MATH4240 Tutorial 1 Notes

This is a review note on the basics of probability. See also the Summary Note of Chapter 0.

1 Basic Concepts

Probability is a measurement of uncertainty.

A probability space consists of

- a sample space Ω which consists of all possible outcomes
- an event space $\mathcal{F} \subseteq 2^{\Omega 1}$ which encodes the information available as a σ -algebra²
- a probability measure $P: \mathcal{F} \to [0,1]$ which measures the uncertainty of a given event

Example 1. Suppose I have a coin, which when tossed gives either **H** (head) or **T** (tail). I now toss the coin 2 times. Let us denoted the ultimate outcome as ω . Then

- the sample space is $\Omega = \{ \mathbf{HH}, \mathbf{HT}, \mathbf{TH}, \mathbf{TT} \}$
- before any coin toss, a natural event space is $\mathcal{F}_0 = \{ \emptyset, \Omega \}$
- after the first coin toss, a natural event space is $\mathcal{F}_1 = \{ \emptyset, \Omega, \{ \mathbf{HH}, \mathbf{HT} \}, \{ \mathbf{TH}, \mathbf{TT} \} \}$
- after both coin tosses, a natural event space is $\mathcal{F}_2 = 2^{\Omega}$

The basic properties of a probability measure are

- $0 \leq P(E) \leq 1$, with $P(\emptyset) = 0$, $P(\Omega) = 1$
- if E_1, E_2, \ldots are disjoint, then $P(\bigcup E_n) = \sum P(E_n)$
- if $E_1 \subseteq E_2 \subseteq \ldots$, then $P(E_n) \to P(\bigcup E_n)$
- if $E_1 \supseteq E_2 \supseteq \ldots$, then $P(E_n) \to P(\bigcap E_n)$

A random variable is a (measurable) function $X : \Omega \to A \subseteq \mathbb{R}$ that quantifies the outcome. Commonly probability is measured according to the value of X via events of the form $\{ \omega \mid X(\omega) \in E \}^3$, with shorthand notation $P(X \in E) = P(\{ \omega \mid X(\omega) \in E \})$.

2 Conditional, Independence

On two events A, B, assuming $P(B) \neq 0$, then the *conditional probability* of A given B is $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Two events A, B are *independent* if $P(A \cap B) = P(A) P(B)$. If $P(B) \neq 0$, this is equivalent to P(A|B) = P(A).

Two random variables X, Y are *independent* $(X \perp Y)$ if for all (Borel) sets $A, B \subseteq \mathbb{R}$, $\{X \in A\}$ and $\{Y \in B\}$ are independent.

Theorem 2.1 (total probability). If E_1, \ldots are disjoint, then $P(A) = \sum P(A \cap E_n)$. In particular, if $P(E_n) \neq 0$ for each n, then $P(A) = \sum P(A|E_n)P(E_n)$

Theorem 2.2 (Bayes). $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$. Usually P(B) can be computed with total probability.

¹Here 2^{Ω} is the power set of Ω .

²A collection of sets $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra if $\emptyset \in \mathcal{F}$, $E \in \mathcal{F}$ implies $\Omega \setminus E \in \mathcal{F}$, and $E_1, E_2, \ldots \in \mathcal{F}$ implies $\bigcup E_n \in \mathcal{F}$. Precisely speaking, it is a collections of sets that we can "assign" a probability to.

³That is, we measure the probability on X by measuring the probability on the corresponding ω .

3 Distribution

For a random variable X, the cumulative distribution function (cdf) is $F_X(t) = P(X \le t)$, and

- If the range of X is countable, then we call it a *discrete* random variable. For simplicity, we will assume that its range is \mathbb{N} (or \mathbb{Z}). Its probability mass function (pmf) is $p_X(n) = P(X = n)$.
- If there exists a function $f_X : \mathbb{R} \to \mathbb{R}$ such that $P(X \in A) = \int_A f_X$, then we call X a continuous random variable, and f_X its probability density function (pdf). Note that pdf may not be unique (e.g. differ at a single point).
- If X is neither discrete nor continuous, we call it *mixed*.

