2. Given the initial
distribution π0, what is the probability distribution of the weather n days later?

We write the initial distribution as π0 =
(
P (X0 = S) P (X0 = N)

)
=

(
π0(S) 1− π0(S)

)
. Then πn = π0P

n

with P being the transition matrix. To compute Pn, we can diagonalize P as

P = V DV −1 where D =

(
1 0
0 1− p− q

)
, V =

(
1 −p
1 q

)
which implies

πn = π0V DnV −1 =
( q
p+q + (π0(S)− q

p+q )(1− p− q)n p
p+q + ( q

p+q − π0(S))(1− p− q)n
)

If we take limit n → ∞, we have

lim
n

Pn = lim
n

( q
p+q + p

p+q (1− p− q)n p
p+q (1− (1− p− q)n)

p
p+q (1− (1− p− q)n) p

p+q + q
p+q (1− p− q)n

)
=

[ S N
S q

p+q
p

p+q

N q
p+q

p
p+q

]
and so the limiting transition matrix exists. Also, limn πn =

( q
p+q

p
p+q

)
exists.

Example 5. Ehrenfest chain is a simplified model on gas dynamics.
We distribute d balls to two boxes. At each time unit, we pick one ball at random uniformly (among all d,

independent of the past) and move it to the other box.
Let Xn denote the number of balls in the given box at time n. Then {Xn} forms a Markov chain on state

space S = { 0, . . . , d } with transition probability

P (x, y) =


d−x
d if y = x+ 1

x
d if y = x− 1

0 otherwise

for x, y ∈ S

Given that X0 = x0 ∈ { 1, . . . , d− 1 }, what is the probability that X2 = x0?
There are only two possibilities: X1 = x0 − 1, or X1 = x0 + 1. So, by Markov property,

P ( X2 = x0 | X0 = x0 ) = P (x0 − 1, x0)P (x0, x0 − 1) + P (x0 + 1, x0)P (x0, x0 + 1)

=
d− x0 + 1

d

x0

d
+

x0 + 1

d

d− x0

d

=
d+ 2x0(d− x0)

d2

With a similar computation, the same result holds if x0 = 0 or x0 = d.
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