
MATH4240 Tutorial 1 Notes

This is a review note on the basics of probability. See also the Summary Note of Chapter 0.

1 Basic Concepts

Probability is a measurement of uncertainty.
A probability space consists of

• a sample space Ω which consists of all possible outcomes

• an event space F ⊆ 2Ω1 which encodes the information available as a σ-algebra2

• a probability measure P : F → [0, 1] which measures the uncertainty of a given event

Example 1. Suppose I have a coin, which when tossed gives either H (head) or T (tail). I now toss the coin 2
times. Let us denoted the ultimate outcome as ω. Then

• the sample space is Ω = { HH,HT,TH,TT }

• before any coin toss, a natural event space is F0 = { ∅,Ω }

• after the first coin toss, a natural event space is F1 = { ∅,Ω, { HH,HT } , { TH,TT } }

• after both coin tosses, a natural event space is F2 = 2Ω

The basic properties of a probability measure are

• 0 ≤ P (E) ≤ 1, with P (∅) = 0, P (Ω) = 1

• if E1, E2, . . . are disjoint, then P (
⋃
En) =

∑
P (En)

• if E1 ⊆ E2 ⊆ . . ., then P (En) → P (
⋃
En)

• if E1 ⊇ E2 ⊇ . . ., then P (En) → P (
⋂
En)

A random variable is a (measurable) function X : Ω → A ⊆ R that quantifies the outcome. Commonly
probability is measured according to the value of X via events of the form { ω | X(ω) ∈ E }3, with shorthand
notation P (X ∈ E) = P ({ ω | X(ω) ∈ E }).

2 Conditional, Independence

On two events A,B, assuming P (B) ̸= 0, then the conditional probability of A given B is P (A|B) = P (A∩B)
P (B) .

Two events A,B are independent if P (A ∩B) = P (A)P (B). If P (B) ̸= 0, this is equivalent to P (A|B) =
P (A).

Two random variablesX,Y are independent (X ⊥ Y ) if for all (Borel) sets A,B ⊆ R, { X ∈ A } and { Y ∈ B }
are independent.

Theorem 2.1 (total probability). If E1, . . . are disjoint, then P (A) =
∑

P (A ∩ En).
In particular, if P (En) ̸= 0 for each n, then P (A) =

∑
P (A|En)P (En)

Theorem 2.2 (Bayes). P (A|B) = P (B|A)P (A)
P (B) . Usually P (B) can be computed with total probability.

1Here 2Ω is the power set of Ω.
2A collection of sets F ⊆ 2Ω is a σ-algebra if ∅ ∈ F , E ∈ F implies Ω \ E ∈ F , and E1, E2, . . . ∈ F implies

⋃
En ∈ F . Precisely

speaking, it is a collections of sets that we can “assign” a probability to.
3That is, we measure the probability on X by measuring the probability on the corresponding ω.
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3 Distribution

For a random variable X, the cumulative distribution function (cdf) is FX(t) = P (X ≤ t), and

• If the range of X is countable, then we call it a discrete random variable.
For simplicity, we will assume that its range is N (or Z).
Its probability mass function (pmf) is pX(n) = P (X = n).

• If there exists a function fX : R → R such that P (X ∈ A) =
∫
A
fX , then we call X a continuous random

variable, and fX its probability density function (pdf).
Note that pdf may not be unique (e.g. differ at a single point).

• If X is neither discrete nor continuous, we call it mixed.

We will call both pmf and pdf density.
We can also consider the joint distribution of two random variables X,Y :

• if X,Y are discrete, the joint pmf is pX,Y (x, y) = P (X = x, Y = y)

• if X,Y are continuous, the joint pdf fX,Y (x, y) is a function that satisfies P (X ∈ A, y ∈ B) =
∫
A×B

fX,Y

for all A,B

The basic properties are

• 0 ≤ FX ≤ 1 is non-decreasing right-continuous with left limit everywhere

• for pmf, 0 ≤ pX ≤ 1, FX(n) =
∑

i≤n pX(i), and
∑

pX(i) = 1

• for pdf, fX ≥ 0, with a ≤ b, P (a ≤ X ≤ b) = FX(b)− FX(a) =
∫ b

a
fX , and

∫∞
−∞fX = 1

• if X,Y are independent, then pX,Y = pXpY if discrete and fX,Y = fXfY if continuous

We can also consider the conditional distribution: assuming X is continuous with pdf fX ,

• on event A with nonzero probability, FX|A(t) = P ( X ≤ t | A )

• on continuous random variable Y , fX|Y (x | y) = fX,Y (x, y)/fY (y) assuming fY (y) > 0

Example 2. The common examples of probability distributions are:

distribution notation* density

discrete uniform Unif{a, b} pX(i) = 1
b−a+1 for i ∈ { a, . . . , b }

continuous uniform Unif(a, b) fX(x) = 1
b−aχ[a,b]