We will call both pmf and pdf *density*.

We can also consider the *joint distribution* of two random variables X, Y:

- if X, Y are discrete, the joint pmf is $p_{X,Y}(x,y) = P(X = x, Y = y)$
- if X, Y are continuous, the joint pdf $f_{X,Y}(x,y)$ is a function that satisfies $P(X \in A, y \in B) = \int_{A \times B} f_{X,Y}$ for all A, B

The basic properties are

- $0 \leq F_X \leq 1$ is non-decreasing right-continuous with left limit everywhere
- for pmf, $0 \le p_X \le 1$, $F_X(n) = \sum_{i \le n} p_X(i)$, and $\sum p_X(i) = 1$
- for pdf, $f_X \ge 0$, with $a \le b$, $P(a \le X \le b) = F_X(b) F_X(a) = \int_a^b f_X$, and $\int_{-\infty}^{\infty} f_X = 1$
- if X, Y are independent, then $p_{X,Y} = p_X p_Y$ if discrete and $f_{X,Y} = f_X f_Y$ if continuous

We can also consider the conditional distribution: assuming X is continuous with pdf f_X ,

- on event A with nonzero probability, $F_{X|A}(t) = P(X \leq t \mid A)$
- on continuous random variable Y, $f_{X|Y}(x \mid y) = f_{X,Y}(x,y)/f_Y(y)$ assuming $f_Y(y) > 0$

Example 2. The common examples of probability distributions are:

distribution	notation*	density
distribution	notation	defibility
discrete uniform	$\operatorname{Unif}\{a, b\}$	$p_X(i) = \frac{1}{b-a+1} \text{ for } i \in \{a, \dots, b\}$
continuous uniform	$\operatorname{Unif}(a, b)$	$f_X(x) = \frac{1}{b-a}\chi_{[a,b]}$
Bernoulli	$\operatorname{Bern}(p)$	$p_X(1) = p, p_X(0) = 1 - p$
binomial	$\operatorname{Bin}(n,p)$	$p_X(r) = \binom{n}{r} p^r (1-p)^{n-r} \text{ for } r \in \{0, \dots, n\}$
geometric	$\operatorname{Geom}(p)$	$p_X(n) = (1-p)^{n-1}p \text{ for } n \ge 1$
Poisson	$\operatorname{Poi}(\lambda)$	$p_X(n) = e^{-\lambda} \frac{\lambda^n}{n!}$ for $n \ge 0$
exponential	$\operatorname{Exp}(\lambda)$	$f_X(x) = \lambda e^{-\lambda x} \chi_{x \ge 0}$
normal	$N(\mu,\sigma^2)$	$f_X(x) = (2\pi\sigma^2)^{-1/2} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$

* Notation seems to vary per reference.

with $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ being the indicator function of set A, and (as a shorthand notation) $\chi_{x\geq 0} = \chi_{[0,\infty)}$.

4 Moment

The expectation / expected value / mean of a random variable X is $E(X) = \sum np_X(n)$ if discrete, $E(X) = \int x f_X(x)$ if continuous (if exists).

The variance of a random variable X with a finite mean $\mu = E(X)$ is $\operatorname{Var}(X) = E((X - \mu)^2)$ (if exists).

Conditional expectation and variance are defined similarly, only that e.g. the conditional expectation with respect to a random variable $E(X|Y) : \mathbb{R} \to \mathbb{R}$ is now a random variable (E(X|Y))(y) = E(X|Y = y):

- if Y is discrete, $E(X|Y = y) = \sum x p_{X|Y}(x \mid y)$
- if Y is continuous, $E(X|Y=y) = \int x f_{X|Y}(x \mid y)$

The basic properties are

- E is linear: E(aX) = aE(X) and E(X+Y) = E(X) + E(Y), whether X, Y are independent or not
- Var $(X) = E(X^2) E(X)^2$ and Var $(cX) = c^2 \operatorname{Var}(X)$
- if X, Y are independent, then E(XY) = E(X)E(Y) and (thus) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$. In general, we have $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2(E(XY) - E(X)E(Y))$.
- (total expectation) if A_1, \ldots are disjoint, then $E(X) = \sum E(X|A_n) P(A_n)$. In particular, (tower property) E(X) = E(E(X|Y)) and $P(X \in A) = E(P(X \in A \mid Y))$
- (total variance) $\operatorname{Var}(X) = E(\operatorname{Var}(X|Y)) + \operatorname{Var}(E(X|Y))$

As an exercise, you should compute the mean and the variance of the distributions listed in the table above. Example 3.

