MATH4240 Tutorial 1 Notes

This is a review note on the basics of probability. See also the Summary Note of Chapter 0.

1 Basic Concepts
Probability is a measurement of uncertainty.
A probability space consists of

e a sample space €2 which consists of all possible outcomes
e an event space F C 29E| which encodes the information available as a U—algebraﬂ

e a probability measure P : F — [0, 1] which measures the uncertainty of a given event

Ezample 1. Suppose I have a coin, which when tossed gives either H (head) or T (tail). I now toss the coin 2
times. Let us denoted the ultimate outcome as w. Then

e the sample space is Q = { HH,HT, TH, TT }
e before any coin toss, a natural event space is Fo = { 0,0 }

e after the first coin toss, a natural event space is /1 = { 0,Q,{ HH,HT } ,{ TH,TT } }
e after both coin tosses, a natural event space is Fp = 2%

The basic properties of a probability measure are

e 0<P(E)<1,withP(0)=0,P(Q)=1

e if By, Es,... are disjoint, then P (JE,) =>_ P (E,)

o if F4y CFEy C ..., then P(E,) — P(UE,)

e if B} D Fy, D ..., then P(E,) — P(NE,)

A random wvariable is a (measurable) function X : @ — A C R that quantifies the outcome. Commonly
probability is measured according to the value of X via events of the form { w | X(w) € FE }EL with shorthand
notation P(X €e E) =P({w| X(w) € E}).

2 Conditional, Independence
On two events A, B, assuming P (B) # 0, then the conditional probability of A given B is P (A|B) = ng(‘;;g)
Two events A, B are independent if P(AN B) = P(A) P(B). If P(B) # 0, this is equivalent to P (A|B) =
P(A).
Two random variables X, Y are independent (X L Y) if for all (Borel) sets A, BCR,{ X € A}and{Y € B}
are independent.

Theorem 2.1 (total probability). If E1,... are disjoint, then P (A) =Y P(ANE,).
In particular, if P (E,) # 0 for each n, then P (A) =>_ P (A|E,) P (E,)

Theorem 2.2 (Bayes). P (A|B) = %. Usually P (B) can be computed with total probability.

1Here 29 is the power set of .

2A collection of sets F C 2% is a o-algebra if € F, E € F implies Q\ E € F, and E1, Ea,... € F implies | J En, € F. Precisely
speaking, it is a collections of sets that we can “assign” a probability to.

3That is, we measure the probability on X by measuring the probability on the corresponding w.




3 Distribution

For a random variable X, the cumulative distribution function (cdf)is Fx(t) = P (X <t), and

e If the range of X is countable, then we call it a discrete random variable.
For simplicity, we will assume that its range is N (or Z).
Its probability mass function (pmf) is px(n) = P (X = n).

e If there exists a function fx : R — R such that P(X € A) = [, fx, then we call X a continuous random
variable, and fx its probability density function (pdf).
Note that pdf may not be unique (e.g. differ at a single point).

e If X is neither discrete nor continuous, we call it mized.

We will call both pmf and pdf density.
We can also consider the joint distribution of two random variables X, Y

o if X\ Y are discrete, the joint pmf is px y(z,y) =P (X =z, Y =y)

e if X,Y are continuous, the joint pdf fx y(x,y) is a function that satisfies P (X € A, y € B) = foB fxy
for all A, B

The basic properties are

e 0 < Fx <1 is non-decreasing [right-continuous with left limit| everywhere

o for pmf, 0 <px <1, Fx(n) =>_,., px(i), and Y px (i) =1

o for pdf, fx >0, with a <b, P(a < X <b) = Fx(b) — Fx(a) = [ fx, and [*_fx =1
e if X, Y are independent, then px y = pxpy if discrete and fxy = fx fy if continuous
We can also consider the conditional distribution: assuming X is continuous with pdf fx,
e on event A with nonzero probability, Fx4(t) = P( X <t|A)

e on continuous random variable Y, fxy(z | y) = fx v (x,y)/fy(y) assuming fy (y) >0

Ezample 2. The common examples of probability distributions are:

distribution notation” density
discrete uniform | Unif{a,b} px (i) = =7 a+1 forie{a,....,b}
continuous uniform | Unif(a,d) fx(z) = EX[a,b]
Bernoulli Bern(p) px (1) = p, pX(O) =1-p
binomial Bin(n, p) =(")p 1 —p) " forre{0,....,n}
geometric Geom(p) px(n)=(1- )"‘1p for n > 1
Poisson Poi(\) px(n) =e /\ forn >0
exponential Exp(A) fX(x) = )\e szo
normal N(u,o0?) fx(z) = (2mo?)~1/2 exp(—%)

* .
Notation seems to vary per reference.