Bernoulli Bern(p) pX(1) = p, pX(0) = 1− p

binomial Bin(n, p) pX(r) =
(
n
r

)
pr(1− p)n−r for r ∈ { 0, . . . , n }

geometric Geom(p) pX(n) = (1− p)n−1p for n ≥ 1

Poisson Poi(λ) pX(n) = e−λ λn

n! for n ≥ 0

exponential Exp(λ) fX(x) = λe−λxχx≥0

normal N(µ, σ2) fX(x) = (2πσ2)−1/2 exp(− (x−µ)2

2σ2 )

* Notation seems to vary per reference.

with χA(x) =

{
1 ifx ∈ A

0 otherwise
being the indicator function of set A, and (as a shorthand notation) χx≥0 = χ[0,∞).
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4 Moment

The expectation / expected value / mean of a random variable X is E (X) =
∑

npX(n) if discrete, E (X) =∫
xfX(x) if continuous (if exists).
The variance of a random variable X with a finite mean µ = E (X) is Var (X) = E

(
(X − µ)2

)
(if exists).

Conditional expectation and variance are defined similarly, only that e.g. the conditional expectation with
respect to a random variable E (X|Y ) : R → R is now a random variable (E (X|Y ))(y) = E (X|Y = y):

• if Y is discrete, E (X|Y = y) =
∑

xpX|Y (x | y)

• if Y is continuous, E (X|Y = y) =
∫
xfX|Y (x | y)

The basic properties are

• E is linear: E (aX) = aE (X) and E (X + Y ) = E (X) + E (Y ), whether X,Y are independent or not

• Var (X) = E
(
X2

)
− E (X)

2
and Var (cX) = c2Var (X)

• if X,Y are independent, then E (XY ) = E (X)E (Y ) and (thus) Var (X + Y ) = Var (X) + Var (Y ).
In general, we have Var (X + Y ) = Var (X) + Var (Y ) + 2(E (XY )− E (X)E (Y )).

• (total expectation) if A1, . . . are disjoint, then E (X) =
∑

E (X|An)P (An).
In particular, (tower property) E (X) = E (E (X|Y )) and P (X ∈ A) = E (P ( X ∈ A | Y ))

• (total variance) Var (X) = E (Var (X|Y )) + Var (E (X|Y ))

As an exercise, you should compute the mean and the variance of the distributions listed in the table above.

Example 3.

• if X ∼ Poi(λ), then E (X) = λ and Var (X) = λ

• if X ∼ Exp(λ), then E (X) = 1/λ and Var (X) = 1/λ2

Example 4. For a randomly shuffled deck of 52 poker cards, where 4 of them are aces, the expected number of
cards placed before the first ace can be computed as follows: number the non-ace cards as 1, . . . , 48, and for each

i let Xi be the random variable Xi =

{
1 if card i is placed before the first ace

0 otherwise
. Then the expected number of

cards placed before the first ace is E (
∑

Xi) =
∑

E (Xi) = 48/5 as you can easily argue that E (Xi) = 1/5 for
each card.

5 Computations

5.1 Sum of Random Variables

If X,Y are independent continuous random variables, then the cdf of their sum X + Y can be computed as

FX+Y (z) = P (X + Y ≤ z)

=

∫
P (X + Y ≤ z|X = x) fX(x)

=

∫
P (Y ≤ z − x) fX(x)

=

∫ ∞

−∞

∫ z−x

−∞
fY (y)fX(x) dy dx

=

∫ ∞

−∞

∫ z

−∞
fY (y − x)fX(x) dy dx

and so

fX+Y (z) =
d

dz
FX+Y (z) =

∫ ∞

−∞
fY (z − x)fX(x) dx = (fX ∗ fY )(z)

which means that the pdf fX+Y of X+Y is the convolution of fX and fY . A similar conclusion holds for discrete
random variables.

Example 5. If X ∼ Poi(λX), Y ∼ Poi(λY ) are independent, then X + Y ∼ Poi(λX + λY )
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5.2 Order Statistics

If X1, . . . , Xn are independent random variables, then the cdf of their maximum Y = max(X1, . . . , Xn) can be
computed as

FY (y) = P (max(X1, . . . , Xn) ≤ y) =
∏

P (Xi ≤ y) =
∏

FXi
(y)

Same approach can also give the cdf of the k-largest value.

Example 6. If X1, . . . , Xn are independent random variables and Xi ∼ Exp(λi), then for Y = min(X1, . . . , Xn),

FY (y) = 1− P (Y > y) = 1−
∏

P (Xi > y) = 1−
∏

(1− FXi
(y)) = 1−

∏
e−λiyχy≥0 = 1− e−(

∑
λi)yχy≥0

This implies min(X1, . . . , Xn) = Y ∼ Exp(
∑

λi).

Furthermore, on Z = min(X2, . . . , Xn) ∼ Exp(λ) with λ =
∑

i≥2 λi,

P (min(X1, . . . , Xn) = X1) = P (X1 ≤ Z) =

∫
P (X1 ≤ z) fZ(z) =

∫ ∞

0

(1− e−λ1z)λe−λz =
λ1

λ1 + λ
=

λ1∑
λi
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