
MATH4240 Tutorial 10 Notes

1 Basics

• A random variable X (with value in [0,∞)) is memoryless if P (X > t+ s |X > t) = P (X > s).

If X is continuous, it must be exponentially distributed.

If X is discrete, it must be geometrically distributed.

• If ξi ∼ Exp(λi) are independent, then min(ξ1, . . . , ξn) ∼ Exp(
∑

λj) and P (min(ξ1, . . . , ξn) = ξi) = λi∑
λj

(see Tutorial 1)

• For a Markov jump process, the transition function Pxy(t) satisfies Chapman–Kolmogorov equation

P (t+ s) = P (t)P (s)

that is, Pt+s(x, y) =
∑
z

Pt(x, z)Ps(z, y)

• The rate matrix / generator D = [qxy] = P ′(0) = limt→0+
P (t)−I

t of a Markov jump process satisfies

– qxy ≥ 0 for x ̸= y and −qx = qxx ≤ 0

–
∑

y qxy = 0, or qx =
∑

y ̸=x qxy

– (forward equation) P ′ = PD, that is, P ′
xy(t) =

∑
z Pxz(t)Dzy. In particular, π′ = πD

– (backward equation) P ′ = DP , that is, P ′
xy(t) =

∑
z DxzPzy(t)

In particular, P (t) = exp(tD).

(Compare with discrete-time case where D = P − I)

• If x is not an absorbing state, then the transition probability Qxy of the embedded Markov chain / jump
chain for x ̸= y is

Qxy = qxy/qx =
qxy∑
z ̸=x qxz

And if x is absorbing, Qxy = 0 for x ̸= y and Qxx = 1.

• Recall that in last session we talked about an alternative definition of Poisson process:

Definition 1. A monotone increasing random process Xt with natural number value is a Poisson process
with rate λ if it has independent increment, X0 = 0, and

P (Xt+h −Xt = 0) = 1− λh+ o( h )

P (Xt+h −Xt = 1) = λh+ o( h )

Taking t = 0 we can see that

1

h
(P (Xt+h = Xt)− 1) = −λ+ o( 1 )

1

h
(P (Xt+h = Xt + 1)− 0) = λ+ o( 1 )
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which means that the rate matrix and the jump matrix are of the form

D =

−λ λ 0 0 . . .
0 −λ λ 0 . . .
...

. . .
. . .

. . .
. . .

 , Q =

0 1 0 0 . . .
0 0 1 0 . . .
...

. . .
. . .

. . .
. . .


So to specify a Markov jump process, it suffices to specify the rate matrix.

Example 1. Suppose at time t > 0 a Poisson process Xt with rate λ has exactly n arrivals Xt = n. Let us compute
the distribution of the arrival times T1, . . . , Tn, that is the pdf f(t1, . . . , tn | Xt = n). Easy to see that

{ T1 = t1, . . . , Tn = tn, Xt = n } = { ξ1 = t1, ξn = tn − tn−1, ξn+1 > t− tn }

and by assumption, the waiting times are independent. These imply

fT1,...,Tn
(t1, . . . , tn | Xt = n) = fξ1(t1) . . . fξn(tn − tn−1)P (Xn+1 > t− tn) /P (Xt = n)

=
λe−λt1 . . . λe−λ(tn−tn−1)e−λ(t−λn)

e−λt(λt)n/n!

= n!/tn

for 0 ≤ t1 < . . . < tn ≤ t. In particular, (T1, . . . , Tn | Xt = n) is uniformly distributed on { 0 ≤ t1 < . . . < tn ≤ t }.
In the specific case n = 1, the arrival is uniformly distributed: (T1 | Xt = 1) ∼ Unif(0, t).

