
MATH4240 Tutorial 11 Notes

A birth-and-death process is a Markov jump process where from state x in one jump, only transition to x− 1
and to x + 1 are possible. This is just a continuous-time analogue of the discrete-time birth-and-death chain
we are already familiar with, and the rate matrix and the embedded transition matrix (assuming no absorbing
states) take the form

D =


−λ0 λ0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 . . .
0 µ2 −(µ2 + λ2) λ2 . . .
...

...
...

...
. . .

 , Q =


0 1 0 0 . . .
µ1

µ1+λ1
0 λ1

µ1+λ1
0 . . .

0 µ2

µ2+λ2
0 λ2

µ2+λ2
. . .

...
...

...
...

. . .


Remark 1. Recall that we (typically) assume that a Markov jump process is non-explosive, that is, limn τn = ∞
(with probability 1) on jump time τn. However, if the state space is infinite, for a generic birth-and-death process
it may not be true. In particular, you can show the following Reuter’s criterion1: on state space S = N, the
process is non-explosive iff

∞∑
n=1

n∑
k=0

k∏
i=1

1

λn

µn+1−i

λn−i
= ∞

With pure-birth process (µn = 0), this is
∑

1/λn = ∞ (which is also a sufficient condition in the general case).
Obviously, Poisson process (and typical queues we will be working on) satisfies this condition, but it is easy to
construct one that does not.

1 Branching

Consider a cluster of particles, each individually after a random life span that is exponentially distributed with
parameter λ will split into some number of offspring with pmf f(k). (By memoryless property, we may assume
f(1) = 0).

I believe the case f(2) = p and f(0) = 1− p is already discussed in the lecture, and the jump matrix and rate
matrix are given as

Q =


1 0 0 0 . . .

1− p 0 p 0 . . .
0 1− p 0 p . . .
...

...
...

...
. . .

 , D =


0 0 0 0 . . .

(1− p)λ −λ pλ 0 . . .
0 2(1− p)λ −2λ 2pλ . . .
...

...
...

...
. . .


That is, λ0 = 0, and λn = npλ, µn = n(1− p)λ for n ≥ 1. The case where a Poisson arrival of immigrants with
rate α is also considered, in which case the birth rate is simply λ̃n = λn + α (and 0 is no longer absorbing).

Let us deviate from the framework of birth-and-death process and consider the case where a particle may have
more than 2 offspring (that is, qx,y > 0 for some y > x+ 1).

With the same derivation as in the lecture, the jump matrix and the rate matrix should be

Q =


1 0 0 0 . . .

f(0) 0 f(2) f(3) . . .
0 f(0) 0 f(2) . . .
...

...
...

...
. . .

 , D =


0 0 0 0 . . .

λf(0) −λ λf(2) λf(3) . . .
0 2λf(0) −2λ 2λf(2) . . .
...

...
...

...
. . .


1See Brémaud, Thm. 4.5.

1

https://julac-cuhk.primo.exlibrisgroup.com/permalink/852JULAC_CUHK/16slfhk/alma991014689929703407


Of course, except the case that is discussed during the lecture (f(0) + f(2) = 1), the process is no longer a birth-
and-death process, and the backward/forward equation may not be solvable. However, under certain assumption2,
we can solve for the process, and it is non-explosive. For simplicity, we will assume that everything is nice enough.

For this process, the backward equation reads

d

dt
Pij(t) =

∑
k

DikPkj(t) = −iλPij(t) + iλ
∑

k≥i−1

f(k − i+ 1)Pkj(t)

At i = 1,
d

dt
P1n = −λP1n + λ

∑
k≥0

f(k)Pkn

Consider the generating function F (t,X) =
∑

k P1k(t)X
k. We have

∂tF (t,X) = −λF (t,X) + λ
∑
k

f(k)
∑
n

Pkn(t)X
n

Note that
∑

n Pkn(t)X
n is the generating function of the distribution with k initial particles, and as the evolution

of the particles are independent, we have
∑

n Pkn(t)X
n = F k

1 , so

∂tF = −λF + λΦ(F )

where Φ(X) =
∑

f(n)Xn is the generating function of the offspring distribution f . Solving this with initial
condition F (t = 0) = X3, we can obtain P1n(t) =

1
n! (∂X)nF (X = 0).