1 ifzeA

. being the indicator function of set A, and (as a shorthand notation) x.>0 = X[0,00)-
0 otherwise = ’

with ya(x) = {


https://en.wikipedia.org/wiki/C%C3%A0dl%C3%A0g

4 Moment

The expectation / expected value / mean of a random variable X is E (X) = Y npx(n) if discrete, E (X) =
J @ fx () if continuous (if exists).
The variance of a random variable X with a finite mean p = E (X) is Var (X) = E ((X — p)?) (if exists).
Conditional expectation and variance are defined similarly, only that e.g. the conditional expectation with
respect to a random variable F (X|Y) : R — R is now a random variable (E (X|Y))(y) = E(X|Y =y):

e if Y is discrete, £ (X|Y =y) = > zpx)y(z | v)

e if Y is continuous, E(X|Y =y) = [zfxpy(z |y)

The basic properties are

E is linear: F(aX)=aE(X)and E(X+Y)=FE(X)+ E(Y), whether X,Y are independent or not

Var (X) = E (X?) — E(X)? and Var (cX) = ¢®Var (X)

e if X, Y are independent, then F(XY) = E(X) E(Y) and (thus) Var (X +Y) = Var (X) + Var (V).
In general, we have Var (X +Y) = Var (X) + Var (V) + 2(E(XY) — E(X) E(Y)).
).

(total expectation) if Ay, ... are disjoint, then F(X) =Y F(X|A,) P (4,
In particular, (tower property) E(X)=E(E(X|Y)) and P(X € A)=E(P(X € A|Y))

e (total variance) Var (X) = E (Var (X|Y)) + Var (E (X]Y))

As an exercise, you should compute the mean and the variance of the distributions listed in the table above.

Example 3.
e if X ~ Poi()), then F(X) = X and Var (X) = A
e if X ~ Exp()), then E(X)=1/X and Var (X) = 1/A?

Ezxample 4. For a randomly shuffled deck of 52 poker cards, where 4 of them are aces, the expected number of
cards placed before the first ace can be computed as follows: number the non-ace cards as 1, ...,48, and for each

1 if card i is placed before the first
i let X; be the random variable X; = 1 eat 'Z 15 praced betore the s ace. Then the expected number of
0 otherwise

cards placed before the first ace is E (D X;) = > F (X;) = 48/5 as you can easily argue that E (X;) = 1/5 for
each card.

5 Computations

5.1 Sum of Random Variables
If X,Y are independent continuous random variables, then the cdf of their sum X 4+ Y can be computed as

Fxiv(2)=P(X+Y <2)

:/p(X+Y§z|X:x)fX($)

~ [Py <z-0)ix@

- /Z/:fY(y)fx(x) dy da

/_Z /_ ;fﬂy — ) fx(z)dydz

and so d .
frov(®) = P () = [ o= a) () do = (e f)(2)

which means that the pdf fxy of X +Y is the convolution of fx and fy. A similar conclusion holds for discrete
random variables.

Ezample 5. If X ~ Poi(Ax), Y ~ Poi(Ay) are independent, then X +Y ~ Poi(Ax + Ay)



5.2 Order Statistics

If Xy,...,X, are independent random variables, then the cdf of their maximum Y = max(Xy,...,X,) can be

computed as
Fy(y) = P (max(Xy,...,X,) <y) = [[P(Xi <v) = [[ Fx.(v)

Same approach can also give the cdf of the k-largest value.

Ezample 6. If X1,...,X,, are independent random variables and X; ~ Exp();), then for ¥ = min(Xy, ..., X,,),
Fy()=1-P(Y >y =1-[[PXi>y)=1-[[0-Fx.()=1-[[e  xymo=1-e 2y,

This implies min(Xy,...,X,) =Y ~ Exp(>_ \i).
Furthermore, on Z = min(Xs, ..., Xn) ~ Exp(A) with A = 37,5, As,

P(min(X,,...,X,)=X)=P (X, < Z) = /P(Xl < 2)fz(2) = /000(1 —eMH)\e M = AR Sp\
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