2 Thinning

Recall that Poisson process satisfies the following two properties:

• (Superposition) The sum
∑

i Xi(t) of independent Poisson process Xi(t)Poi(λit) is a Poisson process with
rate being the sum of all individual rates:∑

Xi(t) ∼ Poi
(
(
∑

λi)t
)

• (Thinning) If each arrival of a Poisson process X(t) ∼ Poi(λt) independently has probability pi of being type
i, the arrival processes Y1(t), . . . , Yn(t) of individual types are independent Poisson processes with weighted
rate:

Yi(t) ∼ Poi(piλt)

Example 2. Suppose we have two independent Poisson processes Xt, Yt with rate λ, µ respectively. What is the
probability that we observe k arrivals of Xt at the nth arrival of Yt?

Let us consider the total process Zt = Xt + Yt, which is also a Poisson process with rate λ+ µ. Then Xt, Yt

can be considered as the thinning of Zt, that is, each arrival of Zt has probability p = λ
λ+µ of being an arrival for

Xt (and 1− p = µ
λ+µ for Yt).

The event that we see k arrivals of Xt at the nth arrival of Yt is the same as having k− 1 successes (for being
arrival of Xt) in the first k+n− 1 arrivals, and the (k+n)th trial is a success (to be of Xt). So the probability is(

k + n− 1

k − 1

)
pk−1(1− p)n · p =

(
k + n− 1

n

)
(

µ

λ+ µ
)n(

λ

λ+ µ
)k

In another word, the number of arrivals from Y given that we see k arrivals from X obeys negative binomial
distribution N ∼ NegBin(k, λ

λ+µ ).

Example 3. In a bank there are two tellers, Teller 1 and Teller 2, with exponentially distributed serving time with
mean 3 and 6 minutes respectively. Suppose three people, A, B and C, enter the bank, and A, B are served by
the tellers first while C waits for the first teller available.

1. What is the expected total amount of time for C to complete the service?

2. What is the expected time until the last one leave?
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3. What is the probability that C is the last one to leave?

For simplicity, let us assume A is served by Teller 1, and B is served by Teller 2.
It is possible to consider the service time TA, TB , TC of each person individually and compute respectively

1. E (min(TA, TB) + TC)

2. E (max(TA, TB ,min(TA, TB) + TC))

3. P (max(TA, TB ,min(TA, TB) + TC) = min(TA, TB) + TC)

which you can handle by using the min property of exponential distribution, the identity max(x, y) = x + y −
min(x, y), and some algebra. (You should try to solve it this way.)

Here, we will use another approach. Instead of 3 people waiting, let us imagine there are infinitely many
people waiting to be served, and A, B, C are the first three in the queue.

Let Xt, Yt be the number of customers departed from the tellers (after being served) respectively. Then they
must be Poisson processes Xt ∼ Poi( 13 t) and Yt ∼ Poi( 16 t), so the total departure Zt = Xt +Yt ∼ Poi(( 13 +

1
6 )t) =

Poi( 12 t) is also Poisson. This implies

1. On TC being the service time of C, and τ1 being the first arrival time of Z, we have

E (time C complete service)

= E (τ1 + TC)

= E (τ1) + E (TC |first departure is from teller 1)P (first departure is from teller 1)

+ E (TC |first departure is from teller 2)P (first departure is from teller 2)

= 2 + 3 · 1/3
1/2

+ 6 · 1/6
1/2

= 6

2. Let τ2 be the time of the second departure (from Z), and T be the time between the second departure and
the last departure of A, B, C. Then E (time last one leaves) = E (τ2 + T ).

By the memoryless property, we may assume that the last one to leave starts being served exactly when the
second departure happens. Easy to see that the last one must be served by a different teller from the second
one, so

E (time last one leaves)

= E (τ2 + T )

= 2 · 2 + E (teller 2 service time)P (second departure is from teller 1)

+ E (teller 1 service time)P (second departure is from teller 2)

= 2 · 2 + 6 · 1/3
1/2

+ 3 · 1/6
1/2

= 9

3. C is the last one to leave iff the first two departures are from different tellers. So

P (C is last to leave)

= P (first is from teller 1)P (second is from teller 2)

+ P (first is from teller 2)P (second is from teller 1)

= 2 · 1/3
1/2

1/6

1/2
= 4/9
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