- if $X \sim \text{Poi}(\lambda)$, then $E(X) = \lambda$ and $\text{Var}(X) = \lambda$
- if $X \sim \text{Exp}(\lambda)$, then $E(X) = 1/\lambda$ and $\text{Var}(X) = 1/\lambda^2$

Example 4. For a randomly shuffled deck of 52 poker cards, where 4 of them are aces, the expected number of cards placed before the first ace can be computed as follows: number the non-ace cards as $1, \ldots, 48$, and for each

i let X_i be the random variable $X_i = \begin{cases} 1 & \text{if card } i \text{ is placed before the first ace} \\ 0 & \text{otherwise} \end{cases}$. Then the expected number of cards placed before the first ace is $E(\sum X_i) = \sum E(X_i) = 48/5$ as you can easily argue that $E(X_i) = 1/5$ for each card.

5 Computations

5.1 Sum of Random Variables

If X, Y are independent continuous random variables, then the cdf of their sum X + Y can be computed as

$$F_{X+Y}(z) = P (X + Y \le z)$$

= $\int P (X + Y \le z | X = x) f_X(x)$
= $\int P (Y \le z - x) f_X(x)$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_Y(y) f_X(x) dy dx$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{z} f_Y(y - x) f_X(x) dy dx$

and so

$$f_{X+Y}(z) = \frac{d}{dz} F_{X+Y}(z) = \int_{-\infty}^{\infty} f_Y(z-x) f_X(x) \, dx = (f_X * f_Y)(z)$$

which means that the pdf f_{X+Y} of X+Y is the *convolution* of f_X and f_Y . A similar conclusion holds for discrete random variables.

Example 5. If $X \sim \text{Poi}(\lambda_X)$, $Y \sim \text{Poi}(\lambda_Y)$ are independent, then $X + Y \sim \text{Poi}(\lambda_X + \lambda_Y)$

5.2 Order Statistics

If X_1, \ldots, X_n are independent random variables, then the cdf of their maximum $Y = \max(X_1, \ldots, X_n)$ can be computed as

$$F_Y(y) = P(\max(X_1, \dots, X_n) \le y) = \prod P(X_i \le y) = \prod F_{X_i}(y)$$

Same approach can also give the cdf of the k-largest value.

Example 6. If X_1, \ldots, X_n are independent random variables and $X_i \sim \text{Exp}(\lambda_i)$, then for $Y = \min(X_1, \ldots, X_n)$,

$$F_Y(y) = 1 - P(Y > y) = 1 - \prod P(X_i > y) = 1 - \prod (1 - F_{X_i}(y)) = 1 - \prod e^{-\lambda_i y} \chi_{y \ge 0} = 1 - e^{-(\sum \lambda_i) y} \chi_{y \ge 0}$$

This implies $\min(X_1, \ldots, X_n) = Y \sim \operatorname{Exp}(\sum \lambda_i).$

Furthermore, on $Z = \min(X_2, \ldots, X_n) \sim \operatorname{Exp}(\lambda)$ with $\lambda = \sum_{i \ge 2} \lambda_i$,

$$P(\min(X_1, \dots, X_n) = X_1) = P(X_1 \le Z) = \int P(X_1 \le Z) f_Z(Z) = \int_0^\infty (1 - e^{-\lambda_1 Z}) \lambda e^{-\lambda_Z} = \frac{\lambda_1}{\lambda_1 + \lambda} = \frac{\lambda_1}{\sum \lambda_i}$$