In the case of binary fission / Yule process f(2) = 1 (Φ(X) = X2), we have

∂tF = λF (F − 1)

which has solution
F (t,X) = e−λtX/(1− (1− e−λt)X) = e−λtX

∑
k

(1− e−λt)kXk

In the case that is covered in lecture f(2) = p, f(0) = 1− p, we have Φ(X) = (1− p) + pX2 and so

∂tF = −λF + λ(1− p+ pF 2) = λ(F − 1)(pF − (1− p))

which can be solved explicitly4 as

F (t,X) = (ξ + (1− ξ − η)X)/(1− ηX) = (ξ + (1− ξ − η)X)
∑
k

ηkXk

where ξ = 1 − e−ρ/W , η = 1 − 1/W , W = e−ρ(1 + (1 − p)λ
∫ t

0
eρ(τ) dτ), ρ = λ(1 − 2p)t, and so P10 = ξ and

P1n = (1− ξ)(1− η)ηn−1 for n ≥ 1.
The major issue is that the equation ∂tF = λ(Φ(F ) − F ) is typically hard to solve, but if you are able to

solve the equation, you can obtain lots of information on the distribution.

2 Queuing

The typical model of queuing process we will be working with is M/M/c/K queue with Markovian interarrival
time, Markovian service time, c parallel servers, and capacity K. In the special case K = ∞ (unlimited capacity),
this is a M/M/c queue.

It should be noted that the following relation always holds, whether the process is Markov or not:

Theorem 2.1 (Little’s law). In a queue system, if λ is the average arrival rate, W is the average time a customer
spends in the system, and L is the average number of customers in the system, then assuming λ,W are finite,

L = λW

2For example,
∫ 1
1−ϵ

1
Φ(s)−s

dt = ∞ for all ϵ > 0, or more typically just Φ′(1) =
∑

nf(n) < ∞, where Φ is the generating function

of the offspring distribution.
3Assuming some regularity conditions are satisfied, so that the solution is well-behaved.
4See Harris, Ch. V.7, or Athreya & Ney, Ch. III.5.5.

2

https://link.springer.com/book/9783642518683
https://julac-cuhk.primo.exlibrisgroup.com/permalink/852JULAC_CUHK/16slfhk/alma991032101529703407


With Little’s law, we can easily show some results.

Theorem 2.2 (Utilization law). Consider a M/M/1 queue with arrival rate λ and service rate µ, with µ > λ.
Then the long-run proportion ρ of time where the server is busy (offered load) is

ρ = λ/µ

(Compare this with the M/M/∞ result covered / being covered in lecture, which states that limt Pxy(t) =
e−ρρy/y! and so the probability that some servers are busy is 1− limt Px0(t) = 1− e−ρ = ρ− ρ2/2 + . . ..)

Proof. Consider the system consisting (only) of the server. Then

• the average a customer spends on the system (being served by the server) is W = 1/µ

• the average number of customer in the system is L = ρ · 1 + (1− ρ) · 0 = ρ

• as λ < µ, we should expect that there is no (long-time) accumulation of customers in the queue, and so the
rate customers get to be served should be the same as the arrival rate λ5

By Little’s law,
ρ = L = λW = λ/µ

You can also show this by solving for the stationary distribution, but note that Little’s law does not require
e.g. the service time to be exponentially distributed, in which case

ρ = λE (service time)

Another important property of such queue is the PASTA property, that is Poisson Arrivals See Time Averages.
More precisely,6

Theorem 2.3. Suppose in a queue the arrival is a Poisson process. Let

• pn(t) = P (Xt = n) be the probability that there are n people in the queue at time t

• an(t) be the probability that an arrival at time t sees n people in the queue

then πn(t) = an(t).

That is, the distribution that an outside observer sees is the same as the distribution that someone joining
the queue (at Poisson time) sees.

It should be noted that each arrival affects Xt, and PASTA does not hold if the arrival is not Poisson (e.g.
deterministic arrival once every 2 minutes, deterministic service of 1 minutes).

Proof. Consider a short time interval (t, t + δ]. By memoryless property, the event that an arrival happens in
(t, t + δ] is independent of the current number of people Xt in the system, no matter how the service time
distributed, that is

P (arrival at (t, t+ δ] |Xt = n) = P (arrival at (t, t+ δ])

So

an(t) = lim
δ→0

P (Xt = n | arrival at (t, t+ δ] )

= lim
δ→0

P (arrival at (t, t+ δ] |Xt = n)
P (Xt = n)

P (arrival at (t, t+ δ])

= lim
δ→0

P (arrival at (t, t+ δ])
P (Xt = n)

P (arrival at (t, t+ δ])

= pn(t)

Typically, we consider the long-time average of these quantities, the long-time distribution Pn of the queue
and the long-time distribution An that an arrival sees, in which case

Pn = An

5This actually requires a bit more justification (that the queue is a stable queue), which we are omitting here.
6See Stewart, p.394.

3

https://julac-cuhk.primo.exlibrisgroup.com/permalink/852JULAC_CUHK/1dl2t2q/alma991040256463003407

	Branching
	Queuing

